OpenCloudOS-Kernel/include/linux/device.h

1677 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* device.h - generic, centralized driver model
*
* Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
* Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de>
* Copyright (c) 2008-2009 Novell Inc.
*
* See Documentation/driver-model/ for more information.
*/
#ifndef _DEVICE_H_
#define _DEVICE_H_
#include <linux/ioport.h>
#include <linux/kobject.h>
#include <linux/klist.h>
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/atomic.h>
#include <linux/ratelimit.h>
#include <linux/uidgid.h>
#include <linux/gfp.h>
#include <linux/overflow.h>
#include <asm/device.h>
struct device;
struct device_private;
struct device_driver;
struct driver_private;
struct module;
struct class;
struct subsys_private;
struct bus_type;
struct device_node;
struct fwnode_handle;
struct iommu_ops;
struct iommu_group;
struct iommu_fwspec;
struct dev_pin_info;
struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *bus, char *buf);
ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count);
};
#define BUS_ATTR(_name, _mode, _show, _store) \
struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define BUS_ATTR_RW(_name) \
struct bus_attribute bus_attr_##_name = __ATTR_RW(_name)
#define BUS_ATTR_RO(_name) \
struct bus_attribute bus_attr_##_name = __ATTR_RO(_name)
#define BUS_ATTR_WO(_name) \
struct bus_attribute bus_attr_##_name = __ATTR_WO(_name)
extern int __must_check bus_create_file(struct bus_type *,
struct bus_attribute *);
extern void bus_remove_file(struct bus_type *, struct bus_attribute *);
/**
* struct bus_type - The bus type of the device
*
* @name: The name of the bus.
* @dev_name: Used for subsystems to enumerate devices like ("foo%u", dev->id).
* @dev_root: Default device to use as the parent.
* @bus_groups: Default attributes of the bus.
* @dev_groups: Default attributes of the devices on the bus.
* @drv_groups: Default attributes of the device drivers on the bus.
* @match: Called, perhaps multiple times, whenever a new device or driver
* is added for this bus. It should return a positive value if the
* given device can be handled by the given driver and zero
* otherwise. It may also return error code if determining that
* the driver supports the device is not possible. In case of
* -EPROBE_DEFER it will queue the device for deferred probing.
* @uevent: Called when a device is added, removed, or a few other things
* that generate uevents to add the environment variables.
* @probe: Called when a new device or driver add to this bus, and callback
* the specific driver's probe to initial the matched device.
* @remove: Called when a device removed from this bus.
* @shutdown: Called at shut-down time to quiesce the device.
*
* @online: Called to put the device back online (after offlining it).
* @offline: Called to put the device offline for hot-removal. May fail.
*
* @suspend: Called when a device on this bus wants to go to sleep mode.
* @resume: Called to bring a device on this bus out of sleep mode.
* @num_vf: Called to find out how many virtual functions a device on this
* bus supports.
* @dma_configure: Called to setup DMA configuration on a device on
* this bus.
* @pm: Power management operations of this bus, callback the specific
* device driver's pm-ops.
* @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU
* driver implementations to a bus and allow the driver to do
* bus-specific setup
* @p: The private data of the driver core, only the driver core can
* touch this.
* @lock_key: Lock class key for use by the lock validator
* @need_parent_lock: When probing or removing a device on this bus, the
* device core should lock the device's parent.
*
* A bus is a channel between the processor and one or more devices. For the
* purposes of the device model, all devices are connected via a bus, even if
* it is an internal, virtual, "platform" bus. Buses can plug into each other.
* A USB controller is usually a PCI device, for example. The device model
* represents the actual connections between buses and the devices they control.
* A bus is represented by the bus_type structure. It contains the name, the
* default attributes, the bus' methods, PM operations, and the driver core's
* private data.
*/
struct bus_type {
const char *name;
const char *dev_name;
struct device *dev_root;
const struct attribute_group **bus_groups;
const struct attribute_group **dev_groups;
const struct attribute_group **drv_groups;
int (*match)(struct device *dev, struct device_driver *drv);
int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
int (*probe)(struct device *dev);
int (*remove)(struct device *dev);
void (*shutdown)(struct device *dev);
int (*online)(struct device *dev);
int (*offline)(struct device *dev);
int (*suspend)(struct device *dev, pm_message_t state);
int (*resume)(struct device *dev);
int (*num_vf)(struct device *dev);
int (*dma_configure)(struct device *dev);
const struct dev_pm_ops *pm;
const struct iommu_ops *iommu_ops;
struct subsys_private *p;
struct lock_class_key lock_key;
bool need_parent_lock;
};
extern int __must_check bus_register(struct bus_type *bus);
extern void bus_unregister(struct bus_type *bus);
extern int __must_check bus_rescan_devices(struct bus_type *bus);
/* iterator helpers for buses */
struct subsys_dev_iter {
struct klist_iter ki;
const struct device_type *type;
};
void subsys_dev_iter_init(struct subsys_dev_iter *iter,
struct bus_type *subsys,
struct device *start,
const struct device_type *type);
struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter);
void subsys_dev_iter_exit(struct subsys_dev_iter *iter);
int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,
int (*fn)(struct device *dev, void *data));
struct device *bus_find_device(struct bus_type *bus, struct device *start,
void *data,
int (*match)(struct device *dev, void *data));
struct device *bus_find_device_by_name(struct bus_type *bus,
struct device *start,
const char *name);
struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id,
struct device *hint);
int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
void *data, int (*fn)(struct device_driver *, void *));
void bus_sort_breadthfirst(struct bus_type *bus,
int (*compare)(const struct device *a,
const struct device *b));
/*
* Bus notifiers: Get notified of addition/removal of devices
* and binding/unbinding of drivers to devices.
* In the long run, it should be a replacement for the platform
* notify hooks.
*/
struct notifier_block;
extern int bus_register_notifier(struct bus_type *bus,
struct notifier_block *nb);
extern int bus_unregister_notifier(struct bus_type *bus,
struct notifier_block *nb);
/* All 4 notifers below get called with the target struct device *
* as an argument. Note that those functions are likely to be called
* with the device lock held in the core, so be careful.
*/
#define BUS_NOTIFY_ADD_DEVICE 0x00000001 /* device added */
#define BUS_NOTIFY_DEL_DEVICE 0x00000002 /* device to be removed */
#define BUS_NOTIFY_REMOVED_DEVICE 0x00000003 /* device removed */
#define BUS_NOTIFY_BIND_DRIVER 0x00000004 /* driver about to be
bound */
#define BUS_NOTIFY_BOUND_DRIVER 0x00000005 /* driver bound to device */
#define BUS_NOTIFY_UNBIND_DRIVER 0x00000006 /* driver about to be
unbound */
#define BUS_NOTIFY_UNBOUND_DRIVER 0x00000007 /* driver is unbound
from the device */
#define BUS_NOTIFY_DRIVER_NOT_BOUND 0x00000008 /* driver fails to be bound */
extern struct kset *bus_get_kset(struct bus_type *bus);
extern struct klist *bus_get_device_klist(struct bus_type *bus);
/**
* enum probe_type - device driver probe type to try
* Device drivers may opt in for special handling of their
* respective probe routines. This tells the core what to
* expect and prefer.
*
* @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well
* whether probed synchronously or asynchronously.
* @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which
* probing order is not essential for booting the system may
* opt into executing their probes asynchronously.
* @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need
* their probe routines to run synchronously with driver and
* device registration (with the exception of -EPROBE_DEFER
* handling - re-probing always ends up being done asynchronously).
*
* Note that the end goal is to switch the kernel to use asynchronous
* probing by default, so annotating drivers with
* %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us
* to speed up boot process while we are validating the rest of the
* drivers.
*/
enum probe_type {
PROBE_DEFAULT_STRATEGY,
PROBE_PREFER_ASYNCHRONOUS,
PROBE_FORCE_SYNCHRONOUS,
};
/**
* struct device_driver - The basic device driver structure
* @name: Name of the device driver.
* @bus: The bus which the device of this driver belongs to.
* @owner: The module owner.
* @mod_name: Used for built-in modules.
* @suppress_bind_attrs: Disables bind/unbind via sysfs.
* @probe_type: Type of the probe (synchronous or asynchronous) to use.
* @of_match_table: The open firmware table.
* @acpi_match_table: The ACPI match table.
* @probe: Called to query the existence of a specific device,
* whether this driver can work with it, and bind the driver
* to a specific device.
* @remove: Called when the device is removed from the system to
* unbind a device from this driver.
* @shutdown: Called at shut-down time to quiesce the device.
* @suspend: Called to put the device to sleep mode. Usually to a
* low power state.
* @resume: Called to bring a device from sleep mode.
* @groups: Default attributes that get created by the driver core
* automatically.
* @pm: Power management operations of the device which matched
* this driver.
* @coredump: Called when sysfs entry is written to. The device driver
* is expected to call the dev_coredump API resulting in a
* uevent.
* @p: Driver core's private data, no one other than the driver
* core can touch this.
*
* The device driver-model tracks all of the drivers known to the system.
* The main reason for this tracking is to enable the driver core to match
* up drivers with new devices. Once drivers are known objects within the
* system, however, a number of other things become possible. Device drivers
* can export information and configuration variables that are independent
* of any specific device.
*/
struct device_driver {
const char *name;
struct bus_type *bus;
struct module *owner;
const char *mod_name; /* used for built-in modules */
bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
enum probe_type probe_type;
const struct of_device_id *of_match_table;
const struct acpi_device_id *acpi_match_table;
int (*probe) (struct device *dev);
int (*remove) (struct device *dev);
void (*shutdown) (struct device *dev);
int (*suspend) (struct device *dev, pm_message_t state);
int (*resume) (struct device *dev);
const struct attribute_group **groups;
const struct dev_pm_ops *pm;
void (*coredump) (struct device *dev);
struct driver_private *p;
};
extern int __must_check driver_register(struct device_driver *drv);
extern void driver_unregister(struct device_driver *drv);
extern struct device_driver *driver_find(const char *name,
struct bus_type *bus);
extern int driver_probe_done(void);
extern void wait_for_device_probe(void);
/* sysfs interface for exporting driver attributes */
struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *driver, char *buf);
ssize_t (*store)(struct device_driver *driver, const char *buf,
size_t count);
};
#define DRIVER_ATTR_RW(_name) \
struct driver_attribute driver_attr_##_name = __ATTR_RW(_name)
#define DRIVER_ATTR_RO(_name) \
struct driver_attribute driver_attr_##_name = __ATTR_RO(_name)
#define DRIVER_ATTR_WO(_name) \
struct driver_attribute driver_attr_##_name = __ATTR_WO(_name)
extern int __must_check driver_create_file(struct device_driver *driver,
const struct driver_attribute *attr);
extern void driver_remove_file(struct device_driver *driver,
const struct driver_attribute *attr);
extern int __must_check driver_for_each_device(struct device_driver *drv,
struct device *start,
void *data,
int (*fn)(struct device *dev,
void *));
struct device *driver_find_device(struct device_driver *drv,
struct device *start, void *data,
int (*match)(struct device *dev, void *data));
void driver_deferred_probe_add(struct device *dev);
int driver_deferred_probe_check_state(struct device *dev);
/**
* struct subsys_interface - interfaces to device functions
* @name: name of the device function
* @subsys: subsytem of the devices to attach to
* @node: the list of functions registered at the subsystem
* @add_dev: device hookup to device function handler
* @remove_dev: device hookup to device function handler
*
* Simple interfaces attached to a subsystem. Multiple interfaces can
* attach to a subsystem and its devices. Unlike drivers, they do not
* exclusively claim or control devices. Interfaces usually represent
* a specific functionality of a subsystem/class of devices.
*/
struct subsys_interface {
const char *name;
struct bus_type *subsys;
struct list_head node;
int (*add_dev)(struct device *dev, struct subsys_interface *sif);
void (*remove_dev)(struct device *dev, struct subsys_interface *sif);
};
int subsys_interface_register(struct subsys_interface *sif);
void subsys_interface_unregister(struct subsys_interface *sif);
int subsys_system_register(struct bus_type *subsys,
const struct attribute_group **groups);
int subsys_virtual_register(struct bus_type *subsys,
const struct attribute_group **groups);
/**
* struct class - device classes
* @name: Name of the class.
* @owner: The module owner.
* @class_groups: Default attributes of this class.
* @dev_groups: Default attributes of the devices that belong to the class.
* @dev_kobj: The kobject that represents this class and links it into the hierarchy.
* @dev_uevent: Called when a device is added, removed from this class, or a
* few other things that generate uevents to add the environment
* variables.
* @devnode: Callback to provide the devtmpfs.
* @class_release: Called to release this class.
* @dev_release: Called to release the device.
* @shutdown_pre: Called at shut-down time before driver shutdown.
* @ns_type: Callbacks so sysfs can detemine namespaces.
* @namespace: Namespace of the device belongs to this class.
* @get_ownership: Allows class to specify uid/gid of the sysfs directories
* for the devices belonging to the class. Usually tied to
* device's namespace.
* @pm: The default device power management operations of this class.
* @p: The private data of the driver core, no one other than the
* driver core can touch this.
*
* A class is a higher-level view of a device that abstracts out low-level
* implementation details. Drivers may see a SCSI disk or an ATA disk, but,
* at the class level, they are all simply disks. Classes allow user space
* to work with devices based on what they do, rather than how they are
* connected or how they work.
*/
struct class {
const char *name;
struct module *owner;
const struct attribute_group **class_groups;
const struct attribute_group **dev_groups;
struct kobject *dev_kobj;
int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env);
char *(*devnode)(struct device *dev, umode_t *mode);
void (*class_release)(struct class *class);
void (*dev_release)(struct device *dev);
int (*shutdown_pre)(struct device *dev);
const struct kobj_ns_type_operations *ns_type;
const void *(*namespace)(struct device *dev);
void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid);
const struct dev_pm_ops *pm;
struct subsys_private *p;
};
struct class_dev_iter {
struct klist_iter ki;
const struct device_type *type;
};
extern struct kobject *sysfs_dev_block_kobj;
extern struct kobject *sysfs_dev_char_kobj;
extern int __must_check __class_register(struct class *class,
struct lock_class_key *key);
extern void class_unregister(struct class *class);
/* This is a #define to keep the compiler from merging different
* instances of the __key variable */
#define class_register(class) \
({ \
static struct lock_class_key __key; \
__class_register(class, &__key); \
})
struct class_compat;
struct class_compat *class_compat_register(const char *name);
void class_compat_unregister(struct class_compat *cls);
int class_compat_create_link(struct class_compat *cls, struct device *dev,
struct device *device_link);
void class_compat_remove_link(struct class_compat *cls, struct device *dev,
struct device *device_link);
extern void class_dev_iter_init(struct class_dev_iter *iter,
struct class *class,
struct device *start,
const struct device_type *type);
extern struct device *class_dev_iter_next(struct class_dev_iter *iter);
extern void class_dev_iter_exit(struct class_dev_iter *iter);
extern int class_for_each_device(struct class *class, struct device *start,
void *data,
int (*fn)(struct device *dev, void *data));
extern struct device *class_find_device(struct class *class,
struct device *start, const void *data,
int (*match)(struct device *, const void *));
struct class_attribute {
struct attribute attr;
ssize_t (*show)(struct class *class, struct class_attribute *attr,
char *buf);
ssize_t (*store)(struct class *class, struct class_attribute *attr,
const char *buf, size_t count);
};
#define CLASS_ATTR_RW(_name) \
struct class_attribute class_attr_##_name = __ATTR_RW(_name)
#define CLASS_ATTR_RO(_name) \
struct class_attribute class_attr_##_name = __ATTR_RO(_name)
#define CLASS_ATTR_WO(_name) \
struct class_attribute class_attr_##_name = __ATTR_WO(_name)
extern int __must_check class_create_file_ns(struct class *class,
const struct class_attribute *attr,
const void *ns);
extern void class_remove_file_ns(struct class *class,
const struct class_attribute *attr,
const void *ns);
static inline int __must_check class_create_file(struct class *class,
const struct class_attribute *attr)
{
return class_create_file_ns(class, attr, NULL);
}
static inline void class_remove_file(struct class *class,
const struct class_attribute *attr)
{
return class_remove_file_ns(class, attr, NULL);
}
/* Simple class attribute that is just a static string */
struct class_attribute_string {
struct class_attribute attr;
char *str;
};
/* Currently read-only only */
#define _CLASS_ATTR_STRING(_name, _mode, _str) \
{ __ATTR(_name, _mode, show_class_attr_string, NULL), _str }
#define CLASS_ATTR_STRING(_name, _mode, _str) \
struct class_attribute_string class_attr_##_name = \
_CLASS_ATTR_STRING(_name, _mode, _str)
extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr,
char *buf);
struct class_interface {
struct list_head node;
struct class *class;
int (*add_dev) (struct device *, struct class_interface *);
void (*remove_dev) (struct device *, struct class_interface *);
};
extern int __must_check class_interface_register(struct class_interface *);
extern void class_interface_unregister(struct class_interface *);
extern struct class * __must_check __class_create(struct module *owner,
const char *name,
struct lock_class_key *key);
extern void class_destroy(struct class *cls);
/* This is a #define to keep the compiler from merging different
* instances of the __key variable */
#define class_create(owner, name) \
({ \
static struct lock_class_key __key; \
__class_create(owner, name, &__key); \
})
/*
* The type of device, "struct device" is embedded in. A class
* or bus can contain devices of different types
* like "partitions" and "disks", "mouse" and "event".
* This identifies the device type and carries type-specific
* information, equivalent to the kobj_type of a kobject.
* If "name" is specified, the uevent will contain it in
* the DEVTYPE variable.
*/
struct device_type {
const char *name;
const struct attribute_group **groups;
int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
char *(*devnode)(struct device *dev, umode_t *mode,
kuid_t *uid, kgid_t *gid);
void (*release)(struct device *dev);
const struct dev_pm_ops *pm;
};
/* interface for exporting device attributes */
struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
};
struct dev_ext_attribute {
struct device_attribute attr;
void *var;
};
ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
ssize_t device_show_int(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t device_store_int(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
#define DEVICE_ATTR(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = \
__ATTR_PREALLOC(_name, _mode, _show, _store)
#define DEVICE_ATTR_RW(_name) \
struct device_attribute dev_attr_##_name = __ATTR_RW(_name)
#define DEVICE_ATTR_RO(_name) \
struct device_attribute dev_attr_##_name = __ATTR_RO(_name)
#define DEVICE_ATTR_WO(_name) \
struct device_attribute dev_attr_##_name = __ATTR_WO(_name)
#define DEVICE_ULONG_ATTR(_name, _mode, _var) \
struct dev_ext_attribute dev_attr_##_name = \
{ __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) }
#define DEVICE_INT_ATTR(_name, _mode, _var) \
struct dev_ext_attribute dev_attr_##_name = \
{ __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) }
#define DEVICE_BOOL_ATTR(_name, _mode, _var) \
struct dev_ext_attribute dev_attr_##_name = \
{ __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) }
#define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = \
__ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store)
extern int device_create_file(struct device *device,
const struct device_attribute *entry);
extern void device_remove_file(struct device *dev,
const struct device_attribute *attr);
extern bool device_remove_file_self(struct device *dev,
const struct device_attribute *attr);
extern int __must_check device_create_bin_file(struct device *dev,
const struct bin_attribute *attr);
extern void device_remove_bin_file(struct device *dev,
const struct bin_attribute *attr);
/* device resource management */
typedef void (*dr_release_t)(struct device *dev, void *res);
typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data);
#ifdef CONFIG_DEBUG_DEVRES
extern void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp,
int nid, const char *name) __malloc;
#define devres_alloc(release, size, gfp) \
__devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release)
#define devres_alloc_node(release, size, gfp, nid) \
__devres_alloc_node(release, size, gfp, nid, #release)
#else
extern void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp,
int nid) __malloc;
static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
{
return devres_alloc_node(release, size, gfp, NUMA_NO_NODE);
}
#endif
extern void devres_for_each_res(struct device *dev, dr_release_t release,
dr_match_t match, void *match_data,
void (*fn)(struct device *, void *, void *),
void *data);
extern void devres_free(void *res);
extern void devres_add(struct device *dev, void *res);
extern void *devres_find(struct device *dev, dr_release_t release,
dr_match_t match, void *match_data);
extern void *devres_get(struct device *dev, void *new_res,
dr_match_t match, void *match_data);
extern void *devres_remove(struct device *dev, dr_release_t release,
dr_match_t match, void *match_data);
extern int devres_destroy(struct device *dev, dr_release_t release,
dr_match_t match, void *match_data);
extern int devres_release(struct device *dev, dr_release_t release,
dr_match_t match, void *match_data);
/* devres group */
extern void * __must_check devres_open_group(struct device *dev, void *id,
gfp_t gfp);
extern void devres_close_group(struct device *dev, void *id);
extern void devres_remove_group(struct device *dev, void *id);
extern int devres_release_group(struct device *dev, void *id);
/* managed devm_k.alloc/kfree for device drivers */
extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc;
extern __printf(3, 0)
char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
va_list ap) __malloc;
extern __printf(3, 4)
char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc;
static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp)
{
return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
}
static inline void *devm_kmalloc_array(struct device *dev,
size_t n, size_t size, gfp_t flags)
{
size_t bytes;
if (unlikely(check_mul_overflow(n, size, &bytes)))
return NULL;
return devm_kmalloc(dev, bytes, flags);
}
static inline void *devm_kcalloc(struct device *dev,
size_t n, size_t size, gfp_t flags)
{
return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
}
extern void devm_kfree(struct device *dev, const void *p);
extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc;
extern const char *devm_kstrdup_const(struct device *dev,
const char *s, gfp_t gfp);
extern void *devm_kmemdup(struct device *dev, const void *src, size_t len,
gfp_t gfp);
extern unsigned long devm_get_free_pages(struct device *dev,
gfp_t gfp_mask, unsigned int order);
extern void devm_free_pages(struct device *dev, unsigned long addr);
void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res);
void __iomem *devm_of_iomap(struct device *dev,
struct device_node *node, int index,
resource_size_t *size);
/* allows to add/remove a custom action to devres stack */
int devm_add_action(struct device *dev, void (*action)(void *), void *data);
void devm_remove_action(struct device *dev, void (*action)(void *), void *data);
static inline int devm_add_action_or_reset(struct device *dev,
void (*action)(void *), void *data)
{
int ret;
ret = devm_add_action(dev, action, data);
if (ret)
action(data);
return ret;
}
/**
* devm_alloc_percpu - Resource-managed alloc_percpu
* @dev: Device to allocate per-cpu memory for
* @type: Type to allocate per-cpu memory for
*
* Managed alloc_percpu. Per-cpu memory allocated with this function is
* automatically freed on driver detach.
*
* RETURNS:
* Pointer to allocated memory on success, NULL on failure.
*/
#define devm_alloc_percpu(dev, type) \
((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \
__alignof__(type)))
void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
size_t align);
void devm_free_percpu(struct device *dev, void __percpu *pdata);
struct device_dma_parameters {
/*
* a low level driver may set these to teach IOMMU code about
* sg limitations.
*/
unsigned int max_segment_size;
unsigned long segment_boundary_mask;
};
/**
* struct device_connection - Device Connection Descriptor
* @fwnode: The device node of the connected device
* @endpoint: The names of the two devices connected together
* @id: Unique identifier for the connection
* @list: List head, private, for internal use only
*
* NOTE: @fwnode is not used together with @endpoint. @fwnode is used when
* platform firmware defines the connection. When the connection is registered
* with device_connection_add() @endpoint is used instead.
*/
struct device_connection {
struct fwnode_handle *fwnode;
const char *endpoint[2];
const char *id;
struct list_head list;
};
void *device_connection_find_match(struct device *dev, const char *con_id,
void *data,
void *(*match)(struct device_connection *con,
int ep, void *data));
struct device *device_connection_find(struct device *dev, const char *con_id);
void device_connection_add(struct device_connection *con);
void device_connection_remove(struct device_connection *con);
/**
* device_connections_add - Add multiple device connections at once
* @cons: Zero terminated array of device connection descriptors
*/
static inline void device_connections_add(struct device_connection *cons)
{
struct device_connection *c;
for (c = cons; c->endpoint[0]; c++)
device_connection_add(c);
}
/**
* device_connections_remove - Remove multiple device connections at once
* @cons: Zero terminated array of device connection descriptors
*/
static inline void device_connections_remove(struct device_connection *cons)
{
struct device_connection *c;
for (c = cons; c->endpoint[0]; c++)
device_connection_remove(c);
}
/**
* enum device_link_state - Device link states.
* @DL_STATE_NONE: The presence of the drivers is not being tracked.
* @DL_STATE_DORMANT: None of the supplier/consumer drivers is present.
* @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not.
* @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present).
* @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present.
* @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding.
*/
enum device_link_state {
DL_STATE_NONE = -1,
DL_STATE_DORMANT = 0,
DL_STATE_AVAILABLE,
DL_STATE_CONSUMER_PROBE,
DL_STATE_ACTIVE,
DL_STATE_SUPPLIER_UNBIND,
};
/*
* Device link flags.
*
* STATELESS: The core won't track the presence of supplier/consumer drivers.
* AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind.
* PM_RUNTIME: If set, the runtime PM framework will use this link.
* RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation.
* AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind.
* AUTOPROBE_CONSUMER: Probe consumer driver automatically after supplier binds.
*/
#define DL_FLAG_STATELESS BIT(0)
#define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1)
#define DL_FLAG_PM_RUNTIME BIT(2)
#define DL_FLAG_RPM_ACTIVE BIT(3)
#define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4)
#define DL_FLAG_AUTOPROBE_CONSUMER BIT(5)
/**
* struct device_link - Device link representation.
* @supplier: The device on the supplier end of the link.
* @s_node: Hook to the supplier device's list of links to consumers.
* @consumer: The device on the consumer end of the link.
* @c_node: Hook to the consumer device's list of links to suppliers.
* @status: The state of the link (with respect to the presence of drivers).
* @flags: Link flags.
* @rpm_active: Whether or not the consumer device is runtime-PM-active.
* @kref: Count repeated addition of the same link.
* @rcu_head: An RCU head to use for deferred execution of SRCU callbacks.
* @supplier_preactivated: Supplier has been made active before consumer probe.
*/
struct device_link {
struct device *supplier;
struct list_head s_node;
struct device *consumer;
struct list_head c_node;
enum device_link_state status;
u32 flags;
refcount_t rpm_active;
struct kref kref;
#ifdef CONFIG_SRCU
struct rcu_head rcu_head;
#endif
bool supplier_preactivated; /* Owned by consumer probe. */
};
/**
* enum dl_dev_state - Device driver presence tracking information.
* @DL_DEV_NO_DRIVER: There is no driver attached to the device.
* @DL_DEV_PROBING: A driver is probing.
* @DL_DEV_DRIVER_BOUND: The driver has been bound to the device.
* @DL_DEV_UNBINDING: The driver is unbinding from the device.
*/
enum dl_dev_state {
DL_DEV_NO_DRIVER = 0,
DL_DEV_PROBING,
DL_DEV_DRIVER_BOUND,
DL_DEV_UNBINDING,
};
/**
* struct dev_links_info - Device data related to device links.
* @suppliers: List of links to supplier devices.
* @consumers: List of links to consumer devices.
* @status: Driver status information.
*/
struct dev_links_info {
struct list_head suppliers;
struct list_head consumers;
enum dl_dev_state status;
};
/**
* struct device - The basic device structure
* @parent: The device's "parent" device, the device to which it is attached.
* In most cases, a parent device is some sort of bus or host
* controller. If parent is NULL, the device, is a top-level device,
* which is not usually what you want.
* @p: Holds the private data of the driver core portions of the device.
* See the comment of the struct device_private for detail.
* @kobj: A top-level, abstract class from which other classes are derived.
* @init_name: Initial name of the device.
* @type: The type of device.
* This identifies the device type and carries type-specific
* information.
* @mutex: Mutex to synchronize calls to its driver.
* @bus: Type of bus device is on.
* @driver: Which driver has allocated this
* @platform_data: Platform data specific to the device.
* Example: For devices on custom boards, as typical of embedded
* and SOC based hardware, Linux often uses platform_data to point
* to board-specific structures describing devices and how they
* are wired. That can include what ports are available, chip
* variants, which GPIO pins act in what additional roles, and so
* on. This shrinks the "Board Support Packages" (BSPs) and
* minimizes board-specific #ifdefs in drivers.
* @driver_data: Private pointer for driver specific info.
* @links: Links to suppliers and consumers of this device.
* @power: For device power management.
* See Documentation/driver-api/pm/devices.rst for details.
* @pm_domain: Provide callbacks that are executed during system suspend,
* hibernation, system resume and during runtime PM transitions
* along with subsystem-level and driver-level callbacks.
* @pins: For device pin management.
* See Documentation/driver-api/pinctl.rst for details.
* @msi_list: Hosts MSI descriptors
* @msi_domain: The generic MSI domain this device is using.
* @numa_node: NUMA node this device is close to.
* @dma_ops: DMA mapping operations for this device.
* @dma_mask: Dma mask (if dma'ble device).
* @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
* hardware supports 64-bit addresses for consistent allocations
* such descriptors.
* @bus_dma_mask: Mask of an upstream bridge or bus which imposes a smaller DMA
* limit than the device itself supports.
* @dma_pfn_offset: offset of DMA memory range relatively of RAM
* @dma_parms: A low level driver may set these to teach IOMMU code about
* segment limitations.
* @dma_pools: Dma pools (if dma'ble device).
* @dma_mem: Internal for coherent mem override.
* @cma_area: Contiguous memory area for dma allocations
* @archdata: For arch-specific additions.
* @of_node: Associated device tree node.
* @fwnode: Associated device node supplied by platform firmware.
* @devt: For creating the sysfs "dev".
* @id: device instance
* @devres_lock: Spinlock to protect the resource of the device.
* @devres_head: The resources list of the device.
* @knode_class: The node used to add the device to the class list.
* @class: The class of the device.
* @groups: Optional attribute groups.
* @release: Callback to free the device after all references have
* gone away. This should be set by the allocator of the
* device (i.e. the bus driver that discovered the device).
* @iommu_group: IOMMU group the device belongs to.
* @iommu_fwspec: IOMMU-specific properties supplied by firmware.
*
* @offline_disabled: If set, the device is permanently online.
* @offline: Set after successful invocation of bus type's .offline().
* @of_node_reused: Set if the device-tree node is shared with an ancestor
* device.
* @dma_coherent: this particular device is dma coherent, even if the
* architecture supports non-coherent devices.
*
* At the lowest level, every device in a Linux system is represented by an
* instance of struct device. The device structure contains the information
* that the device model core needs to model the system. Most subsystems,
* however, track additional information about the devices they host. As a
* result, it is rare for devices to be represented by bare device structures;
* instead, that structure, like kobject structures, is usually embedded within
* a higher-level representation of the device.
*/
struct device {
struct device *parent;
struct device_private *p;
struct kobject kobj;
const char *init_name; /* initial name of the device */
const struct device_type *type;
struct mutex mutex; /* mutex to synchronize calls to
* its driver.
*/
struct bus_type *bus; /* type of bus device is on */
struct device_driver *driver; /* which driver has allocated this
device */
void *platform_data; /* Platform specific data, device
core doesn't touch it */
void *driver_data; /* Driver data, set and get with
dev_set_drvdata/dev_get_drvdata */
struct dev_links_info links;
struct dev_pm_info power;
struct dev_pm_domain *pm_domain;
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
struct irq_domain *msi_domain;
#endif
#ifdef CONFIG_PINCTRL
struct dev_pin_info *pins;
#endif
#ifdef CONFIG_GENERIC_MSI_IRQ
struct list_head msi_list;
#endif
#ifdef CONFIG_NUMA
int numa_node; /* NUMA node this device is close to */
#endif
const struct dma_map_ops *dma_ops;
u64 *dma_mask; /* dma mask (if dma'able device) */
u64 coherent_dma_mask;/* Like dma_mask, but for
alloc_coherent mappings as
not all hardware supports
64 bit addresses for consistent
allocations such descriptors. */
u64 bus_dma_mask; /* upstream dma_mask constraint */
unsigned long dma_pfn_offset;
struct device_dma_parameters *dma_parms;
struct list_head dma_pools; /* dma pools (if dma'ble) */
#ifdef CONFIG_DMA_DECLARE_COHERENT
struct dma_coherent_mem *dma_mem; /* internal for coherent mem
override */
#endif
#ifdef CONFIG_DMA_CMA
struct cma *cma_area; /* contiguous memory area for dma
allocations */
#endif
/* arch specific additions */
struct dev_archdata archdata;
struct device_node *of_node; /* associated device tree node */
struct fwnode_handle *fwnode; /* firmware device node */
dev_t devt; /* dev_t, creates the sysfs "dev" */
u32 id; /* device instance */
spinlock_t devres_lock;
struct list_head devres_head;
struct class *class;
const struct attribute_group **groups; /* optional groups */
void (*release)(struct device *dev);
struct iommu_group *iommu_group;
struct iommu_fwspec *iommu_fwspec;
bool offline_disabled:1;
bool offline:1;
bool of_node_reused:1;
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
bool dma_coherent:1;
#endif
};
static inline struct device *kobj_to_dev(struct kobject *kobj)
{
return container_of(kobj, struct device, kobj);
}
/**
* device_iommu_mapped - Returns true when the device DMA is translated
* by an IOMMU
* @dev: Device to perform the check on
*/
static inline bool device_iommu_mapped(struct device *dev)
{
return (dev->iommu_group != NULL);
}
/* Get the wakeup routines, which depend on struct device */
#include <linux/pm_wakeup.h>
static inline const char *dev_name(const struct device *dev)
{
/* Use the init name until the kobject becomes available */
if (dev->init_name)
return dev->init_name;
return kobject_name(&dev->kobj);
}
extern __printf(2, 3)
int dev_set_name(struct device *dev, const char *name, ...);
#ifdef CONFIG_NUMA
static inline int dev_to_node(struct device *dev)
{
return dev->numa_node;
}
static inline void set_dev_node(struct device *dev, int node)
{
dev->numa_node = node;
}
#else
static inline int dev_to_node(struct device *dev)
{
return NUMA_NO_NODE;
}
static inline void set_dev_node(struct device *dev, int node)
{
}
#endif
static inline struct irq_domain *dev_get_msi_domain(const struct device *dev)
{
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
return dev->msi_domain;
#else
return NULL;
#endif
}
static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d)
{
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
dev->msi_domain = d;
#endif
}
static inline void *dev_get_drvdata(const struct device *dev)
{
return dev->driver_data;
}
static inline void dev_set_drvdata(struct device *dev, void *data)
{
dev->driver_data = data;
}
static inline struct pm_subsys_data *dev_to_psd(struct device *dev)
{
return dev ? dev->power.subsys_data : NULL;
}
static inline unsigned int dev_get_uevent_suppress(const struct device *dev)
{
return dev->kobj.uevent_suppress;
}
static inline void dev_set_uevent_suppress(struct device *dev, int val)
{
dev->kobj.uevent_suppress = val;
}
static inline int device_is_registered(struct device *dev)
{
return dev->kobj.state_in_sysfs;
}
static inline void device_enable_async_suspend(struct device *dev)
{
if (!dev->power.is_prepared)
dev->power.async_suspend = true;
}
static inline void device_disable_async_suspend(struct device *dev)
{
if (!dev->power.is_prepared)
dev->power.async_suspend = false;
}
static inline bool device_async_suspend_enabled(struct device *dev)
{
return !!dev->power.async_suspend;
}
static inline bool device_pm_not_required(struct device *dev)
{
return dev->power.no_pm;
}
static inline void device_set_pm_not_required(struct device *dev)
{
dev->power.no_pm = true;
}
static inline void dev_pm_syscore_device(struct device *dev, bool val)
{
#ifdef CONFIG_PM_SLEEP
dev->power.syscore = val;
#endif
}
static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags)
{
dev->power.driver_flags = flags;
}
static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags)
{
return !!(dev->power.driver_flags & flags);
}
static inline void device_lock(struct device *dev)
{
mutex_lock(&dev->mutex);
}
static inline int device_lock_interruptible(struct device *dev)
{
return mutex_lock_interruptible(&dev->mutex);
}
static inline int device_trylock(struct device *dev)
{
return mutex_trylock(&dev->mutex);
}
static inline void device_unlock(struct device *dev)
{
mutex_unlock(&dev->mutex);
}
static inline void device_lock_assert(struct device *dev)
{
lockdep_assert_held(&dev->mutex);
}
static inline struct device_node *dev_of_node(struct device *dev)
{
if (!IS_ENABLED(CONFIG_OF))
return NULL;
return dev->of_node;
}
void driver_init(void);
/*
* High level routines for use by the bus drivers
*/
extern int __must_check device_register(struct device *dev);
extern void device_unregister(struct device *dev);
extern void device_initialize(struct device *dev);
extern int __must_check device_add(struct device *dev);
extern void device_del(struct device *dev);
extern int device_for_each_child(struct device *dev, void *data,
int (*fn)(struct device *dev, void *data));
extern int device_for_each_child_reverse(struct device *dev, void *data,
int (*fn)(struct device *dev, void *data));
extern struct device *device_find_child(struct device *dev, void *data,
int (*match)(struct device *dev, void *data));
extern int device_rename(struct device *dev, const char *new_name);
extern int device_move(struct device *dev, struct device *new_parent,
enum dpm_order dpm_order);
extern const char *device_get_devnode(struct device *dev,
umode_t *mode, kuid_t *uid, kgid_t *gid,
const char **tmp);
static inline bool device_supports_offline(struct device *dev)
{
return dev->bus && dev->bus->offline && dev->bus->online;
}
extern void lock_device_hotplug(void);
extern void unlock_device_hotplug(void);
extern int lock_device_hotplug_sysfs(void);
extern int device_offline(struct device *dev);
extern int device_online(struct device *dev);
extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
void device_set_of_node_from_dev(struct device *dev, const struct device *dev2);
static inline int dev_num_vf(struct device *dev)
{
if (dev->bus && dev->bus->num_vf)
return dev->bus->num_vf(dev);
return 0;
}
/*
* Root device objects for grouping under /sys/devices
*/
extern struct device *__root_device_register(const char *name,
struct module *owner);
/* This is a macro to avoid include problems with THIS_MODULE */
#define root_device_register(name) \
__root_device_register(name, THIS_MODULE)
extern void root_device_unregister(struct device *root);
static inline void *dev_get_platdata(const struct device *dev)
{
return dev->platform_data;
}
/*
* Manual binding of a device to driver. See drivers/base/bus.c
* for information on use.
*/
extern int __must_check device_bind_driver(struct device *dev);
extern void device_release_driver(struct device *dev);
extern int __must_check device_attach(struct device *dev);
extern int __must_check driver_attach(struct device_driver *drv);
extern void device_initial_probe(struct device *dev);
extern int __must_check device_reprobe(struct device *dev);
extern bool device_is_bound(struct device *dev);
/*
* Easy functions for dynamically creating devices on the fly
*/
extern __printf(5, 0)
struct device *device_create_vargs(struct class *cls, struct device *parent,
dev_t devt, void *drvdata,
const char *fmt, va_list vargs);
extern __printf(5, 6)
struct device *device_create(struct class *cls, struct device *parent,
dev_t devt, void *drvdata,
const char *fmt, ...);
extern __printf(6, 7)
struct device *device_create_with_groups(struct class *cls,
struct device *parent, dev_t devt, void *drvdata,
const struct attribute_group **groups,
const char *fmt, ...);
extern void device_destroy(struct class *cls, dev_t devt);
extern int __must_check device_add_groups(struct device *dev,
const struct attribute_group **groups);
extern void device_remove_groups(struct device *dev,
const struct attribute_group **groups);
static inline int __must_check device_add_group(struct device *dev,
const struct attribute_group *grp)
{
const struct attribute_group *groups[] = { grp, NULL };
return device_add_groups(dev, groups);
}
static inline void device_remove_group(struct device *dev,
const struct attribute_group *grp)
{
const struct attribute_group *groups[] = { grp, NULL };
return device_remove_groups(dev, groups);
}
extern int __must_check devm_device_add_groups(struct device *dev,
const struct attribute_group **groups);
extern void devm_device_remove_groups(struct device *dev,
const struct attribute_group **groups);
extern int __must_check devm_device_add_group(struct device *dev,
const struct attribute_group *grp);
extern void devm_device_remove_group(struct device *dev,
const struct attribute_group *grp);
/*
* Platform "fixup" functions - allow the platform to have their say
* about devices and actions that the general device layer doesn't
* know about.
*/
/* Notify platform of device discovery */
extern int (*platform_notify)(struct device *dev);
extern int (*platform_notify_remove)(struct device *dev);
/*
* get_device - atomically increment the reference count for the device.
*
*/
extern struct device *get_device(struct device *dev);
extern void put_device(struct device *dev);
#ifdef CONFIG_DEVTMPFS
extern int devtmpfs_create_node(struct device *dev);
extern int devtmpfs_delete_node(struct device *dev);
extern int devtmpfs_mount(const char *mntdir);
#else
static inline int devtmpfs_create_node(struct device *dev) { return 0; }
static inline int devtmpfs_delete_node(struct device *dev) { return 0; }
static inline int devtmpfs_mount(const char *mountpoint) { return 0; }
#endif
/* drivers/base/power/shutdown.c */
extern void device_shutdown(void);
/* debugging and troubleshooting/diagnostic helpers. */
extern const char *dev_driver_string(const struct device *dev);
/* Device links interface. */
struct device_link *device_link_add(struct device *consumer,
struct device *supplier, u32 flags);
void device_link_del(struct device_link *link);
void device_link_remove(void *consumer, struct device *supplier);
#ifndef dev_fmt
#define dev_fmt(fmt) fmt
#endif
#ifdef CONFIG_PRINTK
__printf(3, 0) __cold
int dev_vprintk_emit(int level, const struct device *dev,
const char *fmt, va_list args);
__printf(3, 4) __cold
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...);
__printf(3, 4) __cold
void dev_printk(const char *level, const struct device *dev,
const char *fmt, ...);
__printf(2, 3) __cold
void _dev_emerg(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_alert(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_crit(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_err(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_warn(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_notice(const struct device *dev, const char *fmt, ...);
__printf(2, 3) __cold
void _dev_info(const struct device *dev, const char *fmt, ...);
#else
static inline __printf(3, 0)
int dev_vprintk_emit(int level, const struct device *dev,
const char *fmt, va_list args)
{ return 0; }
static inline __printf(3, 4)
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline void __dev_printk(const char *level, const struct device *dev,
struct va_format *vaf)
{}
static inline __printf(3, 4)
void dev_printk(const char *level, const struct device *dev,
const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_emerg(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_crit(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_alert(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_err(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_warn(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_notice(const struct device *dev, const char *fmt, ...)
{}
static inline __printf(2, 3)
void _dev_info(const struct device *dev, const char *fmt, ...)
{}
#endif
/*
* #defines for all the dev_<level> macros to prefix with whatever
* possible use of #define dev_fmt(fmt) ...
*/
#define dev_emerg(dev, fmt, ...) \
_dev_emerg(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_crit(dev, fmt, ...) \
_dev_crit(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_alert(dev, fmt, ...) \
_dev_alert(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_err(dev, fmt, ...) \
_dev_err(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_warn(dev, fmt, ...) \
_dev_warn(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_notice(dev, fmt, ...) \
_dev_notice(dev, dev_fmt(fmt), ##__VA_ARGS__)
#define dev_info(dev, fmt, ...) \
_dev_info(dev, dev_fmt(fmt), ##__VA_ARGS__)
#if defined(CONFIG_DYNAMIC_DEBUG)
#define dev_dbg(dev, fmt, ...) \
dynamic_dev_dbg(dev, dev_fmt(fmt), ##__VA_ARGS__)
#elif defined(DEBUG)
#define dev_dbg(dev, fmt, ...) \
dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__)
#else
#define dev_dbg(dev, fmt, ...) \
({ \
if (0) \
dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \
})
#endif
#ifdef CONFIG_PRINTK
#define dev_level_once(dev_level, dev, fmt, ...) \
do { \
static bool __print_once __read_mostly; \
\
if (!__print_once) { \
__print_once = true; \
dev_level(dev, fmt, ##__VA_ARGS__); \
} \
} while (0)
#else
#define dev_level_once(dev_level, dev, fmt, ...) \
do { \
if (0) \
dev_level(dev, fmt, ##__VA_ARGS__); \
} while (0)
#endif
#define dev_emerg_once(dev, fmt, ...) \
dev_level_once(dev_emerg, dev, fmt, ##__VA_ARGS__)
#define dev_alert_once(dev, fmt, ...) \
dev_level_once(dev_alert, dev, fmt, ##__VA_ARGS__)
#define dev_crit_once(dev, fmt, ...) \
dev_level_once(dev_crit, dev, fmt, ##__VA_ARGS__)
#define dev_err_once(dev, fmt, ...) \
dev_level_once(dev_err, dev, fmt, ##__VA_ARGS__)
#define dev_warn_once(dev, fmt, ...) \
dev_level_once(dev_warn, dev, fmt, ##__VA_ARGS__)
#define dev_notice_once(dev, fmt, ...) \
dev_level_once(dev_notice, dev, fmt, ##__VA_ARGS__)
#define dev_info_once(dev, fmt, ...) \
dev_level_once(dev_info, dev, fmt, ##__VA_ARGS__)
#define dev_dbg_once(dev, fmt, ...) \
dev_level_once(dev_dbg, dev, fmt, ##__VA_ARGS__)
#define dev_level_ratelimited(dev_level, dev, fmt, ...) \
do { \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
if (__ratelimit(&_rs)) \
dev_level(dev, fmt, ##__VA_ARGS__); \
} while (0)
#define dev_emerg_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__)
#define dev_alert_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__)
#define dev_crit_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__)
#define dev_err_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__)
#define dev_warn_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__)
#define dev_notice_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__)
#define dev_info_ratelimited(dev, fmt, ...) \
dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__)
#if defined(CONFIG_DYNAMIC_DEBUG)
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
#define dev_dbg_ratelimited(dev, fmt, ...) \
do { \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
if (DYNAMIC_DEBUG_BRANCH(descriptor) && \
__ratelimit(&_rs)) \
__dynamic_dev_dbg(&descriptor, dev, dev_fmt(fmt), \
##__VA_ARGS__); \
} while (0)
#elif defined(DEBUG)
#define dev_dbg_ratelimited(dev, fmt, ...) \
do { \
static DEFINE_RATELIMIT_STATE(_rs, \
DEFAULT_RATELIMIT_INTERVAL, \
DEFAULT_RATELIMIT_BURST); \
if (__ratelimit(&_rs)) \
dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \
} while (0)
#else
#define dev_dbg_ratelimited(dev, fmt, ...) \
do { \
if (0) \
dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \
} while (0)
#endif
#ifdef VERBOSE_DEBUG
#define dev_vdbg dev_dbg
#else
#define dev_vdbg(dev, fmt, ...) \
({ \
if (0) \
dev_printk(KERN_DEBUG, dev, dev_fmt(fmt), ##__VA_ARGS__); \
})
#endif
/*
* dev_WARN*() acts like dev_printk(), but with the key difference of
* using WARN/WARN_ONCE to include file/line information and a backtrace.
*/
#define dev_WARN(dev, format, arg...) \
WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg);
#define dev_WARN_ONCE(dev, condition, format, arg...) \
WARN_ONCE(condition, "%s %s: " format, \
dev_driver_string(dev), dev_name(dev), ## arg)
/* Create alias, so I can be autoloaded. */
#define MODULE_ALIAS_CHARDEV(major,minor) \
MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor))
#define MODULE_ALIAS_CHARDEV_MAJOR(major) \
MODULE_ALIAS("char-major-" __stringify(major) "-*")
#ifdef CONFIG_SYSFS_DEPRECATED
extern long sysfs_deprecated;
#else
#define sysfs_deprecated 0
#endif
/**
* module_driver() - Helper macro for drivers that don't do anything
* special in module init/exit. This eliminates a lot of boilerplate.
* Each module may only use this macro once, and calling it replaces
* module_init() and module_exit().
*
* @__driver: driver name
* @__register: register function for this driver type
* @__unregister: unregister function for this driver type
* @...: Additional arguments to be passed to __register and __unregister.
*
* Use this macro to construct bus specific macros for registering
* drivers, and do not use it on its own.
*/
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
__unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);
/**
* builtin_driver() - Helper macro for drivers that don't do anything
* special in init and have no exit. This eliminates some boilerplate.
* Each driver may only use this macro once, and calling it replaces
* device_initcall (or in some cases, the legacy __initcall). This is
* meant to be a direct parallel of module_driver() above but without
* the __exit stuff that is not used for builtin cases.
*
* @__driver: driver name
* @__register: register function for this driver type
* @...: Additional arguments to be passed to __register
*
* Use this macro to construct bus specific macros for registering
* drivers, and do not use it on its own.
*/
#define builtin_driver(__driver, __register, ...) \
static int __init __driver##_init(void) \
{ \
return __register(&(__driver) , ##__VA_ARGS__); \
} \
device_initcall(__driver##_init);
#endif /* _DEVICE_H_ */