2066 lines
62 KiB
C
2066 lines
62 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This header defines architecture specific interfaces, x86 version
|
|
*/
|
|
|
|
#ifndef _ASM_X86_KVM_HOST_H
|
|
#define _ASM_X86_KVM_HOST_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/tracepoint.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/kvm_types.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/pvclock_gtod.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/hyperv.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/pvclock-abi.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/kvm_page_track.h>
|
|
#include <asm/kvm_vcpu_regs.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
|
|
#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
|
|
|
|
#define KVM_MAX_VCPUS 1024
|
|
|
|
/*
|
|
* In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
|
|
* might be larger than the actual number of VCPUs because the
|
|
* APIC ID encodes CPU topology information.
|
|
*
|
|
* In the worst case, we'll need less than one extra bit for the
|
|
* Core ID, and less than one extra bit for the Package (Die) ID,
|
|
* so ratio of 4 should be enough.
|
|
*/
|
|
#define KVM_VCPU_ID_RATIO 4
|
|
#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
|
|
|
|
/* memory slots that are not exposed to userspace */
|
|
#define KVM_PRIVATE_MEM_SLOTS 3
|
|
|
|
#define KVM_HALT_POLL_NS_DEFAULT 200000
|
|
|
|
#define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
|
|
|
|
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
|
|
KVM_DIRTY_LOG_INITIALLY_SET)
|
|
|
|
#define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
|
|
KVM_BUS_LOCK_DETECTION_EXIT)
|
|
|
|
/* x86-specific vcpu->requests bit members */
|
|
#define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
|
|
#define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
|
|
#define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
|
|
#define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
|
|
#define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
|
|
#define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
|
|
#define KVM_REQ_EVENT KVM_ARCH_REQ(6)
|
|
#define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
|
|
#define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
|
|
#define KVM_REQ_NMI KVM_ARCH_REQ(9)
|
|
#define KVM_REQ_PMU KVM_ARCH_REQ(10)
|
|
#define KVM_REQ_PMI KVM_ARCH_REQ(11)
|
|
#define KVM_REQ_SMI KVM_ARCH_REQ(12)
|
|
#define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
|
|
#define KVM_REQ_MCLOCK_INPROGRESS \
|
|
KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_SCAN_IOAPIC \
|
|
KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
|
|
#define KVM_REQ_APIC_PAGE_RELOAD \
|
|
KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
|
|
#define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
|
|
#define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
|
|
#define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
|
|
#define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
|
|
#define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
|
|
#define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
|
|
#define KVM_REQ_APICV_UPDATE \
|
|
KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
|
|
#define KVM_REQ_TLB_FLUSH_GUEST \
|
|
KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
|
|
#define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
|
|
#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
|
|
KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
|
|
KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
|
|
#define CR0_RESERVED_BITS \
|
|
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
|
|
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
|
|
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
|
|
|
|
#define CR4_RESERVED_BITS \
|
|
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
|
|
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
|
|
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
|
|
| X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
|
|
| X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
|
|
| X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
|
|
|
|
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
|
|
|
|
|
|
|
|
#define INVALID_PAGE (~(hpa_t)0)
|
|
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
|
|
|
|
#define UNMAPPED_GVA (~(gpa_t)0)
|
|
#define INVALID_GPA (~(gpa_t)0)
|
|
|
|
/* KVM Hugepage definitions for x86 */
|
|
#define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
|
|
#define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
|
|
#define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
|
|
#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
|
|
#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
|
|
#define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
|
|
#define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
|
|
|
|
#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
|
|
#define KVM_MIN_ALLOC_MMU_PAGES 64UL
|
|
#define KVM_MMU_HASH_SHIFT 12
|
|
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
|
|
#define KVM_MIN_FREE_MMU_PAGES 5
|
|
#define KVM_REFILL_PAGES 25
|
|
#define KVM_MAX_CPUID_ENTRIES 256
|
|
#define KVM_NR_FIXED_MTRR_REGION 88
|
|
#define KVM_NR_VAR_MTRR 8
|
|
|
|
#define ASYNC_PF_PER_VCPU 64
|
|
|
|
enum kvm_reg {
|
|
VCPU_REGS_RAX = __VCPU_REGS_RAX,
|
|
VCPU_REGS_RCX = __VCPU_REGS_RCX,
|
|
VCPU_REGS_RDX = __VCPU_REGS_RDX,
|
|
VCPU_REGS_RBX = __VCPU_REGS_RBX,
|
|
VCPU_REGS_RSP = __VCPU_REGS_RSP,
|
|
VCPU_REGS_RBP = __VCPU_REGS_RBP,
|
|
VCPU_REGS_RSI = __VCPU_REGS_RSI,
|
|
VCPU_REGS_RDI = __VCPU_REGS_RDI,
|
|
#ifdef CONFIG_X86_64
|
|
VCPU_REGS_R8 = __VCPU_REGS_R8,
|
|
VCPU_REGS_R9 = __VCPU_REGS_R9,
|
|
VCPU_REGS_R10 = __VCPU_REGS_R10,
|
|
VCPU_REGS_R11 = __VCPU_REGS_R11,
|
|
VCPU_REGS_R12 = __VCPU_REGS_R12,
|
|
VCPU_REGS_R13 = __VCPU_REGS_R13,
|
|
VCPU_REGS_R14 = __VCPU_REGS_R14,
|
|
VCPU_REGS_R15 = __VCPU_REGS_R15,
|
|
#endif
|
|
VCPU_REGS_RIP,
|
|
NR_VCPU_REGS,
|
|
|
|
VCPU_EXREG_PDPTR = NR_VCPU_REGS,
|
|
VCPU_EXREG_CR0,
|
|
VCPU_EXREG_CR3,
|
|
VCPU_EXREG_CR4,
|
|
VCPU_EXREG_RFLAGS,
|
|
VCPU_EXREG_SEGMENTS,
|
|
VCPU_EXREG_EXIT_INFO_1,
|
|
VCPU_EXREG_EXIT_INFO_2,
|
|
};
|
|
|
|
enum {
|
|
VCPU_SREG_ES,
|
|
VCPU_SREG_CS,
|
|
VCPU_SREG_SS,
|
|
VCPU_SREG_DS,
|
|
VCPU_SREG_FS,
|
|
VCPU_SREG_GS,
|
|
VCPU_SREG_TR,
|
|
VCPU_SREG_LDTR,
|
|
};
|
|
|
|
enum exit_fastpath_completion {
|
|
EXIT_FASTPATH_NONE,
|
|
EXIT_FASTPATH_REENTER_GUEST,
|
|
EXIT_FASTPATH_EXIT_HANDLED,
|
|
};
|
|
typedef enum exit_fastpath_completion fastpath_t;
|
|
|
|
struct x86_emulate_ctxt;
|
|
struct x86_exception;
|
|
enum x86_intercept;
|
|
enum x86_intercept_stage;
|
|
|
|
#define KVM_NR_DB_REGS 4
|
|
|
|
#define DR6_BUS_LOCK (1 << 11)
|
|
#define DR6_BD (1 << 13)
|
|
#define DR6_BS (1 << 14)
|
|
#define DR6_BT (1 << 15)
|
|
#define DR6_RTM (1 << 16)
|
|
/*
|
|
* DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
|
|
* We can regard all the bits in DR6_FIXED_1 as active_low bits;
|
|
* they will never be 0 for now, but when they are defined
|
|
* in the future it will require no code change.
|
|
*
|
|
* DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
|
|
*/
|
|
#define DR6_ACTIVE_LOW 0xffff0ff0
|
|
#define DR6_VOLATILE 0x0001e80f
|
|
#define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
|
|
|
|
#define DR7_BP_EN_MASK 0x000000ff
|
|
#define DR7_GE (1 << 9)
|
|
#define DR7_GD (1 << 13)
|
|
#define DR7_FIXED_1 0x00000400
|
|
#define DR7_VOLATILE 0xffff2bff
|
|
|
|
#define KVM_GUESTDBG_VALID_MASK \
|
|
(KVM_GUESTDBG_ENABLE | \
|
|
KVM_GUESTDBG_SINGLESTEP | \
|
|
KVM_GUESTDBG_USE_HW_BP | \
|
|
KVM_GUESTDBG_USE_SW_BP | \
|
|
KVM_GUESTDBG_INJECT_BP | \
|
|
KVM_GUESTDBG_INJECT_DB | \
|
|
KVM_GUESTDBG_BLOCKIRQ)
|
|
|
|
|
|
#define PFERR_PRESENT_BIT 0
|
|
#define PFERR_WRITE_BIT 1
|
|
#define PFERR_USER_BIT 2
|
|
#define PFERR_RSVD_BIT 3
|
|
#define PFERR_FETCH_BIT 4
|
|
#define PFERR_PK_BIT 5
|
|
#define PFERR_SGX_BIT 15
|
|
#define PFERR_GUEST_FINAL_BIT 32
|
|
#define PFERR_GUEST_PAGE_BIT 33
|
|
#define PFERR_IMPLICIT_ACCESS_BIT 48
|
|
|
|
#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
|
|
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
|
|
#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
|
|
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
|
|
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
|
|
#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
|
|
#define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
|
|
#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
|
|
#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
|
|
#define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
|
|
|
|
#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
|
|
PFERR_WRITE_MASK | \
|
|
PFERR_PRESENT_MASK)
|
|
|
|
/* apic attention bits */
|
|
#define KVM_APIC_CHECK_VAPIC 0
|
|
/*
|
|
* The following bit is set with PV-EOI, unset on EOI.
|
|
* We detect PV-EOI changes by guest by comparing
|
|
* this bit with PV-EOI in guest memory.
|
|
* See the implementation in apic_update_pv_eoi.
|
|
*/
|
|
#define KVM_APIC_PV_EOI_PENDING 1
|
|
|
|
struct kvm_kernel_irq_routing_entry;
|
|
|
|
/*
|
|
* kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
|
|
* also includes TDP pages) to determine whether or not a page can be used in
|
|
* the given MMU context. This is a subset of the overall kvm_cpu_role to
|
|
* minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
|
|
* 2 bytes per gfn instead of 4 bytes per gfn.
|
|
*
|
|
* Upper-level shadow pages having gptes are tracked for write-protection via
|
|
* gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
|
|
* more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
|
|
* gfn_track will overflow and explosions will ensure.
|
|
*
|
|
* A unique shadow page (SP) for a gfn is created if and only if an existing SP
|
|
* cannot be reused. The ability to reuse a SP is tracked by its role, which
|
|
* incorporates various mode bits and properties of the SP. Roughly speaking,
|
|
* the number of unique SPs that can theoretically be created is 2^n, where n
|
|
* is the number of bits that are used to compute the role.
|
|
*
|
|
* But, even though there are 19 bits in the mask below, not all combinations
|
|
* of modes and flags are possible:
|
|
*
|
|
* - invalid shadow pages are not accounted, so the bits are effectively 18
|
|
*
|
|
* - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
|
|
* execonly and ad_disabled are only used for nested EPT which has
|
|
* has_4_byte_gpte=0. Therefore, 2 bits are always unused.
|
|
*
|
|
* - the 4 bits of level are effectively limited to the values 2/3/4/5,
|
|
* as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
|
|
* paging has exactly one upper level, making level completely redundant
|
|
* when has_4_byte_gpte=1.
|
|
*
|
|
* - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
|
|
* cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
|
|
*
|
|
* Therefore, the maximum number of possible upper-level shadow pages for a
|
|
* single gfn is a bit less than 2^13.
|
|
*/
|
|
union kvm_mmu_page_role {
|
|
u32 word;
|
|
struct {
|
|
unsigned level:4;
|
|
unsigned has_4_byte_gpte:1;
|
|
unsigned quadrant:2;
|
|
unsigned direct:1;
|
|
unsigned access:3;
|
|
unsigned invalid:1;
|
|
unsigned efer_nx:1;
|
|
unsigned cr0_wp:1;
|
|
unsigned smep_andnot_wp:1;
|
|
unsigned smap_andnot_wp:1;
|
|
unsigned ad_disabled:1;
|
|
unsigned guest_mode:1;
|
|
unsigned passthrough:1;
|
|
unsigned :5;
|
|
|
|
/*
|
|
* This is left at the top of the word so that
|
|
* kvm_memslots_for_spte_role can extract it with a
|
|
* simple shift. While there is room, give it a whole
|
|
* byte so it is also faster to load it from memory.
|
|
*/
|
|
unsigned smm:8;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
|
|
* relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
|
|
* including on nested transitions, if nothing in the full role changes then
|
|
* MMU re-configuration can be skipped. @valid bit is set on first usage so we
|
|
* don't treat all-zero structure as valid data.
|
|
*
|
|
* The properties that are tracked in the extended role but not the page role
|
|
* are for things that either (a) do not affect the validity of the shadow page
|
|
* or (b) are indirectly reflected in the shadow page's role. For example,
|
|
* CR4.PKE only affects permission checks for software walks of the guest page
|
|
* tables (because KVM doesn't support Protection Keys with shadow paging), and
|
|
* CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
|
|
*
|
|
* Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
|
|
* If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
|
|
* SMAP, but the MMU's permission checks for software walks need to be SMEP and
|
|
* SMAP aware regardless of CR0.WP.
|
|
*/
|
|
union kvm_mmu_extended_role {
|
|
u32 word;
|
|
struct {
|
|
unsigned int valid:1;
|
|
unsigned int execonly:1;
|
|
unsigned int cr4_pse:1;
|
|
unsigned int cr4_pke:1;
|
|
unsigned int cr4_smap:1;
|
|
unsigned int cr4_smep:1;
|
|
unsigned int cr4_la57:1;
|
|
unsigned int efer_lma:1;
|
|
};
|
|
};
|
|
|
|
union kvm_cpu_role {
|
|
u64 as_u64;
|
|
struct {
|
|
union kvm_mmu_page_role base;
|
|
union kvm_mmu_extended_role ext;
|
|
};
|
|
};
|
|
|
|
struct kvm_rmap_head {
|
|
unsigned long val;
|
|
};
|
|
|
|
struct kvm_pio_request {
|
|
unsigned long linear_rip;
|
|
unsigned long count;
|
|
int in;
|
|
int port;
|
|
int size;
|
|
};
|
|
|
|
#define PT64_ROOT_MAX_LEVEL 5
|
|
|
|
struct rsvd_bits_validate {
|
|
u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
|
|
u64 bad_mt_xwr;
|
|
};
|
|
|
|
struct kvm_mmu_root_info {
|
|
gpa_t pgd;
|
|
hpa_t hpa;
|
|
};
|
|
|
|
#define KVM_MMU_ROOT_INFO_INVALID \
|
|
((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
|
|
|
|
#define KVM_MMU_NUM_PREV_ROOTS 3
|
|
|
|
#define KVM_HAVE_MMU_RWLOCK
|
|
|
|
struct kvm_mmu_page;
|
|
struct kvm_page_fault;
|
|
|
|
/*
|
|
* x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
|
|
* and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
|
|
* current mmu mode.
|
|
*/
|
|
struct kvm_mmu {
|
|
unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
|
|
u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
|
|
int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
|
|
void (*inject_page_fault)(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault);
|
|
gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gpa_t gva_or_gpa, u64 access,
|
|
struct x86_exception *exception);
|
|
int (*sync_page)(struct kvm_vcpu *vcpu,
|
|
struct kvm_mmu_page *sp);
|
|
void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
|
|
struct kvm_mmu_root_info root;
|
|
union kvm_cpu_role cpu_role;
|
|
union kvm_mmu_page_role root_role;
|
|
|
|
/*
|
|
* The pkru_mask indicates if protection key checks are needed. It
|
|
* consists of 16 domains indexed by page fault error code bits [4:1],
|
|
* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
|
|
* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
|
|
*/
|
|
u32 pkru_mask;
|
|
|
|
struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
|
|
|
|
/*
|
|
* Bitmap; bit set = permission fault
|
|
* Byte index: page fault error code [4:1]
|
|
* Bit index: pte permissions in ACC_* format
|
|
*/
|
|
u8 permissions[16];
|
|
|
|
u64 *pae_root;
|
|
u64 *pml4_root;
|
|
u64 *pml5_root;
|
|
|
|
/*
|
|
* check zero bits on shadow page table entries, these
|
|
* bits include not only hardware reserved bits but also
|
|
* the bits spte never used.
|
|
*/
|
|
struct rsvd_bits_validate shadow_zero_check;
|
|
|
|
struct rsvd_bits_validate guest_rsvd_check;
|
|
|
|
u64 pdptrs[4]; /* pae */
|
|
};
|
|
|
|
struct kvm_tlb_range {
|
|
u64 start_gfn;
|
|
u64 pages;
|
|
};
|
|
|
|
enum pmc_type {
|
|
KVM_PMC_GP = 0,
|
|
KVM_PMC_FIXED,
|
|
};
|
|
|
|
struct kvm_pmc {
|
|
enum pmc_type type;
|
|
u8 idx;
|
|
u64 counter;
|
|
u64 eventsel;
|
|
struct perf_event *perf_event;
|
|
struct kvm_vcpu *vcpu;
|
|
/*
|
|
* eventsel value for general purpose counters,
|
|
* ctrl value for fixed counters.
|
|
*/
|
|
u64 current_config;
|
|
bool is_paused;
|
|
bool intr;
|
|
};
|
|
|
|
#define KVM_PMC_MAX_FIXED 3
|
|
struct kvm_pmu {
|
|
unsigned nr_arch_gp_counters;
|
|
unsigned nr_arch_fixed_counters;
|
|
unsigned available_event_types;
|
|
u64 fixed_ctr_ctrl;
|
|
u64 global_ctrl;
|
|
u64 global_status;
|
|
u64 counter_bitmask[2];
|
|
u64 global_ctrl_mask;
|
|
u64 global_ovf_ctrl_mask;
|
|
u64 reserved_bits;
|
|
u64 raw_event_mask;
|
|
u8 version;
|
|
struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
|
|
struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
|
|
struct irq_work irq_work;
|
|
DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
|
|
DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
|
|
DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
|
|
|
|
/*
|
|
* The gate to release perf_events not marked in
|
|
* pmc_in_use only once in a vcpu time slice.
|
|
*/
|
|
bool need_cleanup;
|
|
|
|
/*
|
|
* The total number of programmed perf_events and it helps to avoid
|
|
* redundant check before cleanup if guest don't use vPMU at all.
|
|
*/
|
|
u8 event_count;
|
|
};
|
|
|
|
struct kvm_pmu_ops;
|
|
|
|
enum {
|
|
KVM_DEBUGREG_BP_ENABLED = 1,
|
|
KVM_DEBUGREG_WONT_EXIT = 2,
|
|
};
|
|
|
|
struct kvm_mtrr_range {
|
|
u64 base;
|
|
u64 mask;
|
|
struct list_head node;
|
|
};
|
|
|
|
struct kvm_mtrr {
|
|
struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
|
|
mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
|
|
u64 deftype;
|
|
|
|
struct list_head head;
|
|
};
|
|
|
|
/* Hyper-V SynIC timer */
|
|
struct kvm_vcpu_hv_stimer {
|
|
struct hrtimer timer;
|
|
int index;
|
|
union hv_stimer_config config;
|
|
u64 count;
|
|
u64 exp_time;
|
|
struct hv_message msg;
|
|
bool msg_pending;
|
|
};
|
|
|
|
/* Hyper-V synthetic interrupt controller (SynIC)*/
|
|
struct kvm_vcpu_hv_synic {
|
|
u64 version;
|
|
u64 control;
|
|
u64 msg_page;
|
|
u64 evt_page;
|
|
atomic64_t sint[HV_SYNIC_SINT_COUNT];
|
|
atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
|
|
DECLARE_BITMAP(auto_eoi_bitmap, 256);
|
|
DECLARE_BITMAP(vec_bitmap, 256);
|
|
bool active;
|
|
bool dont_zero_synic_pages;
|
|
};
|
|
|
|
/* Hyper-V per vcpu emulation context */
|
|
struct kvm_vcpu_hv {
|
|
struct kvm_vcpu *vcpu;
|
|
u32 vp_index;
|
|
u64 hv_vapic;
|
|
s64 runtime_offset;
|
|
struct kvm_vcpu_hv_synic synic;
|
|
struct kvm_hyperv_exit exit;
|
|
struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
|
|
DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
|
|
bool enforce_cpuid;
|
|
struct {
|
|
u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
|
|
u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
|
|
u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
|
|
u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
|
|
u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
|
|
u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
|
|
} cpuid_cache;
|
|
};
|
|
|
|
/* Xen HVM per vcpu emulation context */
|
|
struct kvm_vcpu_xen {
|
|
u64 hypercall_rip;
|
|
u32 current_runstate;
|
|
u8 upcall_vector;
|
|
struct gfn_to_pfn_cache vcpu_info_cache;
|
|
struct gfn_to_pfn_cache vcpu_time_info_cache;
|
|
struct gfn_to_pfn_cache runstate_cache;
|
|
u64 last_steal;
|
|
u64 runstate_entry_time;
|
|
u64 runstate_times[4];
|
|
unsigned long evtchn_pending_sel;
|
|
u32 vcpu_id; /* The Xen / ACPI vCPU ID */
|
|
u32 timer_virq;
|
|
u64 timer_expires; /* In guest epoch */
|
|
atomic_t timer_pending;
|
|
struct hrtimer timer;
|
|
int poll_evtchn;
|
|
struct timer_list poll_timer;
|
|
};
|
|
|
|
struct kvm_vcpu_arch {
|
|
/*
|
|
* rip and regs accesses must go through
|
|
* kvm_{register,rip}_{read,write} functions.
|
|
*/
|
|
unsigned long regs[NR_VCPU_REGS];
|
|
u32 regs_avail;
|
|
u32 regs_dirty;
|
|
|
|
unsigned long cr0;
|
|
unsigned long cr0_guest_owned_bits;
|
|
unsigned long cr2;
|
|
unsigned long cr3;
|
|
unsigned long cr4;
|
|
unsigned long cr4_guest_owned_bits;
|
|
unsigned long cr4_guest_rsvd_bits;
|
|
unsigned long cr8;
|
|
u32 host_pkru;
|
|
u32 pkru;
|
|
u32 hflags;
|
|
u64 efer;
|
|
u64 apic_base;
|
|
struct kvm_lapic *apic; /* kernel irqchip context */
|
|
bool apicv_active;
|
|
bool load_eoi_exitmap_pending;
|
|
DECLARE_BITMAP(ioapic_handled_vectors, 256);
|
|
unsigned long apic_attention;
|
|
int32_t apic_arb_prio;
|
|
int mp_state;
|
|
u64 ia32_misc_enable_msr;
|
|
u64 smbase;
|
|
u64 smi_count;
|
|
bool at_instruction_boundary;
|
|
bool tpr_access_reporting;
|
|
bool xsaves_enabled;
|
|
bool xfd_no_write_intercept;
|
|
u64 ia32_xss;
|
|
u64 microcode_version;
|
|
u64 arch_capabilities;
|
|
u64 perf_capabilities;
|
|
|
|
/*
|
|
* Paging state of the vcpu
|
|
*
|
|
* If the vcpu runs in guest mode with two level paging this still saves
|
|
* the paging mode of the l1 guest. This context is always used to
|
|
* handle faults.
|
|
*/
|
|
struct kvm_mmu *mmu;
|
|
|
|
/* Non-nested MMU for L1 */
|
|
struct kvm_mmu root_mmu;
|
|
|
|
/* L1 MMU when running nested */
|
|
struct kvm_mmu guest_mmu;
|
|
|
|
/*
|
|
* Paging state of an L2 guest (used for nested npt)
|
|
*
|
|
* This context will save all necessary information to walk page tables
|
|
* of an L2 guest. This context is only initialized for page table
|
|
* walking and not for faulting since we never handle l2 page faults on
|
|
* the host.
|
|
*/
|
|
struct kvm_mmu nested_mmu;
|
|
|
|
/*
|
|
* Pointer to the mmu context currently used for
|
|
* gva_to_gpa translations.
|
|
*/
|
|
struct kvm_mmu *walk_mmu;
|
|
|
|
struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
|
|
struct kvm_mmu_memory_cache mmu_shadow_page_cache;
|
|
struct kvm_mmu_memory_cache mmu_gfn_array_cache;
|
|
struct kvm_mmu_memory_cache mmu_page_header_cache;
|
|
|
|
/*
|
|
* QEMU userspace and the guest each have their own FPU state.
|
|
* In vcpu_run, we switch between the user and guest FPU contexts.
|
|
* While running a VCPU, the VCPU thread will have the guest FPU
|
|
* context.
|
|
*
|
|
* Note that while the PKRU state lives inside the fpu registers,
|
|
* it is switched out separately at VMENTER and VMEXIT time. The
|
|
* "guest_fpstate" state here contains the guest FPU context, with the
|
|
* host PRKU bits.
|
|
*/
|
|
struct fpu_guest guest_fpu;
|
|
|
|
u64 xcr0;
|
|
|
|
struct kvm_pio_request pio;
|
|
void *pio_data;
|
|
void *sev_pio_data;
|
|
unsigned sev_pio_count;
|
|
|
|
u8 event_exit_inst_len;
|
|
|
|
struct kvm_queued_exception {
|
|
bool pending;
|
|
bool injected;
|
|
bool has_error_code;
|
|
u8 nr;
|
|
u32 error_code;
|
|
unsigned long payload;
|
|
bool has_payload;
|
|
u8 nested_apf;
|
|
} exception;
|
|
|
|
struct kvm_queued_interrupt {
|
|
bool injected;
|
|
bool soft;
|
|
u8 nr;
|
|
} interrupt;
|
|
|
|
int halt_request; /* real mode on Intel only */
|
|
|
|
int cpuid_nent;
|
|
struct kvm_cpuid_entry2 *cpuid_entries;
|
|
u32 kvm_cpuid_base;
|
|
|
|
u64 reserved_gpa_bits;
|
|
int maxphyaddr;
|
|
|
|
/* emulate context */
|
|
|
|
struct x86_emulate_ctxt *emulate_ctxt;
|
|
bool emulate_regs_need_sync_to_vcpu;
|
|
bool emulate_regs_need_sync_from_vcpu;
|
|
int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
|
|
|
|
gpa_t time;
|
|
struct pvclock_vcpu_time_info hv_clock;
|
|
unsigned int hw_tsc_khz;
|
|
struct gfn_to_pfn_cache pv_time;
|
|
/* set guest stopped flag in pvclock flags field */
|
|
bool pvclock_set_guest_stopped_request;
|
|
|
|
struct {
|
|
u8 preempted;
|
|
u64 msr_val;
|
|
u64 last_steal;
|
|
struct gfn_to_hva_cache cache;
|
|
} st;
|
|
|
|
u64 l1_tsc_offset;
|
|
u64 tsc_offset; /* current tsc offset */
|
|
u64 last_guest_tsc;
|
|
u64 last_host_tsc;
|
|
u64 tsc_offset_adjustment;
|
|
u64 this_tsc_nsec;
|
|
u64 this_tsc_write;
|
|
u64 this_tsc_generation;
|
|
bool tsc_catchup;
|
|
bool tsc_always_catchup;
|
|
s8 virtual_tsc_shift;
|
|
u32 virtual_tsc_mult;
|
|
u32 virtual_tsc_khz;
|
|
s64 ia32_tsc_adjust_msr;
|
|
u64 msr_ia32_power_ctl;
|
|
u64 l1_tsc_scaling_ratio;
|
|
u64 tsc_scaling_ratio; /* current scaling ratio */
|
|
|
|
atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
|
|
unsigned nmi_pending; /* NMI queued after currently running handler */
|
|
bool nmi_injected; /* Trying to inject an NMI this entry */
|
|
bool smi_pending; /* SMI queued after currently running handler */
|
|
u8 handling_intr_from_guest;
|
|
|
|
struct kvm_mtrr mtrr_state;
|
|
u64 pat;
|
|
|
|
unsigned switch_db_regs;
|
|
unsigned long db[KVM_NR_DB_REGS];
|
|
unsigned long dr6;
|
|
unsigned long dr7;
|
|
unsigned long eff_db[KVM_NR_DB_REGS];
|
|
unsigned long guest_debug_dr7;
|
|
u64 msr_platform_info;
|
|
u64 msr_misc_features_enables;
|
|
|
|
u64 mcg_cap;
|
|
u64 mcg_status;
|
|
u64 mcg_ctl;
|
|
u64 mcg_ext_ctl;
|
|
u64 *mce_banks;
|
|
|
|
/* Cache MMIO info */
|
|
u64 mmio_gva;
|
|
unsigned mmio_access;
|
|
gfn_t mmio_gfn;
|
|
u64 mmio_gen;
|
|
|
|
struct kvm_pmu pmu;
|
|
|
|
/* used for guest single stepping over the given code position */
|
|
unsigned long singlestep_rip;
|
|
|
|
bool hyperv_enabled;
|
|
struct kvm_vcpu_hv *hyperv;
|
|
struct kvm_vcpu_xen xen;
|
|
|
|
cpumask_var_t wbinvd_dirty_mask;
|
|
|
|
unsigned long last_retry_eip;
|
|
unsigned long last_retry_addr;
|
|
|
|
struct {
|
|
bool halted;
|
|
gfn_t gfns[ASYNC_PF_PER_VCPU];
|
|
struct gfn_to_hva_cache data;
|
|
u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
|
|
u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
|
|
u16 vec;
|
|
u32 id;
|
|
bool send_user_only;
|
|
u32 host_apf_flags;
|
|
unsigned long nested_apf_token;
|
|
bool delivery_as_pf_vmexit;
|
|
bool pageready_pending;
|
|
} apf;
|
|
|
|
/* OSVW MSRs (AMD only) */
|
|
struct {
|
|
u64 length;
|
|
u64 status;
|
|
} osvw;
|
|
|
|
struct {
|
|
u64 msr_val;
|
|
struct gfn_to_hva_cache data;
|
|
} pv_eoi;
|
|
|
|
u64 msr_kvm_poll_control;
|
|
|
|
/*
|
|
* Indicates the guest is trying to write a gfn that contains one or
|
|
* more of the PTEs used to translate the write itself, i.e. the access
|
|
* is changing its own translation in the guest page tables. KVM exits
|
|
* to userspace if emulation of the faulting instruction fails and this
|
|
* flag is set, as KVM cannot make forward progress.
|
|
*
|
|
* If emulation fails for a write to guest page tables, KVM unprotects
|
|
* (zaps) the shadow page for the target gfn and resumes the guest to
|
|
* retry the non-emulatable instruction (on hardware). Unprotecting the
|
|
* gfn doesn't allow forward progress for a self-changing access because
|
|
* doing so also zaps the translation for the gfn, i.e. retrying the
|
|
* instruction will hit a !PRESENT fault, which results in a new shadow
|
|
* page and sends KVM back to square one.
|
|
*/
|
|
bool write_fault_to_shadow_pgtable;
|
|
|
|
/* set at EPT violation at this point */
|
|
unsigned long exit_qualification;
|
|
|
|
/* pv related host specific info */
|
|
struct {
|
|
bool pv_unhalted;
|
|
} pv;
|
|
|
|
int pending_ioapic_eoi;
|
|
int pending_external_vector;
|
|
|
|
/* be preempted when it's in kernel-mode(cpl=0) */
|
|
bool preempted_in_kernel;
|
|
|
|
/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
|
|
bool l1tf_flush_l1d;
|
|
|
|
/* Host CPU on which VM-entry was most recently attempted */
|
|
int last_vmentry_cpu;
|
|
|
|
/* AMD MSRC001_0015 Hardware Configuration */
|
|
u64 msr_hwcr;
|
|
|
|
/* pv related cpuid info */
|
|
struct {
|
|
/*
|
|
* value of the eax register in the KVM_CPUID_FEATURES CPUID
|
|
* leaf.
|
|
*/
|
|
u32 features;
|
|
|
|
/*
|
|
* indicates whether pv emulation should be disabled if features
|
|
* are not present in the guest's cpuid
|
|
*/
|
|
bool enforce;
|
|
} pv_cpuid;
|
|
|
|
/* Protected Guests */
|
|
bool guest_state_protected;
|
|
|
|
/*
|
|
* Set when PDPTS were loaded directly by the userspace without
|
|
* reading the guest memory
|
|
*/
|
|
bool pdptrs_from_userspace;
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
hpa_t hv_root_tdp;
|
|
#endif
|
|
};
|
|
|
|
struct kvm_lpage_info {
|
|
int disallow_lpage;
|
|
};
|
|
|
|
struct kvm_arch_memory_slot {
|
|
struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
|
|
struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
|
|
unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
|
|
};
|
|
|
|
/*
|
|
* We use as the mode the number of bits allocated in the LDR for the
|
|
* logical processor ID. It happens that these are all powers of two.
|
|
* This makes it is very easy to detect cases where the APICs are
|
|
* configured for multiple modes; in that case, we cannot use the map and
|
|
* hence cannot use kvm_irq_delivery_to_apic_fast either.
|
|
*/
|
|
#define KVM_APIC_MODE_XAPIC_CLUSTER 4
|
|
#define KVM_APIC_MODE_XAPIC_FLAT 8
|
|
#define KVM_APIC_MODE_X2APIC 16
|
|
|
|
struct kvm_apic_map {
|
|
struct rcu_head rcu;
|
|
u8 mode;
|
|
u32 max_apic_id;
|
|
union {
|
|
struct kvm_lapic *xapic_flat_map[8];
|
|
struct kvm_lapic *xapic_cluster_map[16][4];
|
|
};
|
|
struct kvm_lapic *phys_map[];
|
|
};
|
|
|
|
/* Hyper-V synthetic debugger (SynDbg)*/
|
|
struct kvm_hv_syndbg {
|
|
struct {
|
|
u64 control;
|
|
u64 status;
|
|
u64 send_page;
|
|
u64 recv_page;
|
|
u64 pending_page;
|
|
} control;
|
|
u64 options;
|
|
};
|
|
|
|
/* Current state of Hyper-V TSC page clocksource */
|
|
enum hv_tsc_page_status {
|
|
/* TSC page was not set up or disabled */
|
|
HV_TSC_PAGE_UNSET = 0,
|
|
/* TSC page MSR was written by the guest, update pending */
|
|
HV_TSC_PAGE_GUEST_CHANGED,
|
|
/* TSC page update was triggered from the host side */
|
|
HV_TSC_PAGE_HOST_CHANGED,
|
|
/* TSC page was properly set up and is currently active */
|
|
HV_TSC_PAGE_SET,
|
|
/* TSC page was set up with an inaccessible GPA */
|
|
HV_TSC_PAGE_BROKEN,
|
|
};
|
|
|
|
/* Hyper-V emulation context */
|
|
struct kvm_hv {
|
|
struct mutex hv_lock;
|
|
u64 hv_guest_os_id;
|
|
u64 hv_hypercall;
|
|
u64 hv_tsc_page;
|
|
enum hv_tsc_page_status hv_tsc_page_status;
|
|
|
|
/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
|
|
u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
|
|
u64 hv_crash_ctl;
|
|
|
|
struct ms_hyperv_tsc_page tsc_ref;
|
|
|
|
struct idr conn_to_evt;
|
|
|
|
u64 hv_reenlightenment_control;
|
|
u64 hv_tsc_emulation_control;
|
|
u64 hv_tsc_emulation_status;
|
|
|
|
/* How many vCPUs have VP index != vCPU index */
|
|
atomic_t num_mismatched_vp_indexes;
|
|
|
|
/*
|
|
* How many SynICs use 'AutoEOI' feature
|
|
* (protected by arch.apicv_update_lock)
|
|
*/
|
|
unsigned int synic_auto_eoi_used;
|
|
|
|
struct hv_partition_assist_pg *hv_pa_pg;
|
|
struct kvm_hv_syndbg hv_syndbg;
|
|
};
|
|
|
|
struct msr_bitmap_range {
|
|
u32 flags;
|
|
u32 nmsrs;
|
|
u32 base;
|
|
unsigned long *bitmap;
|
|
};
|
|
|
|
/* Xen emulation context */
|
|
struct kvm_xen {
|
|
u32 xen_version;
|
|
bool long_mode;
|
|
u8 upcall_vector;
|
|
struct gfn_to_pfn_cache shinfo_cache;
|
|
struct idr evtchn_ports;
|
|
unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
|
|
};
|
|
|
|
enum kvm_irqchip_mode {
|
|
KVM_IRQCHIP_NONE,
|
|
KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
|
|
KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
|
|
};
|
|
|
|
struct kvm_x86_msr_filter {
|
|
u8 count;
|
|
bool default_allow:1;
|
|
struct msr_bitmap_range ranges[16];
|
|
};
|
|
|
|
enum kvm_apicv_inhibit {
|
|
|
|
/********************************************************************/
|
|
/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
|
|
/********************************************************************/
|
|
|
|
/*
|
|
* APIC acceleration is disabled by a module parameter
|
|
* and/or not supported in hardware.
|
|
*/
|
|
APICV_INHIBIT_REASON_DISABLE,
|
|
|
|
/*
|
|
* APIC acceleration is inhibited because AutoEOI feature is
|
|
* being used by a HyperV guest.
|
|
*/
|
|
APICV_INHIBIT_REASON_HYPERV,
|
|
|
|
/*
|
|
* APIC acceleration is inhibited because the userspace didn't yet
|
|
* enable the kernel/split irqchip.
|
|
*/
|
|
APICV_INHIBIT_REASON_ABSENT,
|
|
|
|
/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
|
|
* (out of band, debug measure of blocking all interrupts on this vCPU)
|
|
* was enabled, to avoid AVIC/APICv bypassing it.
|
|
*/
|
|
APICV_INHIBIT_REASON_BLOCKIRQ,
|
|
|
|
/*
|
|
* For simplicity, the APIC acceleration is inhibited
|
|
* first time either APIC ID or APIC base are changed by the guest
|
|
* from their reset values.
|
|
*/
|
|
APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
|
|
APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
|
|
|
|
/******************************************************/
|
|
/* INHIBITs that are relevant only to the AMD's AVIC. */
|
|
/******************************************************/
|
|
|
|
/*
|
|
* AVIC is inhibited on a vCPU because it runs a nested guest.
|
|
*
|
|
* This is needed because unlike APICv, the peers of this vCPU
|
|
* cannot use the doorbell mechanism to signal interrupts via AVIC when
|
|
* a vCPU runs nested.
|
|
*/
|
|
APICV_INHIBIT_REASON_NESTED,
|
|
|
|
/*
|
|
* On SVM, the wait for the IRQ window is implemented with pending vIRQ,
|
|
* which cannot be injected when the AVIC is enabled, thus AVIC
|
|
* is inhibited while KVM waits for IRQ window.
|
|
*/
|
|
APICV_INHIBIT_REASON_IRQWIN,
|
|
|
|
/*
|
|
* PIT (i8254) 're-inject' mode, relies on EOI intercept,
|
|
* which AVIC doesn't support for edge triggered interrupts.
|
|
*/
|
|
APICV_INHIBIT_REASON_PIT_REINJ,
|
|
|
|
/*
|
|
* AVIC is inhibited because the guest has x2apic in its CPUID.
|
|
*/
|
|
APICV_INHIBIT_REASON_X2APIC,
|
|
|
|
/*
|
|
* AVIC is disabled because SEV doesn't support it.
|
|
*/
|
|
APICV_INHIBIT_REASON_SEV,
|
|
};
|
|
|
|
struct kvm_arch {
|
|
unsigned long n_used_mmu_pages;
|
|
unsigned long n_requested_mmu_pages;
|
|
unsigned long n_max_mmu_pages;
|
|
unsigned int indirect_shadow_pages;
|
|
u8 mmu_valid_gen;
|
|
struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
|
|
struct list_head active_mmu_pages;
|
|
struct list_head zapped_obsolete_pages;
|
|
struct list_head lpage_disallowed_mmu_pages;
|
|
struct kvm_page_track_notifier_node mmu_sp_tracker;
|
|
struct kvm_page_track_notifier_head track_notifier_head;
|
|
/*
|
|
* Protects marking pages unsync during page faults, as TDP MMU page
|
|
* faults only take mmu_lock for read. For simplicity, the unsync
|
|
* pages lock is always taken when marking pages unsync regardless of
|
|
* whether mmu_lock is held for read or write.
|
|
*/
|
|
spinlock_t mmu_unsync_pages_lock;
|
|
|
|
struct list_head assigned_dev_head;
|
|
struct iommu_domain *iommu_domain;
|
|
bool iommu_noncoherent;
|
|
#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
|
|
atomic_t noncoherent_dma_count;
|
|
#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
|
|
atomic_t assigned_device_count;
|
|
struct kvm_pic *vpic;
|
|
struct kvm_ioapic *vioapic;
|
|
struct kvm_pit *vpit;
|
|
atomic_t vapics_in_nmi_mode;
|
|
struct mutex apic_map_lock;
|
|
struct kvm_apic_map __rcu *apic_map;
|
|
atomic_t apic_map_dirty;
|
|
|
|
/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
|
|
struct rw_semaphore apicv_update_lock;
|
|
|
|
bool apic_access_memslot_enabled;
|
|
unsigned long apicv_inhibit_reasons;
|
|
|
|
gpa_t wall_clock;
|
|
|
|
bool mwait_in_guest;
|
|
bool hlt_in_guest;
|
|
bool pause_in_guest;
|
|
bool cstate_in_guest;
|
|
|
|
unsigned long irq_sources_bitmap;
|
|
s64 kvmclock_offset;
|
|
|
|
/*
|
|
* This also protects nr_vcpus_matched_tsc which is read from a
|
|
* preemption-disabled region, so it must be a raw spinlock.
|
|
*/
|
|
raw_spinlock_t tsc_write_lock;
|
|
u64 last_tsc_nsec;
|
|
u64 last_tsc_write;
|
|
u32 last_tsc_khz;
|
|
u64 last_tsc_offset;
|
|
u64 cur_tsc_nsec;
|
|
u64 cur_tsc_write;
|
|
u64 cur_tsc_offset;
|
|
u64 cur_tsc_generation;
|
|
int nr_vcpus_matched_tsc;
|
|
|
|
u32 default_tsc_khz;
|
|
|
|
seqcount_raw_spinlock_t pvclock_sc;
|
|
bool use_master_clock;
|
|
u64 master_kernel_ns;
|
|
u64 master_cycle_now;
|
|
struct delayed_work kvmclock_update_work;
|
|
struct delayed_work kvmclock_sync_work;
|
|
|
|
struct kvm_xen_hvm_config xen_hvm_config;
|
|
|
|
/* reads protected by irq_srcu, writes by irq_lock */
|
|
struct hlist_head mask_notifier_list;
|
|
|
|
struct kvm_hv hyperv;
|
|
struct kvm_xen xen;
|
|
|
|
bool backwards_tsc_observed;
|
|
bool boot_vcpu_runs_old_kvmclock;
|
|
u32 bsp_vcpu_id;
|
|
|
|
u64 disabled_quirks;
|
|
int cpu_dirty_logging_count;
|
|
|
|
enum kvm_irqchip_mode irqchip_mode;
|
|
u8 nr_reserved_ioapic_pins;
|
|
|
|
bool disabled_lapic_found;
|
|
|
|
bool x2apic_format;
|
|
bool x2apic_broadcast_quirk_disabled;
|
|
|
|
bool guest_can_read_msr_platform_info;
|
|
bool exception_payload_enabled;
|
|
|
|
bool bus_lock_detection_enabled;
|
|
bool enable_pmu;
|
|
/*
|
|
* If exit_on_emulation_error is set, and the in-kernel instruction
|
|
* emulator fails to emulate an instruction, allow userspace
|
|
* the opportunity to look at it.
|
|
*/
|
|
bool exit_on_emulation_error;
|
|
|
|
/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
|
|
u32 user_space_msr_mask;
|
|
struct kvm_x86_msr_filter __rcu *msr_filter;
|
|
|
|
u32 hypercall_exit_enabled;
|
|
|
|
/* Guest can access the SGX PROVISIONKEY. */
|
|
bool sgx_provisioning_allowed;
|
|
|
|
struct kvm_pmu_event_filter __rcu *pmu_event_filter;
|
|
struct task_struct *nx_lpage_recovery_thread;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Whether the TDP MMU is enabled for this VM. This contains a
|
|
* snapshot of the TDP MMU module parameter from when the VM was
|
|
* created and remains unchanged for the life of the VM. If this is
|
|
* true, TDP MMU handler functions will run for various MMU
|
|
* operations.
|
|
*/
|
|
bool tdp_mmu_enabled;
|
|
|
|
/*
|
|
* List of struct kvm_mmu_pages being used as roots.
|
|
* All struct kvm_mmu_pages in the list should have
|
|
* tdp_mmu_page set.
|
|
*
|
|
* For reads, this list is protected by:
|
|
* the MMU lock in read mode + RCU or
|
|
* the MMU lock in write mode
|
|
*
|
|
* For writes, this list is protected by:
|
|
* the MMU lock in read mode + the tdp_mmu_pages_lock or
|
|
* the MMU lock in write mode
|
|
*
|
|
* Roots will remain in the list until their tdp_mmu_root_count
|
|
* drops to zero, at which point the thread that decremented the
|
|
* count to zero should removed the root from the list and clean
|
|
* it up, freeing the root after an RCU grace period.
|
|
*/
|
|
struct list_head tdp_mmu_roots;
|
|
|
|
/*
|
|
* List of struct kvmp_mmu_pages not being used as roots.
|
|
* All struct kvm_mmu_pages in the list should have
|
|
* tdp_mmu_page set and a tdp_mmu_root_count of 0.
|
|
*/
|
|
struct list_head tdp_mmu_pages;
|
|
|
|
/*
|
|
* Protects accesses to the following fields when the MMU lock
|
|
* is held in read mode:
|
|
* - tdp_mmu_roots (above)
|
|
* - tdp_mmu_pages (above)
|
|
* - the link field of struct kvm_mmu_pages used by the TDP MMU
|
|
* - lpage_disallowed_mmu_pages
|
|
* - the lpage_disallowed_link field of struct kvm_mmu_pages used
|
|
* by the TDP MMU
|
|
* It is acceptable, but not necessary, to acquire this lock when
|
|
* the thread holds the MMU lock in write mode.
|
|
*/
|
|
spinlock_t tdp_mmu_pages_lock;
|
|
struct workqueue_struct *tdp_mmu_zap_wq;
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
/*
|
|
* If set, at least one shadow root has been allocated. This flag
|
|
* is used as one input when determining whether certain memslot
|
|
* related allocations are necessary.
|
|
*/
|
|
bool shadow_root_allocated;
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
hpa_t hv_root_tdp;
|
|
spinlock_t hv_root_tdp_lock;
|
|
#endif
|
|
};
|
|
|
|
struct kvm_vm_stat {
|
|
struct kvm_vm_stat_generic generic;
|
|
u64 mmu_shadow_zapped;
|
|
u64 mmu_pte_write;
|
|
u64 mmu_pde_zapped;
|
|
u64 mmu_flooded;
|
|
u64 mmu_recycled;
|
|
u64 mmu_cache_miss;
|
|
u64 mmu_unsync;
|
|
union {
|
|
struct {
|
|
atomic64_t pages_4k;
|
|
atomic64_t pages_2m;
|
|
atomic64_t pages_1g;
|
|
};
|
|
atomic64_t pages[KVM_NR_PAGE_SIZES];
|
|
};
|
|
u64 nx_lpage_splits;
|
|
u64 max_mmu_page_hash_collisions;
|
|
u64 max_mmu_rmap_size;
|
|
};
|
|
|
|
struct kvm_vcpu_stat {
|
|
struct kvm_vcpu_stat_generic generic;
|
|
u64 pf_taken;
|
|
u64 pf_fixed;
|
|
u64 pf_emulate;
|
|
u64 pf_spurious;
|
|
u64 pf_fast;
|
|
u64 pf_mmio_spte_created;
|
|
u64 pf_guest;
|
|
u64 tlb_flush;
|
|
u64 invlpg;
|
|
|
|
u64 exits;
|
|
u64 io_exits;
|
|
u64 mmio_exits;
|
|
u64 signal_exits;
|
|
u64 irq_window_exits;
|
|
u64 nmi_window_exits;
|
|
u64 l1d_flush;
|
|
u64 halt_exits;
|
|
u64 request_irq_exits;
|
|
u64 irq_exits;
|
|
u64 host_state_reload;
|
|
u64 fpu_reload;
|
|
u64 insn_emulation;
|
|
u64 insn_emulation_fail;
|
|
u64 hypercalls;
|
|
u64 irq_injections;
|
|
u64 nmi_injections;
|
|
u64 req_event;
|
|
u64 nested_run;
|
|
u64 directed_yield_attempted;
|
|
u64 directed_yield_successful;
|
|
u64 preemption_reported;
|
|
u64 preemption_other;
|
|
u64 guest_mode;
|
|
};
|
|
|
|
struct x86_instruction_info;
|
|
|
|
struct msr_data {
|
|
bool host_initiated;
|
|
u32 index;
|
|
u64 data;
|
|
};
|
|
|
|
struct kvm_lapic_irq {
|
|
u32 vector;
|
|
u16 delivery_mode;
|
|
u16 dest_mode;
|
|
bool level;
|
|
u16 trig_mode;
|
|
u32 shorthand;
|
|
u32 dest_id;
|
|
bool msi_redir_hint;
|
|
};
|
|
|
|
static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
|
|
{
|
|
return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
|
|
}
|
|
|
|
struct kvm_x86_ops {
|
|
const char *name;
|
|
|
|
int (*hardware_enable)(void);
|
|
void (*hardware_disable)(void);
|
|
void (*hardware_unsetup)(void);
|
|
bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
|
|
void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
|
|
|
|
unsigned int vm_size;
|
|
int (*vm_init)(struct kvm *kvm);
|
|
void (*vm_destroy)(struct kvm *kvm);
|
|
|
|
/* Create, but do not attach this VCPU */
|
|
int (*vcpu_create)(struct kvm_vcpu *vcpu);
|
|
void (*vcpu_free)(struct kvm_vcpu *vcpu);
|
|
void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
|
|
|
|
void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
|
|
void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
|
|
void (*vcpu_put)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
|
|
int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
|
|
int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
|
|
u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
|
|
void (*get_segment)(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg);
|
|
int (*get_cpl)(struct kvm_vcpu *vcpu);
|
|
void (*set_segment)(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg);
|
|
void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
|
|
void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
|
|
void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
|
|
bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
|
|
void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
|
|
int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
|
|
void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
|
|
void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
|
|
void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
|
|
void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
|
|
void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
|
|
void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
|
|
void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
|
|
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
|
|
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
|
|
bool (*get_if_flag)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
|
|
void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
|
|
int (*tlb_remote_flush)(struct kvm *kvm);
|
|
int (*tlb_remote_flush_with_range)(struct kvm *kvm,
|
|
struct kvm_tlb_range *range);
|
|
|
|
/*
|
|
* Flush any TLB entries associated with the given GVA.
|
|
* Does not need to flush GPA->HPA mappings.
|
|
* Can potentially get non-canonical addresses through INVLPGs, which
|
|
* the implementation may choose to ignore if appropriate.
|
|
*/
|
|
void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
|
|
|
|
/*
|
|
* Flush any TLB entries created by the guest. Like tlb_flush_gva(),
|
|
* does not need to flush GPA->HPA mappings.
|
|
*/
|
|
void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
|
|
|
|
int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
|
|
enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
|
|
int (*handle_exit)(struct kvm_vcpu *vcpu,
|
|
enum exit_fastpath_completion exit_fastpath);
|
|
int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
|
|
void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
|
|
void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
|
|
u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
|
|
void (*patch_hypercall)(struct kvm_vcpu *vcpu,
|
|
unsigned char *hypercall_addr);
|
|
void (*inject_irq)(struct kvm_vcpu *vcpu);
|
|
void (*inject_nmi)(struct kvm_vcpu *vcpu);
|
|
void (*queue_exception)(struct kvm_vcpu *vcpu);
|
|
void (*cancel_injection)(struct kvm_vcpu *vcpu);
|
|
int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
|
|
int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
|
|
bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
|
|
void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
|
|
void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
|
|
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
|
|
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
|
|
bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
|
|
void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
|
|
void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
|
|
void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
|
|
bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
|
|
void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
|
|
void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
|
|
void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
|
|
void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
|
|
int trig_mode, int vector);
|
|
int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
|
|
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
|
|
int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
|
|
u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
|
|
|
|
void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
|
|
int root_level);
|
|
|
|
bool (*has_wbinvd_exit)(void);
|
|
|
|
u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
|
|
u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
|
|
void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
|
|
void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
|
|
|
|
/*
|
|
* Retrieve somewhat arbitrary exit information. Intended to
|
|
* be used only from within tracepoints or error paths.
|
|
*/
|
|
void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
|
|
u64 *info1, u64 *info2,
|
|
u32 *exit_int_info, u32 *exit_int_info_err_code);
|
|
|
|
int (*check_intercept)(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage,
|
|
struct x86_exception *exception);
|
|
void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
|
|
|
|
/*
|
|
* Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
|
|
* value indicates CPU dirty logging is unsupported or disabled.
|
|
*/
|
|
int cpu_dirty_log_size;
|
|
void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
|
|
|
|
const struct kvm_x86_nested_ops *nested_ops;
|
|
|
|
void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
|
|
void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
|
|
|
|
int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
|
|
uint32_t guest_irq, bool set);
|
|
void (*pi_start_assignment)(struct kvm *kvm);
|
|
void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
|
|
bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
|
|
|
|
int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
|
|
bool *expired);
|
|
void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*setup_mce)(struct kvm_vcpu *vcpu);
|
|
|
|
int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
|
|
int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
|
|
int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
|
|
void (*enable_smi_window)(struct kvm_vcpu *vcpu);
|
|
|
|
int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
|
|
int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
|
|
int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
|
|
int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
|
|
int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
|
|
void (*guest_memory_reclaimed)(struct kvm *kvm);
|
|
|
|
int (*get_msr_feature)(struct kvm_msr_entry *entry);
|
|
|
|
bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
|
|
void *insn, int insn_len);
|
|
|
|
bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
|
|
int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
|
|
|
|
void (*migrate_timers)(struct kvm_vcpu *vcpu);
|
|
void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
|
|
int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
|
|
|
|
void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
|
|
|
|
/*
|
|
* Returns vCPU specific APICv inhibit reasons
|
|
*/
|
|
unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
|
|
};
|
|
|
|
struct kvm_x86_nested_ops {
|
|
void (*leave_nested)(struct kvm_vcpu *vcpu);
|
|
int (*check_events)(struct kvm_vcpu *vcpu);
|
|
bool (*handle_page_fault_workaround)(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault);
|
|
bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
|
|
void (*triple_fault)(struct kvm_vcpu *vcpu);
|
|
int (*get_state)(struct kvm_vcpu *vcpu,
|
|
struct kvm_nested_state __user *user_kvm_nested_state,
|
|
unsigned user_data_size);
|
|
int (*set_state)(struct kvm_vcpu *vcpu,
|
|
struct kvm_nested_state __user *user_kvm_nested_state,
|
|
struct kvm_nested_state *kvm_state);
|
|
bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
|
|
int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
|
|
|
|
int (*enable_evmcs)(struct kvm_vcpu *vcpu,
|
|
uint16_t *vmcs_version);
|
|
uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
|
|
};
|
|
|
|
struct kvm_x86_init_ops {
|
|
int (*cpu_has_kvm_support)(void);
|
|
int (*disabled_by_bios)(void);
|
|
int (*check_processor_compatibility)(void);
|
|
int (*hardware_setup)(void);
|
|
unsigned int (*handle_intel_pt_intr)(void);
|
|
|
|
struct kvm_x86_ops *runtime_ops;
|
|
struct kvm_pmu_ops *pmu_ops;
|
|
};
|
|
|
|
struct kvm_arch_async_pf {
|
|
u32 token;
|
|
gfn_t gfn;
|
|
unsigned long cr3;
|
|
bool direct_map;
|
|
};
|
|
|
|
extern u32 __read_mostly kvm_nr_uret_msrs;
|
|
extern u64 __read_mostly host_efer;
|
|
extern bool __read_mostly allow_smaller_maxphyaddr;
|
|
extern bool __read_mostly enable_apicv;
|
|
extern struct kvm_x86_ops kvm_x86_ops;
|
|
|
|
#define KVM_X86_OP(func) \
|
|
DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
|
|
#define KVM_X86_OP_OPTIONAL KVM_X86_OP
|
|
#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
|
|
#include <asm/kvm-x86-ops.h>
|
|
|
|
#define __KVM_HAVE_ARCH_VM_ALLOC
|
|
static inline struct kvm *kvm_arch_alloc_vm(void)
|
|
{
|
|
return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
}
|
|
|
|
#define __KVM_HAVE_ARCH_VM_FREE
|
|
void kvm_arch_free_vm(struct kvm *kvm);
|
|
|
|
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
|
|
static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
|
|
{
|
|
if (kvm_x86_ops.tlb_remote_flush &&
|
|
!static_call(kvm_x86_tlb_remote_flush)(kvm))
|
|
return 0;
|
|
else
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
#define kvm_arch_pmi_in_guest(vcpu) \
|
|
((vcpu) && (vcpu)->arch.handling_intr_from_guest)
|
|
|
|
void kvm_mmu_x86_module_init(void);
|
|
int kvm_mmu_vendor_module_init(void);
|
|
void kvm_mmu_vendor_module_exit(void);
|
|
|
|
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
|
|
int kvm_mmu_create(struct kvm_vcpu *vcpu);
|
|
int kvm_mmu_init_vm(struct kvm *kvm);
|
|
void kvm_mmu_uninit_vm(struct kvm *kvm);
|
|
|
|
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
|
|
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot,
|
|
int start_level);
|
|
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot,
|
|
int target_level);
|
|
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot,
|
|
u64 start, u64 end,
|
|
int target_level);
|
|
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot);
|
|
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot);
|
|
void kvm_mmu_zap_all(struct kvm *kvm);
|
|
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
|
|
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
|
|
|
|
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
|
|
|
|
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
const void *val, int bytes);
|
|
|
|
struct kvm_irq_mask_notifier {
|
|
void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
|
|
int irq;
|
|
struct hlist_node link;
|
|
};
|
|
|
|
void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
|
|
struct kvm_irq_mask_notifier *kimn);
|
|
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
|
|
struct kvm_irq_mask_notifier *kimn);
|
|
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
|
|
bool mask);
|
|
|
|
extern bool tdp_enabled;
|
|
|
|
u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
|
|
|
|
/* control of guest tsc rate supported? */
|
|
extern bool kvm_has_tsc_control;
|
|
/* maximum supported tsc_khz for guests */
|
|
extern u32 kvm_max_guest_tsc_khz;
|
|
/* number of bits of the fractional part of the TSC scaling ratio */
|
|
extern u8 kvm_tsc_scaling_ratio_frac_bits;
|
|
/* maximum allowed value of TSC scaling ratio */
|
|
extern u64 kvm_max_tsc_scaling_ratio;
|
|
/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
|
|
extern u64 kvm_default_tsc_scaling_ratio;
|
|
/* bus lock detection supported? */
|
|
extern bool kvm_has_bus_lock_exit;
|
|
|
|
extern u64 kvm_mce_cap_supported;
|
|
|
|
/*
|
|
* EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
|
|
* userspace I/O) to indicate that the emulation context
|
|
* should be reused as is, i.e. skip initialization of
|
|
* emulation context, instruction fetch and decode.
|
|
*
|
|
* EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
|
|
* Indicates that only select instructions (tagged with
|
|
* EmulateOnUD) should be emulated (to minimize the emulator
|
|
* attack surface). See also EMULTYPE_TRAP_UD_FORCED.
|
|
*
|
|
* EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
|
|
* decode the instruction length. For use *only* by
|
|
* kvm_x86_ops.skip_emulated_instruction() implementations if
|
|
* EMULTYPE_COMPLETE_USER_EXIT is not set.
|
|
*
|
|
* EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
|
|
* retry native execution under certain conditions,
|
|
* Can only be set in conjunction with EMULTYPE_PF.
|
|
*
|
|
* EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
|
|
* triggered by KVM's magic "force emulation" prefix,
|
|
* which is opt in via module param (off by default).
|
|
* Bypasses EmulateOnUD restriction despite emulating
|
|
* due to an intercepted #UD (see EMULTYPE_TRAP_UD).
|
|
* Used to test the full emulator from userspace.
|
|
*
|
|
* EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
|
|
* backdoor emulation, which is opt in via module param.
|
|
* VMware backdoor emulation handles select instructions
|
|
* and reinjects the #GP for all other cases.
|
|
*
|
|
* EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
|
|
* case the CR2/GPA value pass on the stack is valid.
|
|
*
|
|
* EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
|
|
* state and inject single-step #DBs after skipping
|
|
* an instruction (after completing userspace I/O).
|
|
*/
|
|
#define EMULTYPE_NO_DECODE (1 << 0)
|
|
#define EMULTYPE_TRAP_UD (1 << 1)
|
|
#define EMULTYPE_SKIP (1 << 2)
|
|
#define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
|
|
#define EMULTYPE_TRAP_UD_FORCED (1 << 4)
|
|
#define EMULTYPE_VMWARE_GP (1 << 5)
|
|
#define EMULTYPE_PF (1 << 6)
|
|
#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
|
|
|
|
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
|
|
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
|
|
void *insn, int insn_len);
|
|
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
|
|
u64 *data, u8 ndata);
|
|
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_enable_efer_bits(u64);
|
|
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
|
|
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
|
|
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
|
|
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
|
|
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_invd(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
|
|
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
|
|
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
|
|
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
|
|
|
|
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
|
|
int reason, bool has_error_code, u32 error_code);
|
|
|
|
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
|
|
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
|
|
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
|
|
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
|
|
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
|
|
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
|
|
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
|
|
void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
|
|
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
|
|
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
|
|
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
|
|
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
|
|
|
|
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
|
|
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
|
|
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
|
|
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
|
|
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
|
|
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
|
|
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
|
|
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
|
|
bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault);
|
|
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
|
|
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
|
|
|
|
static inline int __kvm_irq_line_state(unsigned long *irq_state,
|
|
int irq_source_id, int level)
|
|
{
|
|
/* Logical OR for level trig interrupt */
|
|
if (level)
|
|
__set_bit(irq_source_id, irq_state);
|
|
else
|
|
__clear_bit(irq_source_id, irq_state);
|
|
|
|
return !!(*irq_state);
|
|
}
|
|
|
|
#define KVM_MMU_ROOT_CURRENT BIT(0)
|
|
#define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
|
|
#define KVM_MMU_ROOTS_ALL (~0UL)
|
|
|
|
int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
|
|
void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
|
|
|
|
void kvm_inject_nmi(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_update_dr7(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
|
|
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
|
|
ulong roots_to_free);
|
|
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
|
|
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception);
|
|
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception);
|
|
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception);
|
|
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception);
|
|
|
|
bool kvm_apicv_activated(struct kvm *kvm);
|
|
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
|
|
void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
|
|
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
|
|
enum kvm_apicv_inhibit reason, bool set);
|
|
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
|
|
enum kvm_apicv_inhibit reason, bool set);
|
|
|
|
static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
|
|
enum kvm_apicv_inhibit reason)
|
|
{
|
|
kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
|
|
}
|
|
|
|
static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
|
|
enum kvm_apicv_inhibit reason)
|
|
{
|
|
kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
|
|
}
|
|
|
|
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
|
|
void *insn, int insn_len);
|
|
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
|
|
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gva_t gva, hpa_t root_hpa);
|
|
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
|
|
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
|
|
|
|
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
|
|
int tdp_max_root_level, int tdp_huge_page_level);
|
|
|
|
static inline u16 kvm_read_ldt(void)
|
|
{
|
|
u16 ldt;
|
|
asm("sldt %0" : "=g"(ldt));
|
|
return ldt;
|
|
}
|
|
|
|
static inline void kvm_load_ldt(u16 sel)
|
|
{
|
|
asm("lldt %0" : : "rm"(sel));
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static inline unsigned long read_msr(unsigned long msr)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(msr, value);
|
|
return value;
|
|
}
|
|
#endif
|
|
|
|
static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
|
|
{
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
|
|
}
|
|
|
|
#define TSS_IOPB_BASE_OFFSET 0x66
|
|
#define TSS_BASE_SIZE 0x68
|
|
#define TSS_IOPB_SIZE (65536 / 8)
|
|
#define TSS_REDIRECTION_SIZE (256 / 8)
|
|
#define RMODE_TSS_SIZE \
|
|
(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
|
|
|
|
enum {
|
|
TASK_SWITCH_CALL = 0,
|
|
TASK_SWITCH_IRET = 1,
|
|
TASK_SWITCH_JMP = 2,
|
|
TASK_SWITCH_GATE = 3,
|
|
};
|
|
|
|
#define HF_GIF_MASK (1 << 0)
|
|
#define HF_NMI_MASK (1 << 3)
|
|
#define HF_IRET_MASK (1 << 4)
|
|
#define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
|
|
#define HF_SMM_MASK (1 << 6)
|
|
#define HF_SMM_INSIDE_NMI_MASK (1 << 7)
|
|
|
|
#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
|
|
#define KVM_ADDRESS_SPACE_NUM 2
|
|
|
|
#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
|
|
#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
|
|
|
|
#define KVM_ARCH_WANT_MMU_NOTIFIER
|
|
|
|
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
|
|
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
|
|
int kvm_cpu_has_extint(struct kvm_vcpu *v);
|
|
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
|
|
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
|
|
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
|
|
|
|
int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
|
|
unsigned long ipi_bitmap_high, u32 min,
|
|
unsigned long icr, int op_64_bit);
|
|
|
|
int kvm_add_user_return_msr(u32 msr);
|
|
int kvm_find_user_return_msr(u32 msr);
|
|
int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
|
|
|
|
static inline bool kvm_is_supported_user_return_msr(u32 msr)
|
|
{
|
|
return kvm_find_user_return_msr(msr) >= 0;
|
|
}
|
|
|
|
u64 kvm_scale_tsc(u64 tsc, u64 ratio);
|
|
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
|
|
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
|
|
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
|
|
|
|
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
|
|
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
|
|
|
|
void kvm_make_scan_ioapic_request(struct kvm *kvm);
|
|
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
|
|
unsigned long *vcpu_bitmap);
|
|
|
|
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work);
|
|
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work);
|
|
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work);
|
|
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
|
|
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
|
|
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
|
|
|
|
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
|
|
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
|
|
void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
|
|
|
|
void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
|
|
u32 size);
|
|
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
|
|
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
|
|
|
|
bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
|
|
struct kvm_vcpu **dest_vcpu);
|
|
|
|
void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
|
|
struct kvm_lapic_irq *irq);
|
|
|
|
static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
|
|
{
|
|
/* We can only post Fixed and LowPrio IRQs */
|
|
return (irq->delivery_mode == APIC_DM_FIXED ||
|
|
irq->delivery_mode == APIC_DM_LOWEST);
|
|
}
|
|
|
|
static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
|
|
}
|
|
|
|
static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
|
|
}
|
|
|
|
static inline int kvm_cpu_get_apicid(int mps_cpu)
|
|
{
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
return default_cpu_present_to_apicid(mps_cpu);
|
|
#else
|
|
WARN_ON_ONCE(1);
|
|
return BAD_APICID;
|
|
#endif
|
|
}
|
|
|
|
#define put_smstate(type, buf, offset, val) \
|
|
*(type *)((buf) + (offset) - 0x7e00) = val
|
|
|
|
#define GET_SMSTATE(type, buf, offset) \
|
|
(*(type *)((buf) + (offset) - 0x7e00))
|
|
|
|
int kvm_cpu_dirty_log_size(void);
|
|
|
|
int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
|
|
|
|
#define KVM_CLOCK_VALID_FLAGS \
|
|
(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
|
|
|
|
#define KVM_X86_VALID_QUIRKS \
|
|
(KVM_X86_QUIRK_LINT0_REENABLED | \
|
|
KVM_X86_QUIRK_CD_NW_CLEARED | \
|
|
KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
|
|
KVM_X86_QUIRK_OUT_7E_INC_RIP | \
|
|
KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
|
|
KVM_X86_QUIRK_FIX_HYPERCALL_INSN)
|
|
|
|
#endif /* _ASM_X86_KVM_HOST_H */
|