OpenCloudOS-Kernel/drivers/net/wireless/ath/ath5k/dma.c

920 lines
24 KiB
C

/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* DMA and interrupt masking functions *
\*************************************/
/**
* DOC: DMA and interrupt masking functions
*
* Here we setup descriptor pointers (rxdp/txdp) start/stop dma engine and
* handle queue setup for 5210 chipset (rest are handled on qcu.c).
* Also we setup interrupt mask register (IMR) and read the various interrupt
* status registers (ISR).
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
/*********\
* Receive *
\*********/
/**
* ath5k_hw_start_rx_dma() - Start DMA receive
* @ah: The &struct ath5k_hw
*/
void
ath5k_hw_start_rx_dma(struct ath5k_hw *ah)
{
ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
}
/**
* ath5k_hw_stop_rx_dma() - Stop DMA receive
* @ah: The &struct ath5k_hw
*/
static int
ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
{
unsigned int i;
ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
/*
* It may take some time to disable the DMA receive unit
*/
for (i = 1000; i > 0 &&
(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
i--)
udelay(100);
if (!i)
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"failed to stop RX DMA !\n");
return i ? 0 : -EBUSY;
}
/**
* ath5k_hw_get_rxdp() - Get RX Descriptor's address
* @ah: The &struct ath5k_hw
*/
u32
ath5k_hw_get_rxdp(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_RXDP);
}
/**
* ath5k_hw_set_rxdp() - Set RX Descriptor's address
* @ah: The &struct ath5k_hw
* @phys_addr: RX descriptor address
*
* Returns -EIO if rx is active
*/
int
ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr)
{
if (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"tried to set RXDP while rx was active !\n");
return -EIO;
}
ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
return 0;
}
/**********\
* Transmit *
\**********/
/**
* ath5k_hw_start_tx_dma() - Start DMA transmit for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Start DMA transmit for a specific queue and since 5210 doesn't have
* QCU/DCU, set up queue parameters for 5210 here based on queue type (one
* queue for normal data and one queue for beacons). For queue setup
* on newer chips check out qcu.c. Returns -EINVAL if queue number is out
* of range or if queue is already disabled.
*
* NOTE: Must be called after setting up tx control descriptor for that
* queue (see below).
*/
int
ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
u32 tx_queue;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EINVAL;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set the queue by type on 5210
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
break;
case AR5K_TX_QUEUE_BEACON:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BSR);
break;
case AR5K_TX_QUEUE_CAB:
tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
AR5K_BCR_BDMAE, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Start queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/* Return if queue is disabled */
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
return -EIO;
/* Start queue */
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
}
return 0;
}
/**
* ath5k_hw_stop_tx_dma() - Stop DMA transmit on a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Stop DMA transmit on a specific hw queue and drain queue so we don't
* have any pending frames. Returns -EBUSY if we still have pending frames,
* -EINVAL if queue number is out of range or inactive.
*/
static int
ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
{
unsigned int i = 40;
u32 tx_queue, pending;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/* Return if queue is declared inactive */
if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
return -EINVAL;
if (ah->ah_version == AR5K_AR5210) {
tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
/*
* Set by queue type
*/
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
/* XXX Fix me... */
tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
ath5k_hw_reg_write(ah, 0, AR5K_BSR);
break;
default:
return -EINVAL;
}
/* Stop queue */
ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
ath5k_hw_reg_read(ah, AR5K_CR);
} else {
/*
* Enable DCU early termination to quickly
* flush any pending frames from QCU
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_DCU_EARLY);
/*
* Schedule TX disable and wait until queue is empty
*/
AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
/* Wait for queue to stop */
for (i = 1000; i > 0 &&
(AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue) != 0);
i--)
udelay(100);
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"queue %i didn't stop !\n", queue);
/* Check for pending frames */
i = 1000;
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
/* For 2413+ order PCU to drop packets using
* QUIET mechanism */
if (ah->ah_mac_version >= (AR5K_SREV_AR2414 >> 4) &&
pending) {
/* Set periodicity and duration */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(100, AR5K_QUIET_CTL2_QT_PER)|
AR5K_REG_SM(10, AR5K_QUIET_CTL2_QT_DUR),
AR5K_QUIET_CTL2);
/* Enable quiet period for current TSF */
ath5k_hw_reg_write(ah,
AR5K_QUIET_CTL1_QT_EN |
AR5K_REG_SM(ath5k_hw_reg_read(ah,
AR5K_TSF_L32_5211) >> 10,
AR5K_QUIET_CTL1_NEXT_QT_TSF),
AR5K_QUIET_CTL1);
/* Force channel idle high */
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_CHANNEL_IDLE_HIGH);
/* Wait a while and disable mechanism */
udelay(400);
AR5K_REG_DISABLE_BITS(ah, AR5K_QUIET_CTL1,
AR5K_QUIET_CTL1_QT_EN);
/* Re-check for pending frames */
i = 100;
do {
pending = ath5k_hw_reg_read(ah,
AR5K_QUEUE_STATUS(queue)) &
AR5K_QCU_STS_FRMPENDCNT;
udelay(100);
} while (--i && pending);
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5211,
AR5K_DIAG_SW_CHANNEL_IDLE_HIGH);
if (pending)
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"quiet mechanism didn't work q:%i !\n",
queue);
}
/*
* Disable DCU early termination
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
AR5K_QCU_MISC_DCU_EARLY);
/* Clear register */
ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
if (pending) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"tx dma didn't stop (q:%i, frm:%i) !\n",
queue, pending);
return -EBUSY;
}
}
/* TODO: Check for success on 5210 else return error */
return 0;
}
/**
* ath5k_hw_stop_beacon_queue() - Stop beacon queue
* @ah: The &struct ath5k_hw
* @queue: The queue number
*
* Returns -EIO if queue didn't stop
*/
int
ath5k_hw_stop_beacon_queue(struct ath5k_hw *ah, unsigned int queue)
{
int ret;
ret = ath5k_hw_stop_tx_dma(ah, queue);
if (ret) {
ATH5K_DBG(ah, ATH5K_DEBUG_DMA,
"beacon queue didn't stop !\n");
return -EIO;
}
return 0;
}
/**
* ath5k_hw_get_txdp() - Get TX Descriptor's address for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
*
* Get TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and use tx queue type since we only have 2 queues.
* We use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just read the corresponding TXDP register.
*
* XXX: Is TXDP read and clear ?
*/
u32
ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue)
{
u16 tx_reg;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Get the transmit queue descriptor pointer from the selected queue
*/
/*5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return 0xffffffff;
}
} else {
tx_reg = AR5K_QUEUE_TXDP(queue);
}
return ath5k_hw_reg_read(ah, tx_reg);
}
/**
* ath5k_hw_set_txdp() - Set TX Descriptor's address for a specific queue
* @ah: The &struct ath5k_hw
* @queue: The hw queue number
* @phys_addr: The physical address
*
* Set TX descriptor's address for a specific queue. For 5210 we ignore
* the queue number and we use tx queue type since we only have 2 queues
* so as above we use TXDP0 for normal data queue and TXDP1 for beacon queue.
* For newer chips with QCU/DCU we just set the corresponding TXDP register.
* Returns -EINVAL if queue type is invalid for 5210 and -EIO if queue is still
* active.
*/
int
ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
{
u16 tx_reg;
AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
/*
* Set the transmit queue descriptor pointer register by type
* on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
switch (ah->ah_txq[queue].tqi_type) {
case AR5K_TX_QUEUE_DATA:
tx_reg = AR5K_NOQCU_TXDP0;
break;
case AR5K_TX_QUEUE_BEACON:
case AR5K_TX_QUEUE_CAB:
tx_reg = AR5K_NOQCU_TXDP1;
break;
default:
return -EINVAL;
}
} else {
/*
* Set the transmit queue descriptor pointer for
* the selected queue on QCU for 5211+
* (this won't work if the queue is still active)
*/
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
return -EIO;
tx_reg = AR5K_QUEUE_TXDP(queue);
}
/* Set descriptor pointer */
ath5k_hw_reg_write(ah, phys_addr, tx_reg);
return 0;
}
/**
* ath5k_hw_update_tx_triglevel() - Update tx trigger level
* @ah: The &struct ath5k_hw
* @increase: Flag to force increase of trigger level
*
* This function increases/decreases the tx trigger level for the tx fifo
* buffer (aka FIFO threshold) that is used to indicate when PCU flushes
* the buffer and transmits its data. Lowering this results sending small
* frames more quickly but can lead to tx underruns, raising it a lot can
* result other problems. Right now we start with the lowest possible
* (64Bytes) and if we get tx underrun we increase it using the increase
* flag. Returns -EIO if we have reached maximum/minimum.
*
* XXX: Link this with tx DMA size ?
* XXX2: Use it to save interrupts ?
*/
int
ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
{
u32 trigger_level, imr;
int ret = -EIO;
/*
* Disable interrupts by setting the mask
*/
imr = ath5k_hw_set_imr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
AR5K_TXCFG_TXFULL);
if (!increase) {
if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
goto done;
} else
trigger_level +=
((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
/*
* Update trigger level on success
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
else
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_TXFULL, trigger_level);
ret = 0;
done:
/*
* Restore interrupt mask
*/
ath5k_hw_set_imr(ah, imr);
return ret;
}
/*******************\
* Interrupt masking *
\*******************/
/**
* ath5k_hw_is_intr_pending() - Check if we have pending interrupts
* @ah: The &struct ath5k_hw
*
* Check if we have pending interrupts to process. Returns 1 if we
* have pending interrupts and 0 if we haven't.
*/
bool
ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
{
return ath5k_hw_reg_read(ah, AR5K_INTPEND) == 1 ? 1 : 0;
}
/**
* ath5k_hw_get_isr() - Get interrupt status
* @ah: The @struct ath5k_hw
* @interrupt_mask: Driver's interrupt mask used to filter out
* interrupts in sw.
*
* This function is used inside our interrupt handler to determine the reason
* for the interrupt by reading Primary Interrupt Status Register. Returns an
* abstract interrupt status mask which is mostly ISR with some uncommon bits
* being mapped on some standard non hw-specific positions
* (check out &ath5k_int).
*
* NOTE: We do write-to-clear, so the active PISR/SISR bits at the time this
* function gets called are cleared on return.
*/
int
ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
{
u32 data = 0;
/*
* Read interrupt status from Primary Interrupt
* Register.
*
* Note: PISR/SISR Not available on 5210
*/
if (ah->ah_version == AR5K_AR5210) {
u32 isr = 0;
isr = ath5k_hw_reg_read(ah, AR5K_ISR);
if (unlikely(isr == AR5K_INT_NOCARD)) {
*interrupt_mask = isr;
return -ENODEV;
}
/*
* Filter out the non-common bits from the interrupt
* status.
*/
*interrupt_mask = (isr & AR5K_INT_COMMON) & ah->ah_imr;
/* Hanlde INT_FATAL */
if (unlikely(isr & (AR5K_ISR_SSERR | AR5K_ISR_MCABT
| AR5K_ISR_DPERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*
* XXX: BMISS interrupts may occur after association.
* I found this on 5210 code but it needs testing. If this is
* true we should disable them before assoc and re-enable them
* after a successful assoc + some jiffies.
interrupt_mask &= ~AR5K_INT_BMISS;
*/
data = isr;
} else {
u32 pisr = 0;
u32 pisr_clear = 0;
u32 sisr0 = 0;
u32 sisr1 = 0;
u32 sisr2 = 0;
u32 sisr3 = 0;
u32 sisr4 = 0;
/* Read PISR and SISRs... */
pisr = ath5k_hw_reg_read(ah, AR5K_PISR);
if (unlikely(pisr == AR5K_INT_NOCARD)) {
*interrupt_mask = pisr;
return -ENODEV;
}
sisr0 = ath5k_hw_reg_read(ah, AR5K_SISR0);
sisr1 = ath5k_hw_reg_read(ah, AR5K_SISR1);
sisr2 = ath5k_hw_reg_read(ah, AR5K_SISR2);
sisr3 = ath5k_hw_reg_read(ah, AR5K_SISR3);
sisr4 = ath5k_hw_reg_read(ah, AR5K_SISR4);
/*
* PISR holds the logical OR of interrupt bits
* from SISR registers:
*
* TXOK and TXDESC -> Logical OR of TXOK and TXDESC
* per-queue bits on SISR0
*
* TXERR and TXEOL -> Logical OR of TXERR and TXEOL
* per-queue bits on SISR1
*
* TXURN -> Logical OR of TXURN per-queue bits on SISR2
*
* HIUERR -> Logical OR of MCABT, SSERR and DPER bits on SISR2
*
* BCNMISC -> Logical OR of TIM, CAB_END, DTIM_SYNC
* BCN_TIMEOUT, CAB_TIMEOUT and DTIM
* (and TSFOOR ?) bits on SISR2
*
* QCBRORN and QCBRURN -> Logical OR of QCBRORN and
* QCBRURN per-queue bits on SISR3
* QTRIG -> Logical OR of QTRIG per-queue bits on SISR4
*
* If we clean these bits on PISR we 'll also clear all
* related bits from SISRs, e.g. if we write the TXOK bit on
* PISR we 'll clean all TXOK bits from SISR0 so if a new TXOK
* interrupt got fired for another queue while we were reading
* the interrupt registers and we write back the TXOK bit on
* PISR we 'll lose it. So make sure that we don't write back
* on PISR any bits that come from SISRs. Clearing them from
* SISRs will also clear PISR so no need to worry here.
*/
pisr_clear = pisr & ~AR5K_ISR_BITS_FROM_SISRS;
/*
* Write to clear them...
* Note: This means that each bit we write back
* to the registers will get cleared, leaving the
* rest unaffected. So this won't affect new interrupts
* we didn't catch while reading/processing, we 'll get
* them next time get_isr gets called.
*/
ath5k_hw_reg_write(ah, sisr0, AR5K_SISR0);
ath5k_hw_reg_write(ah, sisr1, AR5K_SISR1);
ath5k_hw_reg_write(ah, sisr2, AR5K_SISR2);
ath5k_hw_reg_write(ah, sisr3, AR5K_SISR3);
ath5k_hw_reg_write(ah, sisr4, AR5K_SISR4);
ath5k_hw_reg_write(ah, pisr_clear, AR5K_PISR);
/* Flush previous write */
ath5k_hw_reg_read(ah, AR5K_PISR);
/*
* Filter out the non-common bits from the interrupt
* status.
*/
*interrupt_mask = (pisr & AR5K_INT_COMMON) & ah->ah_imr;
/* We treat TXOK,TXDESC, TXERR and TXEOL
* the same way (schedule the tx tasklet)
* so we track them all together per queue */
if (pisr & AR5K_ISR_TXOK)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr0,
AR5K_SISR0_QCU_TXOK);
if (pisr & AR5K_ISR_TXDESC)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr0,
AR5K_SISR0_QCU_TXDESC);
if (pisr & AR5K_ISR_TXERR)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr1,
AR5K_SISR1_QCU_TXERR);
if (pisr & AR5K_ISR_TXEOL)
ah->ah_txq_isr_txok_all |= AR5K_REG_MS(sisr1,
AR5K_SISR1_QCU_TXEOL);
/* Currently this is not much usefull since we treat
* all queues the same way if we get a TXURN (update
* tx trigger level) but we might need it later on*/
if (pisr & AR5K_ISR_TXURN)
ah->ah_txq_isr_txurn |= AR5K_REG_MS(sisr2,
AR5K_SISR2_QCU_TXURN);
/* Misc Beacon related interrupts */
/* For AR5211 */
if (pisr & AR5K_ISR_TIM)
*interrupt_mask |= AR5K_INT_TIM;
/* For AR5212+ */
if (pisr & AR5K_ISR_BCNMISC) {
if (sisr2 & AR5K_SISR2_TIM)
*interrupt_mask |= AR5K_INT_TIM;
if (sisr2 & AR5K_SISR2_DTIM)
*interrupt_mask |= AR5K_INT_DTIM;
if (sisr2 & AR5K_SISR2_DTIM_SYNC)
*interrupt_mask |= AR5K_INT_DTIM_SYNC;
if (sisr2 & AR5K_SISR2_BCN_TIMEOUT)
*interrupt_mask |= AR5K_INT_BCN_TIMEOUT;
if (sisr2 & AR5K_SISR2_CAB_TIMEOUT)
*interrupt_mask |= AR5K_INT_CAB_TIMEOUT;
}
/* Below interrupts are unlikely to happen */
/* HIU = Host Interface Unit (PCI etc)
* Can be one of MCABT, SSERR, DPERR from SISR2 */
if (unlikely(pisr & (AR5K_ISR_HIUERR)))
*interrupt_mask |= AR5K_INT_FATAL;
/*Beacon Not Ready*/
if (unlikely(pisr & (AR5K_ISR_BNR)))
*interrupt_mask |= AR5K_INT_BNR;
/* A queue got CBR overrun */
if (unlikely(pisr & (AR5K_ISR_QCBRORN))) {
*interrupt_mask |= AR5K_INT_QCBRORN;
ah->ah_txq_isr_qcborn |= AR5K_REG_MS(sisr3,
AR5K_SISR3_QCBRORN);
}
/* A queue got CBR underrun */
if (unlikely(pisr & (AR5K_ISR_QCBRURN))) {
*interrupt_mask |= AR5K_INT_QCBRURN;
ah->ah_txq_isr_qcburn |= AR5K_REG_MS(sisr3,
AR5K_SISR3_QCBRURN);
}
/* A queue got triggered */
if (unlikely(pisr & (AR5K_ISR_QTRIG))) {
*interrupt_mask |= AR5K_INT_QTRIG;
ah->ah_txq_isr_qtrig |= AR5K_REG_MS(sisr4,
AR5K_SISR4_QTRIG);
}
data = pisr;
}
/*
* In case we didn't handle anything,
* print the register value.
*/
if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
ATH5K_PRINTF("ISR: 0x%08x IMR: 0x%08x\n", data, ah->ah_imr);
return 0;
}
/**
* ath5k_hw_set_imr() - Set interrupt mask
* @ah: The &struct ath5k_hw
* @new_mask: The new interrupt mask to be set
*
* Set the interrupt mask in hw to save interrupts. We do that by mapping
* ath5k_int bits to hw-specific bits to remove abstraction and writing
* Interrupt Mask Register.
*/
enum ath5k_int
ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
{
enum ath5k_int old_mask, int_mask;
old_mask = ah->ah_imr;
/*
* Disable card interrupts to prevent any race conditions
* (they will be re-enabled afterwards if AR5K_INT GLOBAL
* is set again on the new mask).
*/
if (old_mask & AR5K_INT_GLOBAL) {
ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
}
/*
* Add additional, chipset-dependent interrupt mask flags
* and write them to the IMR (interrupt mask register).
*/
int_mask = new_mask & AR5K_INT_COMMON;
if (ah->ah_version != AR5K_AR5210) {
/* Preserve per queue TXURN interrupt mask */
u32 simr2 = ath5k_hw_reg_read(ah, AR5K_SIMR2)
& AR5K_SIMR2_QCU_TXURN;
/* Fatal interrupt abstraction for 5211+ */
if (new_mask & AR5K_INT_FATAL) {
int_mask |= AR5K_IMR_HIUERR;
simr2 |= (AR5K_SIMR2_MCABT | AR5K_SIMR2_SSERR
| AR5K_SIMR2_DPERR);
}
/* Misc beacon related interrupts */
if (new_mask & AR5K_INT_TIM)
int_mask |= AR5K_IMR_TIM;
if (new_mask & AR5K_INT_TIM)
simr2 |= AR5K_SISR2_TIM;
if (new_mask & AR5K_INT_DTIM)
simr2 |= AR5K_SISR2_DTIM;
if (new_mask & AR5K_INT_DTIM_SYNC)
simr2 |= AR5K_SISR2_DTIM_SYNC;
if (new_mask & AR5K_INT_BCN_TIMEOUT)
simr2 |= AR5K_SISR2_BCN_TIMEOUT;
if (new_mask & AR5K_INT_CAB_TIMEOUT)
simr2 |= AR5K_SISR2_CAB_TIMEOUT;
/*Beacon Not Ready*/
if (new_mask & AR5K_INT_BNR)
int_mask |= AR5K_INT_BNR;
/* Note: Per queue interrupt masks
* are set via ath5k_hw_reset_tx_queue() (qcu.c) */
ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
ath5k_hw_reg_write(ah, simr2, AR5K_SIMR2);
} else {
/* Fatal interrupt abstraction for 5210 */
if (new_mask & AR5K_INT_FATAL)
int_mask |= (AR5K_IMR_SSERR | AR5K_IMR_MCABT
| AR5K_IMR_HIUERR | AR5K_IMR_DPERR);
/* Only common interrupts left for 5210 (no SIMRs) */
ath5k_hw_reg_write(ah, int_mask, AR5K_IMR);
}
/* If RXNOFRM interrupt is masked disable it
* by setting AR5K_RXNOFRM to zero */
if (!(new_mask & AR5K_INT_RXNOFRM))
ath5k_hw_reg_write(ah, 0, AR5K_RXNOFRM);
/* Store new interrupt mask */
ah->ah_imr = new_mask;
/* ..re-enable interrupts if AR5K_INT_GLOBAL is set */
if (new_mask & AR5K_INT_GLOBAL) {
ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
ath5k_hw_reg_read(ah, AR5K_IER);
}
return old_mask;
}
/********************\
Init/Stop functions
\********************/
/**
* ath5k_hw_dma_init() - Initialize DMA unit
* @ah: The &struct ath5k_hw
*
* Set DMA size and pre-enable interrupts
* (driver handles tx/rx buffer setup and
* dma start/stop)
*
* XXX: Save/restore RXDP/TXDP registers ?
*/
void
ath5k_hw_dma_init(struct ath5k_hw *ah)
{
/*
* Set Rx/Tx DMA Configuration
*
* Set standard DMA size (128). Note that
* a DMA size of 512 causes rx overruns and tx errors
* on pci-e cards (tested on 5424 but since rx overruns
* also occur on 5416/5418 with madwifi we set 128
* for all PCI-E cards to be safe).
*
* XXX: need to check 5210 for this
* TODO: Check out tx trigger level, it's always 64 on dumps but I
* guess we can tweak it and see how it goes ;-)
*/
if (ah->ah_version != AR5K_AR5210) {
AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
}
/* Pre-enable interrupts on 5211/5212*/
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_set_imr(ah, ah->ah_imr);
}
/**
* ath5k_hw_dma_stop() - stop DMA unit
* @ah: The &struct ath5k_hw
*
* Stop tx/rx DMA and interrupts. Returns
* -EBUSY if tx or rx dma failed to stop.
*
* XXX: Sometimes DMA unit hangs and we have
* stuck frames on tx queues, only a reset
* can fix that.
*/
int
ath5k_hw_dma_stop(struct ath5k_hw *ah)
{
int i, qmax, err;
err = 0;
/* Disable interrupts */
ath5k_hw_set_imr(ah, 0);
/* Stop rx dma */
err = ath5k_hw_stop_rx_dma(ah);
if (err)
return err;
/* Clear any pending interrupts
* and disable tx dma */
if (ah->ah_version != AR5K_AR5210) {
ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
qmax = AR5K_NUM_TX_QUEUES;
} else {
/* PISR/SISR Not available on 5210 */
ath5k_hw_reg_read(ah, AR5K_ISR);
qmax = AR5K_NUM_TX_QUEUES_NOQCU;
}
for (i = 0; i < qmax; i++) {
err = ath5k_hw_stop_tx_dma(ah, i);
/* -EINVAL -> queue inactive */
if (err && err != -EINVAL)
return err;
}
return 0;
}