OpenCloudOS-Kernel/drivers/net/ethernet/qlogic/qede/qede_fp.c

1729 lines
47 KiB
C

/* QLogic qede NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/bpf_trace.h>
#include <net/udp_tunnel.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/ip6_checksum.h>
#include "qede_ptp.h"
#include <linux/qed/qed_if.h>
#include "qede.h"
/*********************************
* Content also used by slowpath *
*********************************/
int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
{
struct sw_rx_data *sw_rx_data;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
struct page *data;
/* In case lazy-allocation is allowed, postpone allocation until the
* end of the NAPI run. We'd still need to make sure the Rx ring has
* sufficient buffers to guarantee an additional Rx interrupt.
*/
if (allow_lazy && likely(rxq->filled_buffers > 12)) {
rxq->filled_buffers--;
return 0;
}
data = alloc_pages(GFP_ATOMIC, 0);
if (unlikely(!data))
return -ENOMEM;
/* Map the entire page as it would be used
* for multiple RX buffer segment size mapping.
*/
mapping = dma_map_page(rxq->dev, data, 0,
PAGE_SIZE, rxq->data_direction);
if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
__free_page(data);
return -ENOMEM;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
sw_rx_data->page_offset = 0;
sw_rx_data->data = data;
sw_rx_data->mapping = mapping;
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
WARN_ON(!rx_bd);
rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
rxq->rx_headroom);
rxq->sw_rx_prod++;
rxq->filled_buffers++;
return 0;
}
/* Unmap the data and free skb */
int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
{
u16 idx = txq->sw_tx_cons;
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_bd *tx_data_bd;
int bds_consumed = 0;
int nbds;
bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
int i, split_bd_len = 0;
if (unlikely(!skb)) {
DP_ERR(edev,
"skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
idx, txq->sw_tx_cons, txq->sw_tx_prod);
return -1;
}
*len = skb->len;
first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
bds_consumed++;
nbds = first_bd->data.nbds;
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
bds_consumed++;
}
dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
while (bds_consumed++ < nbds)
qed_chain_consume(&txq->tx_pbl);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring.skbs[idx].skb = NULL;
txq->sw_tx_ring.skbs[idx].flags = 0;
return 0;
}
/* Unmap the data and free skb when mapping failed during start_xmit */
static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
struct eth_tx_1st_bd *first_bd,
int nbd, bool data_split)
{
u16 idx = txq->sw_tx_prod;
struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
struct eth_tx_bd *tx_data_bd;
int i, split_bd_len = 0;
/* Return prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
nbd--;
}
dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < nbd; i++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
if (tx_data_bd->nbytes)
dma_unmap_page(txq->dev,
BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
/* Return again prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring.skbs[idx].skb = NULL;
txq->sw_tx_ring.skbs[idx].flags = 0;
}
static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
{
u32 rc = XMIT_L4_CSUM;
__be16 l3_proto;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return XMIT_PLAIN;
l3_proto = vlan_get_protocol(skb);
if (l3_proto == htons(ETH_P_IPV6) &&
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
*ipv6_ext = 1;
if (skb->encapsulation) {
rc |= XMIT_ENC;
if (skb_is_gso(skb)) {
unsigned short gso_type = skb_shinfo(skb)->gso_type;
if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
(gso_type & SKB_GSO_GRE_CSUM))
rc |= XMIT_ENC_GSO_L4_CSUM;
rc |= XMIT_LSO;
return rc;
}
}
if (skb_is_gso(skb))
rc |= XMIT_LSO;
return rc;
}
static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
struct eth_tx_2nd_bd *second_bd,
struct eth_tx_3rd_bd *third_bd)
{
u8 l4_proto;
u16 bd2_bits1 = 0, bd2_bits2 = 0;
bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
<< ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
l4_proto = ipv6_hdr(skb)->nexthdr;
else
l4_proto = ip_hdr(skb)->protocol;
if (l4_proto == IPPROTO_UDP)
bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
if (third_bd)
third_bd->data.bitfields |=
cpu_to_le16(((tcp_hdrlen(skb) / 4) &
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
}
static int map_frag_to_bd(struct qede_tx_queue *txq,
skb_frag_t *frag, struct eth_tx_bd *bd)
{
dma_addr_t mapping;
/* Map skb non-linear frag data for DMA */
mapping = skb_frag_dma_map(txq->dev, frag, 0,
skb_frag_size(frag), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(txq->dev, mapping)))
return -ENOMEM;
/* Setup the data pointer of the frag data */
BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
return 0;
}
static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
{
if (is_encap_pkt)
return (skb_inner_transport_header(skb) +
inner_tcp_hdrlen(skb) - skb->data);
else
return (skb_transport_header(skb) +
tcp_hdrlen(skb) - skb->data);
}
/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
{
int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
if (xmit_type & XMIT_LSO) {
int hlen;
hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
/* linear payload would require its own BD */
if (skb_headlen(skb) > hlen)
allowed_frags--;
}
return (skb_shinfo(skb)->nr_frags > allowed_frags);
}
#endif
static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
{
/* wmb makes sure that the BDs data is updated before updating the
* producer, otherwise FW may read old data from the BDs.
*/
wmb();
barrier();
writel(txq->tx_db.raw, txq->doorbell_addr);
/* Fence required to flush the write combined buffer, since another
* CPU may write to the same doorbell address and data may be lost
* due to relaxed order nature of write combined bar.
*/
wmb();
}
static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
struct sw_rx_data *metadata, u16 padding, u16 length)
{
struct qede_tx_queue *txq = fp->xdp_tx;
struct eth_tx_1st_bd *first_bd;
u16 idx = txq->sw_tx_prod;
u16 val;
if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
txq->stopped_cnt++;
return -ENOMEM;
}
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
memset(first_bd, 0, sizeof(*first_bd));
first_bd->data.bd_flags.bitfields =
BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
first_bd->data.bitfields |= cpu_to_le16(val);
first_bd->data.nbds = 1;
/* We can safely ignore the offset, as it's 0 for XDP */
BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
/* Synchronize the buffer back to device, as program [probably]
* has changed it.
*/
dma_sync_single_for_device(&edev->pdev->dev,
metadata->mapping + padding,
length, PCI_DMA_TODEVICE);
txq->sw_tx_ring.xdp[idx].page = metadata->data;
txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
/* Mark the fastpath for future XDP doorbell */
fp->xdp_xmit = 1;
return 0;
}
int qede_txq_has_work(struct qede_tx_queue *txq)
{
u16 hw_bd_cons;
/* Tell compiler that consumer and producer can change */
barrier();
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
return 0;
return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
}
static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
{
u16 hw_bd_cons, idx;
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
barrier();
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
qed_chain_consume(&txq->tx_pbl);
idx = txq->sw_tx_cons;
dma_unmap_page(&edev->pdev->dev,
txq->sw_tx_ring.xdp[idx].mapping,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(txq->sw_tx_ring.xdp[idx].page);
txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
txq->xmit_pkts++;
}
}
static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
{
struct netdev_queue *netdev_txq;
u16 hw_bd_cons;
unsigned int pkts_compl = 0, bytes_compl = 0;
int rc;
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
barrier();
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
int len = 0;
rc = qede_free_tx_pkt(edev, txq, &len);
if (rc) {
DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
hw_bd_cons,
qed_chain_get_cons_idx(&txq->tx_pbl));
break;
}
bytes_compl += len;
pkts_compl++;
txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
txq->xmit_pkts++;
}
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
/* Need to make the tx_bd_cons update visible to start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that
* start_xmit() will miss it and cause the queue to be stopped
* forever.
* On the other hand we need an rmb() here to ensure the proper
* ordering of bit testing in the following
* netif_tx_queue_stopped(txq) call.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
/* Taking tx_lock is needed to prevent reenabling the queue
* while it's empty. This could have happen if rx_action() gets
* suspended in qede_tx_int() after the condition before
* netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
*
* stops the queue->sees fresh tx_bd_cons->releases the queue->
* sends some packets consuming the whole queue again->
* stops the queue
*/
__netif_tx_lock(netdev_txq, smp_processor_id());
if ((netif_tx_queue_stopped(netdev_txq)) &&
(edev->state == QEDE_STATE_OPEN) &&
(qed_chain_get_elem_left(&txq->tx_pbl)
>= (MAX_SKB_FRAGS + 1))) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
"Wake queue was called\n");
}
__netif_tx_unlock(netdev_txq);
}
return 0;
}
bool qede_has_rx_work(struct qede_rx_queue *rxq)
{
u16 hw_comp_cons, sw_comp_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
return hw_comp_cons != sw_comp_cons;
}
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
qed_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
}
/* This function reuses the buffer(from an offset) from
* consumer index to producer index in the bd ring
*/
static inline void qede_reuse_page(struct qede_rx_queue *rxq,
struct sw_rx_data *curr_cons)
{
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
struct sw_rx_data *curr_prod;
dma_addr_t new_mapping;
curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
*curr_prod = *curr_cons;
new_mapping = curr_prod->mapping + curr_prod->page_offset;
rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
rxq->rx_headroom);
rxq->sw_rx_prod++;
curr_cons->data = NULL;
}
/* In case of allocation failures reuse buffers
* from consumer index to produce buffers for firmware
*/
void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
{
struct sw_rx_data *curr_cons;
for (; count > 0; count--) {
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
qede_reuse_page(rxq, curr_cons);
qede_rx_bd_ring_consume(rxq);
}
}
static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
struct sw_rx_data *curr_cons)
{
/* Move to the next segment in the page */
curr_cons->page_offset += rxq->rx_buf_seg_size;
if (curr_cons->page_offset == PAGE_SIZE) {
if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
/* Since we failed to allocate new buffer
* current buffer can be used again.
*/
curr_cons->page_offset -= rxq->rx_buf_seg_size;
return -ENOMEM;
}
dma_unmap_page(rxq->dev, curr_cons->mapping,
PAGE_SIZE, rxq->data_direction);
} else {
/* Increment refcount of the page as we don't want
* network stack to take the ownership of the page
* which can be recycled multiple times by the driver.
*/
page_ref_inc(curr_cons->data);
qede_reuse_page(rxq, curr_cons);
}
return 0;
}
void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
{
u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = {0};
/* Update producers */
rx_prods.bd_prod = cpu_to_le16(bd_prod);
rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(u32 *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
mmiowb();
}
static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
{
enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
enum rss_hash_type htype;
u32 hash = 0;
htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if (htype) {
hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
(htype == RSS_HASH_TYPE_IPV6)) ?
PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
hash = le32_to_cpu(rss_hash);
}
skb_set_hash(skb, hash, hash_type);
}
static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
{
skb_checksum_none_assert(skb);
if (csum_flag & QEDE_CSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
skb->csum_level = 1;
skb->encapsulation = 1;
}
}
static inline void qede_skb_receive(struct qede_dev *edev,
struct qede_fastpath *fp,
struct qede_rx_queue *rxq,
struct sk_buff *skb, u16 vlan_tag)
{
if (vlan_tag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
napi_gro_receive(&fp->napi, skb);
}
static void qede_set_gro_params(struct qede_dev *edev,
struct sk_buff *skb,
struct eth_fast_path_rx_tpa_start_cqe *cqe)
{
u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
else
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
cqe->header_len;
}
static int qede_fill_frag_skb(struct qede_dev *edev,
struct qede_rx_queue *rxq,
u8 tpa_agg_index, u16 len_on_bd)
{
struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
NUM_RX_BDS_MAX];
struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
struct sk_buff *skb = tpa_info->skb;
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
goto out;
/* Add one frag and update the appropriate fields in the skb */
skb_fill_page_desc(skb, tpa_info->frag_id++,
current_bd->data,
current_bd->page_offset + rxq->rx_headroom,
len_on_bd);
if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
/* Incr page ref count to reuse on allocation failure
* so that it doesn't get freed while freeing SKB.
*/
page_ref_inc(current_bd->data);
goto out;
}
qede_rx_bd_ring_consume(rxq);
skb->data_len += len_on_bd;
skb->truesize += rxq->rx_buf_seg_size;
skb->len += len_on_bd;
return 0;
out:
tpa_info->state = QEDE_AGG_STATE_ERROR;
qede_recycle_rx_bd_ring(rxq, 1);
return -ENOMEM;
}
static bool qede_tunn_exist(u16 flag)
{
return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
}
static u8 qede_check_tunn_csum(u16 flag)
{
u16 csum_flag = 0;
u8 tcsum = 0;
if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return QEDE_CSUM_UNNECESSARY | tcsum;
}
static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue *rxq,
struct sw_rx_data *bd, u16 len, u16 pad)
{
struct sk_buff *skb;
void *buf;
buf = page_address(bd->data) + bd->page_offset;
skb = build_skb(buf, rxq->rx_buf_seg_size);
skb_reserve(skb, pad);
skb_put(skb, len);
return skb;
}
static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct sw_rx_data *bd, u16 len, u16 pad,
bool alloc_skb)
{
struct sk_buff *skb;
skb = qede_build_skb(rxq, bd, len, pad);
bd->page_offset += rxq->rx_buf_seg_size;
if (bd->page_offset == PAGE_SIZE) {
if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
DP_NOTICE(edev,
"Failed to allocate RX buffer for tpa start\n");
bd->page_offset -= rxq->rx_buf_seg_size;
page_ref_inc(bd->data);
dev_kfree_skb_any(skb);
return NULL;
}
} else {
page_ref_inc(bd->data);
qede_reuse_page(rxq, bd);
}
/* We've consumed the first BD and prepared an SKB */
qede_rx_bd_ring_consume(rxq);
return skb;
}
static struct sk_buff *
qede_rx_build_skb(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct sw_rx_data *bd, u16 len, u16 pad)
{
struct sk_buff *skb = NULL;
/* For smaller frames still need to allocate skb, memcpy
* data and benefit in reusing the page segment instead of
* un-mapping it.
*/
if ((len + pad <= edev->rx_copybreak)) {
unsigned int offset = bd->page_offset + pad;
skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, pad);
memcpy(skb_put(skb, len),
page_address(bd->data) + offset, len);
qede_reuse_page(rxq, bd);
goto out;
}
skb = qede_build_skb(rxq, bd, len, pad);
if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
/* Incr page ref count to reuse on allocation failure so
* that it doesn't get freed while freeing SKB [as its
* already mapped there].
*/
page_ref_inc(bd->data);
dev_kfree_skb_any(skb);
return NULL;
}
out:
/* We've consumed the first BD and prepared an SKB */
qede_rx_bd_ring_consume(rxq);
return skb;
}
static void qede_tpa_start(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_start_cqe *cqe)
{
struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
struct sw_rx_data *sw_rx_data_cons;
u16 pad;
sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
pad = cqe->placement_offset + rxq->rx_headroom;
tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
le16_to_cpu(cqe->len_on_first_bd),
pad, false);
tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
if (unlikely(!tpa_info->skb)) {
DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
/* Consume from ring but do not produce since
* this might be used by FW still, it will be re-used
* at TPA end.
*/
tpa_info->tpa_start_fail = true;
qede_rx_bd_ring_consume(rxq);
tpa_info->state = QEDE_AGG_STATE_ERROR;
goto cons_buf;
}
tpa_info->frag_id = 0;
tpa_info->state = QEDE_AGG_STATE_START;
if ((le16_to_cpu(cqe->pars_flags.flags) >>
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
else
tpa_info->vlan_tag = 0;
qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
/* This is needed in order to enable forwarding support */
qede_set_gro_params(edev, tpa_info->skb, cqe);
cons_buf: /* We still need to handle bd_len_list to consume buffers */
if (likely(cqe->ext_bd_len_list[0]))
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->ext_bd_len_list[0]));
if (unlikely(cqe->ext_bd_len_list[1])) {
DP_ERR(edev,
"Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
tpa_info->state = QEDE_AGG_STATE_ERROR;
}
}
#ifdef CONFIG_INET
static void qede_gro_ip_csum(struct sk_buff *skb)
{
const struct iphdr *iph = ip_hdr(skb);
struct tcphdr *th;
skb_set_transport_header(skb, sizeof(struct iphdr));
th = tcp_hdr(skb);
th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
iph->saddr, iph->daddr, 0);
tcp_gro_complete(skb);
}
static void qede_gro_ipv6_csum(struct sk_buff *skb)
{
struct ipv6hdr *iph = ipv6_hdr(skb);
struct tcphdr *th;
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
th = tcp_hdr(skb);
th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
&iph->saddr, &iph->daddr, 0);
tcp_gro_complete(skb);
}
#endif
static void qede_gro_receive(struct qede_dev *edev,
struct qede_fastpath *fp,
struct sk_buff *skb,
u16 vlan_tag)
{
/* FW can send a single MTU sized packet from gro flow
* due to aggregation timeout/last segment etc. which
* is not expected to be a gro packet. If a skb has zero
* frags then simply push it in the stack as non gso skb.
*/
if (unlikely(!skb->data_len)) {
skb_shinfo(skb)->gso_type = 0;
skb_shinfo(skb)->gso_size = 0;
goto send_skb;
}
#ifdef CONFIG_INET
if (skb_shinfo(skb)->gso_size) {
skb_reset_network_header(skb);
switch (skb->protocol) {
case htons(ETH_P_IP):
qede_gro_ip_csum(skb);
break;
case htons(ETH_P_IPV6):
qede_gro_ipv6_csum(skb);
break;
default:
DP_ERR(edev,
"Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
ntohs(skb->protocol));
}
}
#endif
send_skb:
skb_record_rx_queue(skb, fp->rxq->rxq_id);
qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
}
static inline void qede_tpa_cont(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
int i;
for (i = 0; cqe->len_list[i]; i++)
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->len_list[i]));
if (unlikely(i > 1))
DP_ERR(edev,
"Strange - TPA cont with more than a single len_list entry\n");
}
static int qede_tpa_end(struct qede_dev *edev,
struct qede_fastpath *fp,
struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
struct qede_rx_queue *rxq = fp->rxq;
struct qede_agg_info *tpa_info;
struct sk_buff *skb;
int i;
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
skb = tpa_info->skb;
if (tpa_info->buffer.page_offset == PAGE_SIZE)
dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
PAGE_SIZE, rxq->data_direction);
for (i = 0; cqe->len_list[i]; i++)
qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
le16_to_cpu(cqe->len_list[i]));
if (unlikely(i > 1))
DP_ERR(edev,
"Strange - TPA emd with more than a single len_list entry\n");
if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
goto err;
/* Sanity */
if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
DP_ERR(edev,
"Strange - TPA had %02x BDs, but SKB has only %d frags\n",
cqe->num_of_bds, tpa_info->frag_id);
if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
DP_ERR(edev,
"Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
le16_to_cpu(cqe->total_packet_len), skb->len);
/* Finalize the SKB */
skb->protocol = eth_type_trans(skb, edev->ndev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
* to skb_shinfo(skb)->gso_segs
*/
NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
tpa_info->state = QEDE_AGG_STATE_NONE;
return 1;
err:
tpa_info->state = QEDE_AGG_STATE_NONE;
if (tpa_info->tpa_start_fail) {
qede_reuse_page(rxq, &tpa_info->buffer);
tpa_info->tpa_start_fail = false;
}
dev_kfree_skb_any(tpa_info->skb);
tpa_info->skb = NULL;
return 0;
}
static u8 qede_check_notunn_csum(u16 flag)
{
u16 csum_flag = 0;
u8 csum = 0;
if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
csum = QEDE_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return csum;
}
static u8 qede_check_csum(u16 flag)
{
if (!qede_tunn_exist(flag))
return qede_check_notunn_csum(flag);
else
return qede_check_tunn_csum(flag);
}
static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
u16 flag)
{
u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
(flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
return true;
return false;
}
/* Return true iff packet is to be passed to stack */
static bool qede_rx_xdp(struct qede_dev *edev,
struct qede_fastpath *fp,
struct qede_rx_queue *rxq,
struct bpf_prog *prog,
struct sw_rx_data *bd,
struct eth_fast_path_rx_reg_cqe *cqe,
u16 *data_offset, u16 *len)
{
struct xdp_buff xdp;
enum xdp_action act;
xdp.data_hard_start = page_address(bd->data);
xdp.data = xdp.data_hard_start + *data_offset;
xdp_set_data_meta_invalid(&xdp);
xdp.data_end = xdp.data + *len;
xdp.rxq = &rxq->xdp_rxq;
/* Queues always have a full reset currently, so for the time
* being until there's atomic program replace just mark read
* side for map helpers.
*/
rcu_read_lock();
act = bpf_prog_run_xdp(prog, &xdp);
rcu_read_unlock();
/* Recalculate, as XDP might have changed the headers */
*data_offset = xdp.data - xdp.data_hard_start;
*len = xdp.data_end - xdp.data;
if (act == XDP_PASS)
return true;
/* Count number of packets not to be passed to stack */
rxq->xdp_no_pass++;
switch (act) {
case XDP_TX:
/* We need the replacement buffer before transmit. */
if (qede_alloc_rx_buffer(rxq, true)) {
qede_recycle_rx_bd_ring(rxq, 1);
trace_xdp_exception(edev->ndev, prog, act);
return false;
}
/* Now if there's a transmission problem, we'd still have to
* throw current buffer, as replacement was already allocated.
*/
if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
dma_unmap_page(rxq->dev, bd->mapping,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(bd->data);
trace_xdp_exception(edev->ndev, prog, act);
}
/* Regardless, we've consumed an Rx BD */
qede_rx_bd_ring_consume(rxq);
return false;
default:
bpf_warn_invalid_xdp_action(act);
case XDP_ABORTED:
trace_xdp_exception(edev->ndev, prog, act);
case XDP_DROP:
qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
}
return false;
}
static int qede_rx_build_jumbo(struct qede_dev *edev,
struct qede_rx_queue *rxq,
struct sk_buff *skb,
struct eth_fast_path_rx_reg_cqe *cqe,
u16 first_bd_len)
{
u16 pkt_len = le16_to_cpu(cqe->pkt_len);
struct sw_rx_data *bd;
u16 bd_cons_idx;
u8 num_frags;
pkt_len -= first_bd_len;
/* We've already used one BD for the SKB. Now take care of the rest */
for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
pkt_len;
if (unlikely(!cur_size)) {
DP_ERR(edev,
"Still got %d BDs for mapping jumbo, but length became 0\n",
num_frags);
goto out;
}
/* We need a replacement buffer for each BD */
if (unlikely(qede_alloc_rx_buffer(rxq, true)))
goto out;
/* Now that we've allocated the replacement buffer,
* we can safely consume the next BD and map it to the SKB.
*/
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
bd = &rxq->sw_rx_ring[bd_cons_idx];
qede_rx_bd_ring_consume(rxq);
dma_unmap_page(rxq->dev, bd->mapping,
PAGE_SIZE, DMA_FROM_DEVICE);
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
bd->data, rxq->rx_headroom, cur_size);
skb->truesize += PAGE_SIZE;
skb->data_len += cur_size;
skb->len += cur_size;
pkt_len -= cur_size;
}
if (unlikely(pkt_len))
DP_ERR(edev,
"Mapped all BDs of jumbo, but still have %d bytes\n",
pkt_len);
out:
return num_frags;
}
static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
struct qede_fastpath *fp,
struct qede_rx_queue *rxq,
union eth_rx_cqe *cqe,
enum eth_rx_cqe_type type)
{
switch (type) {
case ETH_RX_CQE_TYPE_TPA_START:
qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
return 0;
case ETH_RX_CQE_TYPE_TPA_CONT:
qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
return 0;
case ETH_RX_CQE_TYPE_TPA_END:
return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
default:
return 0;
}
}
static int qede_rx_process_cqe(struct qede_dev *edev,
struct qede_fastpath *fp,
struct qede_rx_queue *rxq)
{
struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
struct eth_fast_path_rx_reg_cqe *fp_cqe;
u16 len, pad, bd_cons_idx, parse_flag;
enum eth_rx_cqe_type cqe_type;
union eth_rx_cqe *cqe;
struct sw_rx_data *bd;
struct sk_buff *skb;
__le16 flags;
u8 csum_flag;
/* Get the CQE from the completion ring */
cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
/* Process an unlikely slowpath event */
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
struct eth_slow_path_rx_cqe *sp_cqe;
sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
return 0;
}
/* Handle TPA cqes */
if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
/* Get the data from the SW ring; Consume it only after it's evident
* we wouldn't recycle it.
*/
bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
bd = &rxq->sw_rx_ring[bd_cons_idx];
fp_cqe = &cqe->fast_path_regular;
len = le16_to_cpu(fp_cqe->len_on_first_bd);
pad = fp_cqe->placement_offset + rxq->rx_headroom;
/* Run eBPF program if one is attached */
if (xdp_prog)
if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
&pad, &len))
return 0;
/* If this is an error packet then drop it */
flags = cqe->fast_path_regular.pars_flags.flags;
parse_flag = le16_to_cpu(flags);
csum_flag = qede_check_csum(parse_flag);
if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
rxq->rx_ip_frags++;
else
rxq->rx_hw_errors++;
}
/* Basic validation passed; Need to prepare an SKB. This would also
* guarantee to finally consume the first BD upon success.
*/
skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
if (!skb) {
rxq->rx_alloc_errors++;
qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
return 0;
}
/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
* by a single cqe.
*/
if (fp_cqe->bd_num > 1) {
u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
fp_cqe, len);
if (unlikely(unmapped_frags > 0)) {
qede_recycle_rx_bd_ring(rxq, unmapped_frags);
dev_kfree_skb_any(skb);
return 0;
}
}
/* The SKB contains all the data. Now prepare meta-magic */
skb->protocol = eth_type_trans(skb, edev->ndev);
qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
qede_set_skb_csum(skb, csum_flag);
skb_record_rx_queue(skb, rxq->rxq_id);
qede_ptp_record_rx_ts(edev, cqe, skb);
/* SKB is prepared - pass it to stack */
qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
return 1;
}
static int qede_rx_int(struct qede_fastpath *fp, int budget)
{
struct qede_rx_queue *rxq = fp->rxq;
struct qede_dev *edev = fp->edev;
int work_done = 0, rcv_pkts = 0;
u16 hw_comp_cons, sw_comp_cons;
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
* read before it is written by FW, then FW writes CQE and SB, and then
* the CPU reads the hw_comp_cons, it will use an old CQE.
*/
rmb();
/* Loop to complete all indicated BDs */
while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
qed_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
work_done++;
}
rxq->rcv_pkts += rcv_pkts;
/* Allocate replacement buffers */
while (rxq->num_rx_buffers - rxq->filled_buffers)
if (qede_alloc_rx_buffer(rxq, false))
break;
/* Update producers */
qede_update_rx_prod(edev, rxq);
return work_done;
}
static bool qede_poll_is_more_work(struct qede_fastpath *fp)
{
qed_sb_update_sb_idx(fp->sb_info);
/* *_has_*_work() reads the status block, thus we need to ensure that
* status block indices have been actually read (qed_sb_update_sb_idx)
* prior to this check (*_has_*_work) so that we won't write the
* "newer" value of the status block to HW (if there was a DMA right
* after qede_has_rx_work and if there is no rmb, the memory reading
* (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
* In this case there will never be another interrupt until there is
* another update of the status block, while there is still unhandled
* work.
*/
rmb();
if (likely(fp->type & QEDE_FASTPATH_RX))
if (qede_has_rx_work(fp->rxq))
return true;
if (fp->type & QEDE_FASTPATH_XDP)
if (qede_txq_has_work(fp->xdp_tx))
return true;
if (likely(fp->type & QEDE_FASTPATH_TX))
if (qede_txq_has_work(fp->txq))
return true;
return false;
}
/*********************
* NDO & API related *
*********************/
int qede_poll(struct napi_struct *napi, int budget)
{
struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
napi);
struct qede_dev *edev = fp->edev;
int rx_work_done = 0;
if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
qede_tx_int(edev, fp->txq);
if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
qede_xdp_tx_int(edev, fp->xdp_tx);
rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
qede_has_rx_work(fp->rxq)) ?
qede_rx_int(fp, budget) : 0;
if (rx_work_done < budget) {
if (!qede_poll_is_more_work(fp)) {
napi_complete_done(napi, rx_work_done);
/* Update and reenable interrupts */
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
} else {
rx_work_done = budget;
}
}
if (fp->xdp_xmit) {
u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
fp->xdp_xmit = 0;
fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
qede_update_tx_producer(fp->xdp_tx);
}
return rx_work_done;
}
irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
{
struct qede_fastpath *fp = fp_cookie;
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
napi_schedule_irqoff(&fp->napi);
return IRQ_HANDLED;
}
/* Main transmit function */
netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
struct netdev_queue *netdev_txq;
struct qede_tx_queue *txq;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_2nd_bd *second_bd = NULL;
struct eth_tx_3rd_bd *third_bd = NULL;
struct eth_tx_bd *tx_data_bd = NULL;
u16 txq_index, val = 0;
u8 nbd = 0;
dma_addr_t mapping;
int rc, frag_idx = 0, ipv6_ext = 0;
u8 xmit_type;
u16 idx;
u16 hlen;
bool data_split = false;
/* Get tx-queue context and netdev index */
txq_index = skb_get_queue_mapping(skb);
WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
netdev_txq = netdev_get_tx_queue(ndev, txq_index);
WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
xmit_type = qede_xmit_type(skb, &ipv6_ext);
#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
if (qede_pkt_req_lin(skb, xmit_type)) {
if (skb_linearize(skb)) {
DP_NOTICE(edev,
"SKB linearization failed - silently dropping this SKB\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
#endif
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = txq->sw_tx_prod;
txq->sw_tx_ring.skbs[idx].skb = skb;
first_bd = (struct eth_tx_1st_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(first_bd, 0, sizeof(*first_bd));
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
qede_ptp_tx_ts(edev, skb);
/* Map skb linear data for DMA and set in the first BD */
mapping = dma_map_single(txq->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(txq->dev, mapping))) {
DP_NOTICE(edev, "SKB mapping failed\n");
qede_free_failed_tx_pkt(txq, first_bd, 0, false);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
nbd++;
BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
/* In case there is IPv6 with extension headers or LSO we need 2nd and
* 3rd BDs.
*/
if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
second_bd = (struct eth_tx_2nd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(second_bd, 0, sizeof(*second_bd));
nbd++;
third_bd = (struct eth_tx_3rd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
nbd++;
/* We need to fill in additional data in second_bd... */
tx_data_bd = (struct eth_tx_bd *)second_bd;
}
if (skb_vlan_tag_present(skb)) {
first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Fill the parsing flags & params according to the requested offload */
if (xmit_type & XMIT_L4_CSUM) {
/* We don't re-calculate IP checksum as it is already done by
* the upper stack
*/
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
if (xmit_type & XMIT_ENC) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
}
/* Legacy FW had flipped behavior in regard to this bit -
* I.e., needed to set to prevent FW from touching encapsulated
* packets when it didn't need to.
*/
if (unlikely(txq->is_legacy))
val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
/* If the packet is IPv6 with extension header, indicate that
* to FW and pass few params, since the device cracker doesn't
* support parsing IPv6 with extension header/s.
*/
if (unlikely(ipv6_ext))
qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
}
if (xmit_type & XMIT_LSO) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
third_bd->data.lso_mss =
cpu_to_le16(skb_shinfo(skb)->gso_size);
if (unlikely(xmit_type & XMIT_ENC)) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
first_bd->data.bd_flags.bitfields |= 1 << tmp;
}
hlen = qede_get_skb_hlen(skb, true);
} else {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
hlen = qede_get_skb_hlen(skb, false);
}
/* @@@TBD - if will not be removed need to check */
third_bd->data.bitfields |=
cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
/* Make life easier for FW guys who can't deal with header and
* data on same BD. If we need to split, use the second bd...
*/
if (unlikely(skb_headlen(skb) > hlen)) {
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"TSO split header size is %d (%x:%x)\n",
first_bd->nbytes, first_bd->addr.hi,
first_bd->addr.lo);
mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
le32_to_cpu(first_bd->addr.lo)) +
hlen;
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
le16_to_cpu(first_bd->nbytes) -
hlen);
/* this marks the BD as one that has no
* individual mapping
*/
txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
first_bd->nbytes = cpu_to_le16(hlen);
tx_data_bd = (struct eth_tx_bd *)third_bd;
data_split = true;
}
} else {
val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
}
first_bd->data.bitfields = cpu_to_le16(val);
/* Handle fragmented skb */
/* special handle for frags inside 2nd and 3rd bds.. */
while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
rc = map_frag_to_bd(txq,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
if (tx_data_bd == (struct eth_tx_bd *)second_bd)
tx_data_bd = (struct eth_tx_bd *)third_bd;
else
tx_data_bd = NULL;
frag_idx++;
}
/* map last frags into 4th, 5th .... */
for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
rc = map_frag_to_bd(txq,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
qede_update_tx_producer(txq);
return NETDEV_TX_OK;
}
}
/* update the first BD with the actual num BDs */
first_bd->data.nbds = nbd;
netdev_tx_sent_queue(netdev_txq, skb->len);
skb_tx_timestamp(skb);
/* Advance packet producer only before sending the packet since mapping
* of pages may fail.
*/
txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
/* 'next page' entries are counted in the producer value */
txq->tx_db.data.bd_prod =
cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
qede_update_tx_producer(txq);
if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
< (MAX_SKB_FRAGS + 1))) {
if (skb->xmit_more)
qede_update_tx_producer(txq);
netif_tx_stop_queue(netdev_txq);
txq->stopped_cnt++;
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Stop queue was called\n");
/* paired memory barrier is in qede_tx_int(), we have to keep
* ordering of set_bit() in netif_tx_stop_queue() and read of
* fp->bd_tx_cons
*/
smp_mb();
if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
(MAX_SKB_FRAGS + 1)) &&
(edev->state == QEDE_STATE_OPEN)) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Wake queue was called\n");
}
}
return NETDEV_TX_OK;
}
/* 8B udp header + 8B base tunnel header + 32B option length */
#define QEDE_MAX_TUN_HDR_LEN 48
netdev_features_t qede_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
if (skb->encapsulation) {
u8 l4_proto = 0;
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
l4_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
l4_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
return features;
}
/* Disable offloads for geneve tunnels, as HW can't parse
* the geneve header which has option length greater than 32b
* and disable offloads for the ports which are not offloaded.
*/
if (l4_proto == IPPROTO_UDP) {
struct qede_dev *edev = netdev_priv(dev);
u16 hdrlen, vxln_port, gnv_port;
hdrlen = QEDE_MAX_TUN_HDR_LEN;
vxln_port = edev->vxlan_dst_port;
gnv_port = edev->geneve_dst_port;
if ((skb_inner_mac_header(skb) -
skb_transport_header(skb)) > hdrlen ||
(ntohs(udp_hdr(skb)->dest) != vxln_port &&
ntohs(udp_hdr(skb)->dest) != gnv_port))
return features & ~(NETIF_F_CSUM_MASK |
NETIF_F_GSO_MASK);
}
}
return features;
}