561 lines
14 KiB
C
561 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* page.c - buffer/page management specific to NILFS
|
|
*
|
|
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
|
|
*
|
|
* Written by Ryusuke Konishi and Seiji Kihara.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/gfp.h>
|
|
#include "nilfs.h"
|
|
#include "page.h"
|
|
#include "mdt.h"
|
|
|
|
|
|
#define NILFS_BUFFER_INHERENT_BITS \
|
|
(BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \
|
|
BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
|
|
|
|
static struct buffer_head *
|
|
__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
|
|
int blkbits, unsigned long b_state)
|
|
|
|
{
|
|
unsigned long first_block;
|
|
struct buffer_head *bh;
|
|
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, 1 << blkbits, b_state);
|
|
|
|
first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
|
|
bh = nilfs_page_get_nth_block(page, block - first_block);
|
|
|
|
touch_buffer(bh);
|
|
wait_on_buffer(bh);
|
|
return bh;
|
|
}
|
|
|
|
struct buffer_head *nilfs_grab_buffer(struct inode *inode,
|
|
struct address_space *mapping,
|
|
unsigned long blkoff,
|
|
unsigned long b_state)
|
|
{
|
|
int blkbits = inode->i_blkbits;
|
|
pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
|
|
struct page *page;
|
|
struct buffer_head *bh;
|
|
|
|
page = grab_cache_page(mapping, index);
|
|
if (unlikely(!page))
|
|
return NULL;
|
|
|
|
bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
|
|
if (unlikely(!bh)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
return bh;
|
|
}
|
|
|
|
/**
|
|
* nilfs_forget_buffer - discard dirty state
|
|
* @inode: owner inode of the buffer
|
|
* @bh: buffer head of the buffer to be discarded
|
|
*/
|
|
void nilfs_forget_buffer(struct buffer_head *bh)
|
|
{
|
|
struct page *page = bh->b_page;
|
|
const unsigned long clear_bits =
|
|
(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
|
|
BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
|
|
BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
|
|
|
|
lock_buffer(bh);
|
|
set_mask_bits(&bh->b_state, clear_bits, 0);
|
|
if (nilfs_page_buffers_clean(page))
|
|
__nilfs_clear_page_dirty(page);
|
|
|
|
bh->b_blocknr = -1;
|
|
ClearPageUptodate(page);
|
|
ClearPageMappedToDisk(page);
|
|
unlock_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_buffer -- copy buffer data and flags
|
|
* @dbh: destination buffer
|
|
* @sbh: source buffer
|
|
*/
|
|
void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
|
|
{
|
|
void *kaddr0, *kaddr1;
|
|
unsigned long bits;
|
|
struct page *spage = sbh->b_page, *dpage = dbh->b_page;
|
|
struct buffer_head *bh;
|
|
|
|
kaddr0 = kmap_atomic(spage);
|
|
kaddr1 = kmap_atomic(dpage);
|
|
memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
|
|
kunmap_atomic(kaddr1);
|
|
kunmap_atomic(kaddr0);
|
|
|
|
dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
|
|
dbh->b_blocknr = sbh->b_blocknr;
|
|
dbh->b_bdev = sbh->b_bdev;
|
|
|
|
bh = dbh;
|
|
bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
|
|
while ((bh = bh->b_this_page) != dbh) {
|
|
lock_buffer(bh);
|
|
bits &= bh->b_state;
|
|
unlock_buffer(bh);
|
|
}
|
|
if (bits & BIT(BH_Uptodate))
|
|
SetPageUptodate(dpage);
|
|
else
|
|
ClearPageUptodate(dpage);
|
|
if (bits & BIT(BH_Mapped))
|
|
SetPageMappedToDisk(dpage);
|
|
else
|
|
ClearPageMappedToDisk(dpage);
|
|
}
|
|
|
|
/**
|
|
* nilfs_page_buffers_clean - check if a page has dirty buffers or not.
|
|
* @page: page to be checked
|
|
*
|
|
* nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
|
|
* Otherwise, it returns non-zero value.
|
|
*/
|
|
int nilfs_page_buffers_clean(struct page *page)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_dirty(bh))
|
|
return 0;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
return 1;
|
|
}
|
|
|
|
void nilfs_page_bug(struct page *page)
|
|
{
|
|
struct address_space *m;
|
|
unsigned long ino;
|
|
|
|
if (unlikely(!page)) {
|
|
printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
|
|
return;
|
|
}
|
|
|
|
m = page->mapping;
|
|
ino = m ? m->host->i_ino : 0;
|
|
|
|
printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
|
|
"mapping=%p ino=%lu\n",
|
|
page, page_ref_count(page),
|
|
(unsigned long long)page->index, page->flags, m, ino);
|
|
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
int i = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
printk(KERN_CRIT
|
|
" BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
|
|
i++, bh, atomic_read(&bh->b_count),
|
|
(unsigned long long)bh->b_blocknr, bh->b_state);
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_page -- copy the page with buffers
|
|
* @dst: destination page
|
|
* @src: source page
|
|
* @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
|
|
*
|
|
* This function is for both data pages and btnode pages. The dirty flag
|
|
* should be treated by caller. The page must not be under i/o.
|
|
* Both src and dst page must be locked
|
|
*/
|
|
static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
|
|
{
|
|
struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
|
|
unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
|
|
|
|
BUG_ON(PageWriteback(dst));
|
|
|
|
sbh = sbufs = page_buffers(src);
|
|
if (!page_has_buffers(dst))
|
|
create_empty_buffers(dst, sbh->b_size, 0);
|
|
|
|
if (copy_dirty)
|
|
mask |= BIT(BH_Dirty);
|
|
|
|
dbh = dbufs = page_buffers(dst);
|
|
do {
|
|
lock_buffer(sbh);
|
|
lock_buffer(dbh);
|
|
dbh->b_state = sbh->b_state & mask;
|
|
dbh->b_blocknr = sbh->b_blocknr;
|
|
dbh->b_bdev = sbh->b_bdev;
|
|
sbh = sbh->b_this_page;
|
|
dbh = dbh->b_this_page;
|
|
} while (dbh != dbufs);
|
|
|
|
copy_highpage(dst, src);
|
|
|
|
if (PageUptodate(src) && !PageUptodate(dst))
|
|
SetPageUptodate(dst);
|
|
else if (!PageUptodate(src) && PageUptodate(dst))
|
|
ClearPageUptodate(dst);
|
|
if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
|
|
SetPageMappedToDisk(dst);
|
|
else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
|
|
ClearPageMappedToDisk(dst);
|
|
|
|
do {
|
|
unlock_buffer(sbh);
|
|
unlock_buffer(dbh);
|
|
sbh = sbh->b_this_page;
|
|
dbh = dbh->b_this_page;
|
|
} while (dbh != dbufs);
|
|
}
|
|
|
|
int nilfs_copy_dirty_pages(struct address_space *dmap,
|
|
struct address_space *smap)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i;
|
|
pgoff_t index = 0;
|
|
int err = 0;
|
|
|
|
pagevec_init(&pvec);
|
|
repeat:
|
|
if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
|
|
return 0;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i], *dpage;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageDirty(page)))
|
|
NILFS_PAGE_BUG(page, "inconsistent dirty state");
|
|
|
|
dpage = grab_cache_page(dmap, page->index);
|
|
if (unlikely(!dpage)) {
|
|
/* No empty page is added to the page cache */
|
|
err = -ENOMEM;
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
if (unlikely(!page_has_buffers(page)))
|
|
NILFS_PAGE_BUG(page,
|
|
"found empty page in dat page cache");
|
|
|
|
nilfs_copy_page(dpage, page, 1);
|
|
__set_page_dirty_nobuffers(dpage);
|
|
|
|
unlock_page(dpage);
|
|
put_page(dpage);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
if (likely(!err))
|
|
goto repeat;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
|
|
* @dmap: destination page cache
|
|
* @smap: source page cache
|
|
*
|
|
* No pages must be added to the cache during this process.
|
|
* This must be ensured by the caller.
|
|
*/
|
|
void nilfs_copy_back_pages(struct address_space *dmap,
|
|
struct address_space *smap)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i, n;
|
|
pgoff_t index = 0;
|
|
|
|
pagevec_init(&pvec);
|
|
repeat:
|
|
n = pagevec_lookup(&pvec, smap, &index);
|
|
if (!n)
|
|
return;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i], *dpage;
|
|
pgoff_t offset = page->index;
|
|
|
|
lock_page(page);
|
|
dpage = find_lock_page(dmap, offset);
|
|
if (dpage) {
|
|
/* overwrite existing page in the destination cache */
|
|
WARN_ON(PageDirty(dpage));
|
|
nilfs_copy_page(dpage, page, 0);
|
|
unlock_page(dpage);
|
|
put_page(dpage);
|
|
/* Do we not need to remove page from smap here? */
|
|
} else {
|
|
struct page *p;
|
|
|
|
/* move the page to the destination cache */
|
|
xa_lock_irq(&smap->i_pages);
|
|
p = __xa_erase(&smap->i_pages, offset);
|
|
WARN_ON(page != p);
|
|
smap->nrpages--;
|
|
xa_unlock_irq(&smap->i_pages);
|
|
|
|
xa_lock_irq(&dmap->i_pages);
|
|
p = __xa_store(&dmap->i_pages, offset, page, GFP_NOFS);
|
|
if (unlikely(p)) {
|
|
/* Probably -ENOMEM */
|
|
page->mapping = NULL;
|
|
put_page(page);
|
|
} else {
|
|
page->mapping = dmap;
|
|
dmap->nrpages++;
|
|
if (PageDirty(page))
|
|
__xa_set_mark(&dmap->i_pages, offset,
|
|
PAGECACHE_TAG_DIRTY);
|
|
}
|
|
xa_unlock_irq(&dmap->i_pages);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
|
|
goto repeat;
|
|
}
|
|
|
|
/**
|
|
* nilfs_clear_dirty_pages - discard dirty pages in address space
|
|
* @mapping: address space with dirty pages for discarding
|
|
* @silent: suppress [true] or print [false] warning messages
|
|
*/
|
|
void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int i;
|
|
pgoff_t index = 0;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
while (pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
lock_page(page);
|
|
nilfs_clear_dirty_page(page, silent);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nilfs_clear_dirty_page - discard dirty page
|
|
* @page: dirty page that will be discarded
|
|
* @silent: suppress [true] or print [false] warning messages
|
|
*/
|
|
void nilfs_clear_dirty_page(struct page *page, bool silent)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (!silent)
|
|
nilfs_warn(sb, "discard dirty page: offset=%lld, ino=%lu",
|
|
page_offset(page), inode->i_ino);
|
|
|
|
ClearPageUptodate(page);
|
|
ClearPageMappedToDisk(page);
|
|
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
const unsigned long clear_bits =
|
|
(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
|
|
BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
|
|
BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
lock_buffer(bh);
|
|
if (!silent)
|
|
nilfs_warn(sb,
|
|
"discard dirty block: blocknr=%llu, size=%zu",
|
|
(u64)bh->b_blocknr, bh->b_size);
|
|
|
|
set_mask_bits(&bh->b_state, clear_bits, 0);
|
|
unlock_buffer(bh);
|
|
} while (bh = bh->b_this_page, bh != head);
|
|
}
|
|
|
|
__nilfs_clear_page_dirty(page);
|
|
}
|
|
|
|
unsigned int nilfs_page_count_clean_buffers(struct page *page,
|
|
unsigned int from, unsigned int to)
|
|
{
|
|
unsigned int block_start, block_end;
|
|
struct buffer_head *bh, *head;
|
|
unsigned int nc = 0;
|
|
|
|
for (bh = head = page_buffers(page), block_start = 0;
|
|
bh != head || !block_start;
|
|
block_start = block_end, bh = bh->b_this_page) {
|
|
block_end = block_start + bh->b_size;
|
|
if (block_end > from && block_start < to && !buffer_dirty(bh))
|
|
nc++;
|
|
}
|
|
return nc;
|
|
}
|
|
|
|
void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
|
|
{
|
|
mapping->host = inode;
|
|
mapping->flags = 0;
|
|
mapping_set_gfp_mask(mapping, GFP_NOFS);
|
|
mapping->private_data = NULL;
|
|
mapping->a_ops = &empty_aops;
|
|
}
|
|
|
|
/*
|
|
* NILFS2 needs clear_page_dirty() in the following two cases:
|
|
*
|
|
* 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
|
|
* page dirty flags when it copies back pages from the shadow cache
|
|
* (gcdat->{i_mapping,i_btnode_cache}) to its original cache
|
|
* (dat->{i_mapping,i_btnode_cache}).
|
|
*
|
|
* 2) Some B-tree operations like insertion or deletion may dispose buffers
|
|
* in dirty state, and this needs to cancel the dirty state of their pages.
|
|
*/
|
|
int __nilfs_clear_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
if (mapping) {
|
|
xa_lock_irq(&mapping->i_pages);
|
|
if (test_bit(PG_dirty, &page->flags)) {
|
|
__xa_clear_mark(&mapping->i_pages, page_index(page),
|
|
PAGECACHE_TAG_DIRTY);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
return clear_page_dirty_for_io(page);
|
|
}
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
return 0;
|
|
}
|
|
return TestClearPageDirty(page);
|
|
}
|
|
|
|
/**
|
|
* nilfs_find_uncommitted_extent - find extent of uncommitted data
|
|
* @inode: inode
|
|
* @start_blk: start block offset (in)
|
|
* @blkoff: start offset of the found extent (out)
|
|
*
|
|
* This function searches an extent of buffers marked "delayed" which
|
|
* starts from a block offset equal to or larger than @start_blk. If
|
|
* such an extent was found, this will store the start offset in
|
|
* @blkoff and return its length in blocks. Otherwise, zero is
|
|
* returned.
|
|
*/
|
|
unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
|
|
sector_t start_blk,
|
|
sector_t *blkoff)
|
|
{
|
|
unsigned int i;
|
|
pgoff_t index;
|
|
unsigned int nblocks_in_page;
|
|
unsigned long length = 0;
|
|
sector_t b;
|
|
struct pagevec pvec;
|
|
struct page *page;
|
|
|
|
if (inode->i_mapping->nrpages == 0)
|
|
return 0;
|
|
|
|
index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
|
|
nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
repeat:
|
|
pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
|
|
pvec.pages);
|
|
if (pvec.nr == 0)
|
|
return length;
|
|
|
|
if (length > 0 && pvec.pages[0]->index > index)
|
|
goto out;
|
|
|
|
b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
|
|
i = 0;
|
|
do {
|
|
page = pvec.pages[i];
|
|
|
|
lock_page(page);
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (b < start_blk)
|
|
continue;
|
|
if (buffer_delay(bh)) {
|
|
if (length == 0)
|
|
*blkoff = b;
|
|
length++;
|
|
} else if (length > 0) {
|
|
goto out_locked;
|
|
}
|
|
} while (++b, bh = bh->b_this_page, bh != head);
|
|
} else {
|
|
if (length > 0)
|
|
goto out_locked;
|
|
|
|
b += nblocks_in_page;
|
|
}
|
|
unlock_page(page);
|
|
|
|
} while (++i < pagevec_count(&pvec));
|
|
|
|
index = page->index + 1;
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
goto repeat;
|
|
|
|
out_locked:
|
|
unlock_page(page);
|
|
out:
|
|
pagevec_release(&pvec);
|
|
return length;
|
|
}
|