1376 lines
37 KiB
C
1376 lines
37 KiB
C
/*
|
|
* Copyright (c) 2005-2011 Atheros Communications Inc.
|
|
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "core.h"
|
|
#include "htc.h"
|
|
#include "htt.h"
|
|
#include "txrx.h"
|
|
#include "debug.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/log2.h>
|
|
|
|
/* slightly larger than one large A-MPDU */
|
|
#define HTT_RX_RING_SIZE_MIN 128
|
|
|
|
/* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
|
|
#define HTT_RX_RING_SIZE_MAX 2048
|
|
|
|
#define HTT_RX_AVG_FRM_BYTES 1000
|
|
|
|
/* ms, very conservative */
|
|
#define HTT_RX_HOST_LATENCY_MAX_MS 20
|
|
|
|
/* ms, conservative */
|
|
#define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
|
|
|
|
/* when under memory pressure rx ring refill may fail and needs a retry */
|
|
#define HTT_RX_RING_REFILL_RETRY_MS 50
|
|
|
|
|
|
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
|
|
static void ath10k_htt_txrx_compl_task(unsigned long ptr);
|
|
|
|
static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
|
|
{
|
|
int size;
|
|
|
|
/*
|
|
* It is expected that the host CPU will typically be able to
|
|
* service the rx indication from one A-MPDU before the rx
|
|
* indication from the subsequent A-MPDU happens, roughly 1-2 ms
|
|
* later. However, the rx ring should be sized very conservatively,
|
|
* to accomodate the worst reasonable delay before the host CPU
|
|
* services a rx indication interrupt.
|
|
*
|
|
* The rx ring need not be kept full of empty buffers. In theory,
|
|
* the htt host SW can dynamically track the low-water mark in the
|
|
* rx ring, and dynamically adjust the level to which the rx ring
|
|
* is filled with empty buffers, to dynamically meet the desired
|
|
* low-water mark.
|
|
*
|
|
* In contrast, it's difficult to resize the rx ring itself, once
|
|
* it's in use. Thus, the ring itself should be sized very
|
|
* conservatively, while the degree to which the ring is filled
|
|
* with empty buffers should be sized moderately conservatively.
|
|
*/
|
|
|
|
/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
|
|
size =
|
|
htt->max_throughput_mbps +
|
|
1000 /
|
|
(8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
|
|
|
|
if (size < HTT_RX_RING_SIZE_MIN)
|
|
size = HTT_RX_RING_SIZE_MIN;
|
|
|
|
if (size > HTT_RX_RING_SIZE_MAX)
|
|
size = HTT_RX_RING_SIZE_MAX;
|
|
|
|
size = roundup_pow_of_two(size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
|
|
{
|
|
int size;
|
|
|
|
/* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
|
|
size =
|
|
htt->max_throughput_mbps *
|
|
1000 /
|
|
(8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
|
|
|
|
/*
|
|
* Make sure the fill level is at least 1 less than the ring size.
|
|
* Leaving 1 element empty allows the SW to easily distinguish
|
|
* between a full ring vs. an empty ring.
|
|
*/
|
|
if (size >= htt->rx_ring.size)
|
|
size = htt->rx_ring.size - 1;
|
|
|
|
return size;
|
|
}
|
|
|
|
static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct ath10k_skb_cb *cb;
|
|
int i;
|
|
|
|
for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
|
|
skb = htt->rx_ring.netbufs_ring[i];
|
|
cb = ATH10K_SKB_CB(skb);
|
|
dma_unmap_single(htt->ar->dev, cb->paddr,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
htt->rx_ring.fill_cnt = 0;
|
|
}
|
|
|
|
static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
|
|
{
|
|
struct htt_rx_desc *rx_desc;
|
|
struct sk_buff *skb;
|
|
dma_addr_t paddr;
|
|
int ret = 0, idx;
|
|
|
|
idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
|
|
while (num > 0) {
|
|
skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
|
|
if (!skb) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
|
|
skb_pull(skb,
|
|
PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
|
|
skb->data);
|
|
|
|
/* Clear rx_desc attention word before posting to Rx ring */
|
|
rx_desc = (struct htt_rx_desc *)skb->data;
|
|
rx_desc->attention.flags = __cpu_to_le32(0);
|
|
|
|
paddr = dma_map_single(htt->ar->dev, skb->data,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
|
|
dev_kfree_skb_any(skb);
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
ATH10K_SKB_CB(skb)->paddr = paddr;
|
|
htt->rx_ring.netbufs_ring[idx] = skb;
|
|
htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
|
|
htt->rx_ring.fill_cnt++;
|
|
|
|
num--;
|
|
idx++;
|
|
idx &= htt->rx_ring.size_mask;
|
|
}
|
|
|
|
fail:
|
|
*(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
|
|
return ret;
|
|
}
|
|
|
|
static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
|
|
{
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
return __ath10k_htt_rx_ring_fill_n(htt, num);
|
|
}
|
|
|
|
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
|
|
{
|
|
int ret, num_deficit, num_to_fill;
|
|
|
|
/* Refilling the whole RX ring buffer proves to be a bad idea. The
|
|
* reason is RX may take up significant amount of CPU cycles and starve
|
|
* other tasks, e.g. TX on an ethernet device while acting as a bridge
|
|
* with ath10k wlan interface. This ended up with very poor performance
|
|
* once CPU the host system was overwhelmed with RX on ath10k.
|
|
*
|
|
* By limiting the number of refills the replenishing occurs
|
|
* progressively. This in turns makes use of the fact tasklets are
|
|
* processed in FIFO order. This means actual RX processing can starve
|
|
* out refilling. If there's not enough buffers on RX ring FW will not
|
|
* report RX until it is refilled with enough buffers. This
|
|
* automatically balances load wrt to CPU power.
|
|
*
|
|
* This probably comes at a cost of lower maximum throughput but
|
|
* improves the avarage and stability. */
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
|
|
num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
|
|
num_deficit -= num_to_fill;
|
|
ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
|
|
if (ret == -ENOMEM) {
|
|
/*
|
|
* Failed to fill it to the desired level -
|
|
* we'll start a timer and try again next time.
|
|
* As long as enough buffers are left in the ring for
|
|
* another A-MPDU rx, no special recovery is needed.
|
|
*/
|
|
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
|
|
msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
|
|
} else if (num_deficit > 0) {
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
}
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
}
|
|
|
|
static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)arg;
|
|
ath10k_htt_rx_msdu_buff_replenish(htt);
|
|
}
|
|
|
|
void ath10k_htt_rx_detach(struct ath10k_htt *htt)
|
|
{
|
|
int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld;
|
|
|
|
del_timer_sync(&htt->rx_ring.refill_retry_timer);
|
|
tasklet_kill(&htt->rx_replenish_task);
|
|
tasklet_kill(&htt->txrx_compl_task);
|
|
|
|
skb_queue_purge(&htt->tx_compl_q);
|
|
skb_queue_purge(&htt->rx_compl_q);
|
|
|
|
while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) {
|
|
struct sk_buff *skb =
|
|
htt->rx_ring.netbufs_ring[sw_rd_idx];
|
|
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
|
|
|
|
dma_unmap_single(htt->ar->dev, cb->paddr,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]);
|
|
sw_rd_idx++;
|
|
sw_rd_idx &= htt->rx_ring.size_mask;
|
|
}
|
|
|
|
dma_free_coherent(htt->ar->dev,
|
|
(htt->rx_ring.size *
|
|
sizeof(htt->rx_ring.paddrs_ring)),
|
|
htt->rx_ring.paddrs_ring,
|
|
htt->rx_ring.base_paddr);
|
|
|
|
dma_free_coherent(htt->ar->dev,
|
|
sizeof(*htt->rx_ring.alloc_idx.vaddr),
|
|
htt->rx_ring.alloc_idx.vaddr,
|
|
htt->rx_ring.alloc_idx.paddr);
|
|
|
|
kfree(htt->rx_ring.netbufs_ring);
|
|
}
|
|
|
|
static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
|
|
{
|
|
int idx;
|
|
struct sk_buff *msdu;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
if (htt->rx_ring.fill_cnt == 0) {
|
|
ath10k_warn("tried to pop sk_buff from an empty rx ring\n");
|
|
return NULL;
|
|
}
|
|
|
|
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
|
|
msdu = htt->rx_ring.netbufs_ring[idx];
|
|
|
|
idx++;
|
|
idx &= htt->rx_ring.size_mask;
|
|
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
|
|
htt->rx_ring.fill_cnt--;
|
|
|
|
return msdu;
|
|
}
|
|
|
|
static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
|
|
{
|
|
struct sk_buff *next;
|
|
|
|
while (skb) {
|
|
next = skb->next;
|
|
dev_kfree_skb_any(skb);
|
|
skb = next;
|
|
}
|
|
}
|
|
|
|
static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
|
|
u8 **fw_desc, int *fw_desc_len,
|
|
struct sk_buff **head_msdu,
|
|
struct sk_buff **tail_msdu)
|
|
{
|
|
int msdu_len, msdu_chaining = 0;
|
|
struct sk_buff *msdu;
|
|
struct htt_rx_desc *rx_desc;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
if (htt->rx_confused) {
|
|
ath10k_warn("htt is confused. refusing rx\n");
|
|
return 0;
|
|
}
|
|
|
|
msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
|
|
while (msdu) {
|
|
int last_msdu, msdu_len_invalid, msdu_chained;
|
|
|
|
dma_unmap_single(htt->ar->dev,
|
|
ATH10K_SKB_CB(msdu)->paddr,
|
|
msdu->len + skb_tailroom(msdu),
|
|
DMA_FROM_DEVICE);
|
|
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx pop: ",
|
|
msdu->data, msdu->len + skb_tailroom(msdu));
|
|
|
|
rx_desc = (struct htt_rx_desc *)msdu->data;
|
|
|
|
/* FIXME: we must report msdu payload since this is what caller
|
|
* expects now */
|
|
skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
|
|
skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
|
|
|
|
/*
|
|
* Sanity check - confirm the HW is finished filling in the
|
|
* rx data.
|
|
* If the HW and SW are working correctly, then it's guaranteed
|
|
* that the HW's MAC DMA is done before this point in the SW.
|
|
* To prevent the case that we handle a stale Rx descriptor,
|
|
* just assert for now until we have a way to recover.
|
|
*/
|
|
if (!(__le32_to_cpu(rx_desc->attention.flags)
|
|
& RX_ATTENTION_FLAGS_MSDU_DONE)) {
|
|
ath10k_htt_rx_free_msdu_chain(*head_msdu);
|
|
*head_msdu = NULL;
|
|
msdu = NULL;
|
|
ath10k_err("htt rx stopped. cannot recover\n");
|
|
htt->rx_confused = true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy the FW rx descriptor for this MSDU from the rx
|
|
* indication message into the MSDU's netbuf. HL uses the
|
|
* same rx indication message definition as LL, and simply
|
|
* appends new info (fields from the HW rx desc, and the
|
|
* MSDU payload itself). So, the offset into the rx
|
|
* indication message only has to account for the standard
|
|
* offset of the per-MSDU FW rx desc info within the
|
|
* message, and how many bytes of the per-MSDU FW rx desc
|
|
* info have already been consumed. (And the endianness of
|
|
* the host, since for a big-endian host, the rx ind
|
|
* message contents, including the per-MSDU rx desc bytes,
|
|
* were byteswapped during upload.)
|
|
*/
|
|
if (*fw_desc_len > 0) {
|
|
rx_desc->fw_desc.info0 = **fw_desc;
|
|
/*
|
|
* The target is expected to only provide the basic
|
|
* per-MSDU rx descriptors. Just to be sure, verify
|
|
* that the target has not attached extension data
|
|
* (e.g. LRO flow ID).
|
|
*/
|
|
|
|
/* or more, if there's extension data */
|
|
(*fw_desc)++;
|
|
(*fw_desc_len)--;
|
|
} else {
|
|
/*
|
|
* When an oversized AMSDU happened, FW will lost
|
|
* some of MSDU status - in this case, the FW
|
|
* descriptors provided will be less than the
|
|
* actual MSDUs inside this MPDU. Mark the FW
|
|
* descriptors so that it will still deliver to
|
|
* upper stack, if no CRC error for this MPDU.
|
|
*
|
|
* FIX THIS - the FW descriptors are actually for
|
|
* MSDUs in the end of this A-MSDU instead of the
|
|
* beginning.
|
|
*/
|
|
rx_desc->fw_desc.info0 = 0;
|
|
}
|
|
|
|
msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
|
|
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
|
|
RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
|
|
msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
|
|
RX_MSDU_START_INFO0_MSDU_LENGTH);
|
|
msdu_chained = rx_desc->frag_info.ring2_more_count;
|
|
msdu_chaining = msdu_chained;
|
|
|
|
if (msdu_len_invalid)
|
|
msdu_len = 0;
|
|
|
|
skb_trim(msdu, 0);
|
|
skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
|
|
msdu_len -= msdu->len;
|
|
|
|
/* FIXME: Do chained buffers include htt_rx_desc or not? */
|
|
while (msdu_chained--) {
|
|
struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
|
|
|
|
dma_unmap_single(htt->ar->dev,
|
|
ATH10K_SKB_CB(next)->paddr,
|
|
next->len + skb_tailroom(next),
|
|
DMA_FROM_DEVICE);
|
|
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL,
|
|
"htt rx chained: ", next->data,
|
|
next->len + skb_tailroom(next));
|
|
|
|
skb_trim(next, 0);
|
|
skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
|
|
msdu_len -= next->len;
|
|
|
|
msdu->next = next;
|
|
msdu = next;
|
|
}
|
|
|
|
last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
|
|
RX_MSDU_END_INFO0_LAST_MSDU;
|
|
|
|
if (last_msdu) {
|
|
msdu->next = NULL;
|
|
break;
|
|
} else {
|
|
struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
|
|
msdu->next = next;
|
|
msdu = next;
|
|
}
|
|
}
|
|
*tail_msdu = msdu;
|
|
|
|
/*
|
|
* Don't refill the ring yet.
|
|
*
|
|
* First, the elements popped here are still in use - it is not
|
|
* safe to overwrite them until the matching call to
|
|
* mpdu_desc_list_next. Second, for efficiency it is preferable to
|
|
* refill the rx ring with 1 PPDU's worth of rx buffers (something
|
|
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
|
|
* (something like 3 buffers). Consequently, we'll rely on the txrx
|
|
* SW to tell us when it is done pulling all the PPDU's rx buffers
|
|
* out of the rx ring, and then refill it just once.
|
|
*/
|
|
|
|
return msdu_chaining;
|
|
}
|
|
|
|
static void ath10k_htt_rx_replenish_task(unsigned long ptr)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
|
|
ath10k_htt_rx_msdu_buff_replenish(htt);
|
|
}
|
|
|
|
int ath10k_htt_rx_attach(struct ath10k_htt *htt)
|
|
{
|
|
dma_addr_t paddr;
|
|
void *vaddr;
|
|
struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
|
|
|
|
htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
|
|
if (!is_power_of_2(htt->rx_ring.size)) {
|
|
ath10k_warn("htt rx ring size is not power of 2\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
|
|
|
|
/*
|
|
* Set the initial value for the level to which the rx ring
|
|
* should be filled, based on the max throughput and the
|
|
* worst likely latency for the host to fill the rx ring
|
|
* with new buffers. In theory, this fill level can be
|
|
* dynamically adjusted from the initial value set here, to
|
|
* reflect the actual host latency rather than a
|
|
* conservative assumption about the host latency.
|
|
*/
|
|
htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
|
|
|
|
htt->rx_ring.netbufs_ring =
|
|
kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
|
|
GFP_KERNEL);
|
|
if (!htt->rx_ring.netbufs_ring)
|
|
goto err_netbuf;
|
|
|
|
vaddr = dma_alloc_coherent(htt->ar->dev,
|
|
(htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
|
|
&paddr, GFP_DMA);
|
|
if (!vaddr)
|
|
goto err_dma_ring;
|
|
|
|
htt->rx_ring.paddrs_ring = vaddr;
|
|
htt->rx_ring.base_paddr = paddr;
|
|
|
|
vaddr = dma_alloc_coherent(htt->ar->dev,
|
|
sizeof(*htt->rx_ring.alloc_idx.vaddr),
|
|
&paddr, GFP_DMA);
|
|
if (!vaddr)
|
|
goto err_dma_idx;
|
|
|
|
htt->rx_ring.alloc_idx.vaddr = vaddr;
|
|
htt->rx_ring.alloc_idx.paddr = paddr;
|
|
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
|
|
*htt->rx_ring.alloc_idx.vaddr = 0;
|
|
|
|
/* Initialize the Rx refill retry timer */
|
|
setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
|
|
|
|
spin_lock_init(&htt->rx_ring.lock);
|
|
|
|
htt->rx_ring.fill_cnt = 0;
|
|
if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
|
|
goto err_fill_ring;
|
|
|
|
tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
|
|
(unsigned long)htt);
|
|
|
|
skb_queue_head_init(&htt->tx_compl_q);
|
|
skb_queue_head_init(&htt->rx_compl_q);
|
|
|
|
tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
|
|
(unsigned long)htt);
|
|
|
|
ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
|
|
htt->rx_ring.size, htt->rx_ring.fill_level);
|
|
return 0;
|
|
|
|
err_fill_ring:
|
|
ath10k_htt_rx_ring_free(htt);
|
|
dma_free_coherent(htt->ar->dev,
|
|
sizeof(*htt->rx_ring.alloc_idx.vaddr),
|
|
htt->rx_ring.alloc_idx.vaddr,
|
|
htt->rx_ring.alloc_idx.paddr);
|
|
err_dma_idx:
|
|
dma_free_coherent(htt->ar->dev,
|
|
(htt->rx_ring.size *
|
|
sizeof(htt->rx_ring.paddrs_ring)),
|
|
htt->rx_ring.paddrs_ring,
|
|
htt->rx_ring.base_paddr);
|
|
err_dma_ring:
|
|
kfree(htt->rx_ring.netbufs_ring);
|
|
err_netbuf:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
|
|
{
|
|
switch (type) {
|
|
case HTT_RX_MPDU_ENCRYPT_WEP40:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP104:
|
|
return 4;
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
|
|
case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
|
|
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
|
|
return 8;
|
|
case HTT_RX_MPDU_ENCRYPT_NONE:
|
|
return 0;
|
|
}
|
|
|
|
ath10k_warn("unknown encryption type %d\n", type);
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
|
|
{
|
|
switch (type) {
|
|
case HTT_RX_MPDU_ENCRYPT_NONE:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP40:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP104:
|
|
case HTT_RX_MPDU_ENCRYPT_WEP128:
|
|
case HTT_RX_MPDU_ENCRYPT_WAPI:
|
|
return 0;
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
|
|
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
|
|
return 4;
|
|
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
|
|
return 8;
|
|
}
|
|
|
|
ath10k_warn("unknown encryption type %d\n", type);
|
|
return 0;
|
|
}
|
|
|
|
/* Applies for first msdu in chain, before altering it. */
|
|
static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
enum rx_msdu_decap_format fmt;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
|
|
if (fmt == RX_MSDU_DECAP_RAW)
|
|
return (void *)skb->data;
|
|
else
|
|
return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
|
|
}
|
|
|
|
/* This function only applies for first msdu in an msdu chain */
|
|
static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
|
|
{
|
|
if (ieee80211_is_data_qos(hdr->frame_control)) {
|
|
u8 *qc = ieee80211_get_qos_ctl(hdr);
|
|
if (qc[0] & 0x80)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct rfc1042_hdr {
|
|
u8 llc_dsap;
|
|
u8 llc_ssap;
|
|
u8 llc_ctrl;
|
|
u8 snap_oui[3];
|
|
__be16 snap_type;
|
|
} __packed;
|
|
|
|
struct amsdu_subframe_hdr {
|
|
u8 dst[ETH_ALEN];
|
|
u8 src[ETH_ALEN];
|
|
__be16 len;
|
|
} __packed;
|
|
|
|
static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
|
|
{
|
|
/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
|
|
return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
|
|
}
|
|
|
|
static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
|
|
struct htt_rx_info *info)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
struct sk_buff *first;
|
|
struct sk_buff *skb = info->skb;
|
|
enum rx_msdu_decap_format fmt;
|
|
enum htt_rx_mpdu_encrypt_type enctype;
|
|
struct ieee80211_hdr *hdr;
|
|
u8 hdr_buf[64], addr[ETH_ALEN], *qos;
|
|
unsigned int hdr_len;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
|
|
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
|
|
|
|
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(hdr_buf, hdr, hdr_len);
|
|
hdr = (struct ieee80211_hdr *)hdr_buf;
|
|
|
|
first = skb;
|
|
while (skb) {
|
|
void *decap_hdr;
|
|
int len;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
decap_hdr = (void *)rxd->rx_hdr_status;
|
|
|
|
skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
|
|
|
|
/* First frame in an A-MSDU chain has more decapped data. */
|
|
if (skb == first) {
|
|
len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
|
|
len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
|
|
4);
|
|
decap_hdr += len;
|
|
}
|
|
|
|
switch (fmt) {
|
|
case RX_MSDU_DECAP_RAW:
|
|
/* remove trailing FCS */
|
|
skb_trim(skb, skb->len - FCS_LEN);
|
|
break;
|
|
case RX_MSDU_DECAP_NATIVE_WIFI:
|
|
/* pull decapped header and copy DA */
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
|
|
memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
|
|
skb_pull(skb, hdr_len);
|
|
|
|
/* push original 802.11 header */
|
|
hdr = (struct ieee80211_hdr *)hdr_buf;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
|
|
/* original A-MSDU header has the bit set but we're
|
|
* not including A-MSDU subframe header */
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
qos = ieee80211_get_qos_ctl(hdr);
|
|
qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
|
|
|
|
/* original 802.11 header has a different DA */
|
|
memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
|
|
break;
|
|
case RX_MSDU_DECAP_ETHERNET2_DIX:
|
|
/* strip ethernet header and insert decapped 802.11
|
|
* header, amsdu subframe header and rfc1042 header */
|
|
|
|
len = 0;
|
|
len += sizeof(struct rfc1042_hdr);
|
|
len += sizeof(struct amsdu_subframe_hdr);
|
|
|
|
skb_pull(skb, sizeof(struct ethhdr));
|
|
memcpy(skb_push(skb, len), decap_hdr, len);
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
break;
|
|
case RX_MSDU_DECAP_8023_SNAP_LLC:
|
|
/* insert decapped 802.11 header making a singly
|
|
* A-MSDU */
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
break;
|
|
}
|
|
|
|
info->skb = skb;
|
|
info->encrypt_type = enctype;
|
|
skb = skb->next;
|
|
info->skb->next = NULL;
|
|
|
|
if (skb)
|
|
info->amsdu_more = true;
|
|
|
|
ath10k_process_rx(htt->ar, info);
|
|
}
|
|
|
|
/* FIXME: It might be nice to re-assemble the A-MSDU when there's a
|
|
* monitor interface active for sniffing purposes. */
|
|
}
|
|
|
|
static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info)
|
|
{
|
|
struct sk_buff *skb = info->skb;
|
|
struct htt_rx_desc *rxd;
|
|
struct ieee80211_hdr *hdr;
|
|
enum rx_msdu_decap_format fmt;
|
|
enum htt_rx_mpdu_encrypt_type enctype;
|
|
int hdr_len;
|
|
void *rfc1042;
|
|
|
|
/* This shouldn't happen. If it does than it may be a FW bug. */
|
|
if (skb->next) {
|
|
ath10k_warn("htt rx received chained non A-MSDU frame\n");
|
|
ath10k_htt_rx_free_msdu_chain(skb->next);
|
|
skb->next = NULL;
|
|
}
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
|
|
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
|
|
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
|
|
|
|
switch (fmt) {
|
|
case RX_MSDU_DECAP_RAW:
|
|
/* remove trailing FCS */
|
|
skb_trim(skb, skb->len - FCS_LEN);
|
|
break;
|
|
case RX_MSDU_DECAP_NATIVE_WIFI:
|
|
/* Pull decapped header */
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
|
|
skb_pull(skb, hdr_len);
|
|
|
|
/* Push original header */
|
|
hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
break;
|
|
case RX_MSDU_DECAP_ETHERNET2_DIX:
|
|
/* strip ethernet header and insert decapped 802.11 header and
|
|
* rfc1042 header */
|
|
|
|
rfc1042 = hdr;
|
|
rfc1042 += roundup(hdr_len, 4);
|
|
rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
|
|
|
|
skb_pull(skb, sizeof(struct ethhdr));
|
|
memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
|
|
rfc1042, sizeof(struct rfc1042_hdr));
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
break;
|
|
case RX_MSDU_DECAP_8023_SNAP_LLC:
|
|
/* remove A-MSDU subframe header and insert
|
|
* decapped 802.11 header. rfc1042 header is already there */
|
|
|
|
skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
|
|
memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
|
|
break;
|
|
}
|
|
|
|
info->skb = skb;
|
|
info->encrypt_type = enctype;
|
|
|
|
ath10k_process_rx(htt->ar, info);
|
|
}
|
|
|
|
static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
|
|
if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
|
|
if (flags & RX_ATTENTION_FLAGS_FCS_ERR)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ath10k_htt_rx_has_mic_err(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
|
|
if (flags & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ath10k_htt_rx_is_mgmt(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
|
|
if (flags & RX_ATTENTION_FLAGS_MGMT_TYPE)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
|
|
{
|
|
struct htt_rx_desc *rxd;
|
|
u32 flags, info;
|
|
bool is_ip4, is_ip6;
|
|
bool is_tcp, is_udp;
|
|
bool ip_csum_ok, tcpudp_csum_ok;
|
|
|
|
rxd = (void *)skb->data - sizeof(*rxd);
|
|
flags = __le32_to_cpu(rxd->attention.flags);
|
|
info = __le32_to_cpu(rxd->msdu_start.info1);
|
|
|
|
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
|
|
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
|
|
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
|
|
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
|
|
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
|
|
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
|
|
|
|
if (!is_ip4 && !is_ip6)
|
|
return CHECKSUM_NONE;
|
|
if (!is_tcp && !is_udp)
|
|
return CHECKSUM_NONE;
|
|
if (!ip_csum_ok)
|
|
return CHECKSUM_NONE;
|
|
if (!tcpudp_csum_ok)
|
|
return CHECKSUM_NONE;
|
|
|
|
return CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
static int ath10k_unchain_msdu(struct sk_buff *msdu_head)
|
|
{
|
|
struct sk_buff *next = msdu_head->next;
|
|
struct sk_buff *to_free = next;
|
|
int space;
|
|
int total_len = 0;
|
|
|
|
/* TODO: Might could optimize this by using
|
|
* skb_try_coalesce or similar method to
|
|
* decrease copying, or maybe get mac80211 to
|
|
* provide a way to just receive a list of
|
|
* skb?
|
|
*/
|
|
|
|
msdu_head->next = NULL;
|
|
|
|
/* Allocate total length all at once. */
|
|
while (next) {
|
|
total_len += next->len;
|
|
next = next->next;
|
|
}
|
|
|
|
space = total_len - skb_tailroom(msdu_head);
|
|
if ((space > 0) &&
|
|
(pskb_expand_head(msdu_head, 0, space, GFP_ATOMIC) < 0)) {
|
|
/* TODO: bump some rx-oom error stat */
|
|
/* put it back together so we can free the
|
|
* whole list at once.
|
|
*/
|
|
msdu_head->next = to_free;
|
|
return -1;
|
|
}
|
|
|
|
/* Walk list again, copying contents into
|
|
* msdu_head
|
|
*/
|
|
next = to_free;
|
|
while (next) {
|
|
skb_copy_from_linear_data(next, skb_put(msdu_head, next->len),
|
|
next->len);
|
|
next = next->next;
|
|
}
|
|
|
|
/* If here, we have consolidated skb. Free the
|
|
* fragments and pass the main skb on up the
|
|
* stack.
|
|
*/
|
|
ath10k_htt_rx_free_msdu_chain(to_free);
|
|
return 0;
|
|
}
|
|
|
|
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k_htt *htt,
|
|
struct sk_buff *head,
|
|
struct htt_rx_info *info)
|
|
{
|
|
enum htt_rx_mpdu_status status = info->status;
|
|
|
|
if (!head) {
|
|
ath10k_warn("htt rx no data!\n");
|
|
return false;
|
|
}
|
|
|
|
if (head->len == 0) {
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx dropping due to zero-len\n");
|
|
return false;
|
|
}
|
|
|
|
if (ath10k_htt_rx_has_decrypt_err(head)) {
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx dropping due to decrypt-err\n");
|
|
return false;
|
|
}
|
|
|
|
/* Skip mgmt frames while we handle this in WMI */
|
|
if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL ||
|
|
ath10k_htt_rx_is_mgmt(head)) {
|
|
ath10k_dbg(ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
|
|
return false;
|
|
}
|
|
|
|
if (status != HTT_RX_IND_MPDU_STATUS_OK &&
|
|
status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
|
|
status != HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER &&
|
|
!htt->ar->monitor_enabled) {
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx ignoring frame w/ status %d\n",
|
|
status);
|
|
return false;
|
|
}
|
|
|
|
if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx CAC running\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
|
|
struct htt_rx_indication *rx)
|
|
{
|
|
struct htt_rx_info info;
|
|
struct htt_rx_indication_mpdu_range *mpdu_ranges;
|
|
struct ieee80211_hdr *hdr;
|
|
int num_mpdu_ranges;
|
|
int fw_desc_len;
|
|
u8 *fw_desc;
|
|
int i, j;
|
|
|
|
lockdep_assert_held(&htt->rx_ring.lock);
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
|
|
fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
|
|
fw_desc = (u8 *)&rx->fw_desc;
|
|
|
|
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
|
|
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
|
|
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
|
|
|
|
/* Fill this once, while this is per-ppdu */
|
|
info.signal = ATH10K_DEFAULT_NOISE_FLOOR;
|
|
info.signal += rx->ppdu.combined_rssi;
|
|
|
|
info.rate.info0 = rx->ppdu.info0;
|
|
info.rate.info1 = __le32_to_cpu(rx->ppdu.info1);
|
|
info.rate.info2 = __le32_to_cpu(rx->ppdu.info2);
|
|
info.tsf = __le32_to_cpu(rx->ppdu.tsf);
|
|
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
|
|
rx, sizeof(*rx) +
|
|
(sizeof(struct htt_rx_indication_mpdu_range) *
|
|
num_mpdu_ranges));
|
|
|
|
for (i = 0; i < num_mpdu_ranges; i++) {
|
|
info.status = mpdu_ranges[i].mpdu_range_status;
|
|
|
|
for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
|
|
struct sk_buff *msdu_head, *msdu_tail;
|
|
int msdu_chaining;
|
|
|
|
msdu_head = NULL;
|
|
msdu_tail = NULL;
|
|
msdu_chaining = ath10k_htt_rx_amsdu_pop(htt,
|
|
&fw_desc,
|
|
&fw_desc_len,
|
|
&msdu_head,
|
|
&msdu_tail);
|
|
|
|
if (!ath10k_htt_rx_amsdu_allowed(htt, msdu_head,
|
|
&info)) {
|
|
ath10k_htt_rx_free_msdu_chain(msdu_head);
|
|
continue;
|
|
}
|
|
|
|
if (msdu_chaining &&
|
|
(ath10k_unchain_msdu(msdu_head) < 0)) {
|
|
ath10k_htt_rx_free_msdu_chain(msdu_head);
|
|
continue;
|
|
}
|
|
|
|
info.skb = msdu_head;
|
|
info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head);
|
|
info.mic_err = ath10k_htt_rx_has_mic_err(msdu_head);
|
|
|
|
if (info.fcs_err)
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx has FCS err\n");
|
|
|
|
if (info.mic_err)
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"htt rx has MIC err\n");
|
|
|
|
hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
|
|
|
|
if (ath10k_htt_rx_hdr_is_amsdu(hdr))
|
|
ath10k_htt_rx_amsdu(htt, &info);
|
|
else
|
|
ath10k_htt_rx_msdu(htt, &info);
|
|
}
|
|
}
|
|
|
|
tasklet_schedule(&htt->rx_replenish_task);
|
|
}
|
|
|
|
static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
|
|
struct htt_rx_fragment_indication *frag)
|
|
{
|
|
struct sk_buff *msdu_head, *msdu_tail;
|
|
struct htt_rx_desc *rxd;
|
|
enum rx_msdu_decap_format fmt;
|
|
struct htt_rx_info info = {};
|
|
struct ieee80211_hdr *hdr;
|
|
int msdu_chaining;
|
|
bool tkip_mic_err;
|
|
bool decrypt_err;
|
|
u8 *fw_desc;
|
|
int fw_desc_len, hdrlen, paramlen;
|
|
int trim;
|
|
|
|
fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
|
|
fw_desc = (u8 *)frag->fw_msdu_rx_desc;
|
|
|
|
msdu_head = NULL;
|
|
msdu_tail = NULL;
|
|
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
|
|
&msdu_head, &msdu_tail);
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
|
|
ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
|
|
|
|
if (!msdu_head) {
|
|
ath10k_warn("htt rx frag no data\n");
|
|
return;
|
|
}
|
|
|
|
if (msdu_chaining || msdu_head != msdu_tail) {
|
|
ath10k_warn("aggregation with fragmentation?!\n");
|
|
ath10k_htt_rx_free_msdu_chain(msdu_head);
|
|
return;
|
|
}
|
|
|
|
/* FIXME: implement signal strength */
|
|
|
|
hdr = (struct ieee80211_hdr *)msdu_head->data;
|
|
rxd = (void *)msdu_head->data - sizeof(*rxd);
|
|
tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
|
|
RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
|
|
decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
|
|
RX_ATTENTION_FLAGS_DECRYPT_ERR);
|
|
fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
|
|
RX_MSDU_START_INFO1_DECAP_FORMAT);
|
|
|
|
if (fmt != RX_MSDU_DECAP_RAW) {
|
|
ath10k_warn("we dont support non-raw fragmented rx yet\n");
|
|
dev_kfree_skb_any(msdu_head);
|
|
goto end;
|
|
}
|
|
|
|
info.skb = msdu_head;
|
|
info.status = HTT_RX_IND_MPDU_STATUS_OK;
|
|
info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0),
|
|
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
|
|
info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb);
|
|
|
|
if (tkip_mic_err) {
|
|
ath10k_warn("tkip mic error\n");
|
|
info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR;
|
|
}
|
|
|
|
if (decrypt_err) {
|
|
ath10k_warn("decryption err in fragmented rx\n");
|
|
dev_kfree_skb_any(info.skb);
|
|
goto end;
|
|
}
|
|
|
|
if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) {
|
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type);
|
|
|
|
/* It is more efficient to move the header than the payload */
|
|
memmove((void *)info.skb->data + paramlen,
|
|
(void *)info.skb->data,
|
|
hdrlen);
|
|
skb_pull(info.skb, paramlen);
|
|
hdr = (struct ieee80211_hdr *)info.skb->data;
|
|
}
|
|
|
|
/* remove trailing FCS */
|
|
trim = 4;
|
|
|
|
/* remove crypto trailer */
|
|
trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type);
|
|
|
|
/* last fragment of TKIP frags has MIC */
|
|
if (!ieee80211_has_morefrags(hdr->frame_control) &&
|
|
info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
|
|
trim += 8;
|
|
|
|
if (trim > info.skb->len) {
|
|
ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
|
|
dev_kfree_skb_any(info.skb);
|
|
goto end;
|
|
}
|
|
|
|
skb_trim(info.skb, info.skb->len - trim);
|
|
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx frag mpdu: ",
|
|
info.skb->data, info.skb->len);
|
|
ath10k_process_rx(htt->ar, &info);
|
|
|
|
end:
|
|
if (fw_desc_len > 0) {
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"expecting more fragmented rx in one indication %d\n",
|
|
fw_desc_len);
|
|
}
|
|
}
|
|
|
|
static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct htt_resp *resp = (struct htt_resp *)skb->data;
|
|
struct htt_tx_done tx_done = {};
|
|
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
|
|
__le16 msdu_id;
|
|
int i;
|
|
|
|
lockdep_assert_held(&htt->tx_lock);
|
|
|
|
switch (status) {
|
|
case HTT_DATA_TX_STATUS_NO_ACK:
|
|
tx_done.no_ack = true;
|
|
break;
|
|
case HTT_DATA_TX_STATUS_OK:
|
|
break;
|
|
case HTT_DATA_TX_STATUS_DISCARD:
|
|
case HTT_DATA_TX_STATUS_POSTPONE:
|
|
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
|
|
tx_done.discard = true;
|
|
break;
|
|
default:
|
|
ath10k_warn("unhandled tx completion status %d\n", status);
|
|
tx_done.discard = true;
|
|
break;
|
|
}
|
|
|
|
ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
|
|
resp->data_tx_completion.num_msdus);
|
|
|
|
for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
|
|
msdu_id = resp->data_tx_completion.msdus[i];
|
|
tx_done.msdu_id = __le16_to_cpu(msdu_id);
|
|
ath10k_txrx_tx_unref(htt, &tx_done);
|
|
}
|
|
}
|
|
|
|
void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
|
|
{
|
|
struct ath10k_htt *htt = &ar->htt;
|
|
struct htt_resp *resp = (struct htt_resp *)skb->data;
|
|
|
|
/* confirm alignment */
|
|
if (!IS_ALIGNED((unsigned long)skb->data, 4))
|
|
ath10k_warn("unaligned htt message, expect trouble\n");
|
|
|
|
ath10k_dbg(ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
|
|
resp->hdr.msg_type);
|
|
switch (resp->hdr.msg_type) {
|
|
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
|
|
htt->target_version_major = resp->ver_resp.major;
|
|
htt->target_version_minor = resp->ver_resp.minor;
|
|
complete(&htt->target_version_received);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_IND:
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
__skb_queue_tail(&htt->rx_compl_q, skb);
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
case HTT_T2H_MSG_TYPE_PEER_MAP: {
|
|
struct htt_peer_map_event ev = {
|
|
.vdev_id = resp->peer_map.vdev_id,
|
|
.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
|
|
};
|
|
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
|
|
ath10k_peer_map_event(htt, &ev);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
|
|
struct htt_peer_unmap_event ev = {
|
|
.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
|
|
};
|
|
ath10k_peer_unmap_event(htt, &ev);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
|
|
struct htt_tx_done tx_done = {};
|
|
int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
|
|
|
|
tx_done.msdu_id =
|
|
__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
|
|
|
|
switch (status) {
|
|
case HTT_MGMT_TX_STATUS_OK:
|
|
break;
|
|
case HTT_MGMT_TX_STATUS_RETRY:
|
|
tx_done.no_ack = true;
|
|
break;
|
|
case HTT_MGMT_TX_STATUS_DROP:
|
|
tx_done.discard = true;
|
|
break;
|
|
}
|
|
|
|
spin_lock_bh(&htt->tx_lock);
|
|
ath10k_txrx_tx_unref(htt, &tx_done);
|
|
spin_unlock_bh(&htt->tx_lock);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
|
|
spin_lock_bh(&htt->tx_lock);
|
|
__skb_queue_tail(&htt->tx_compl_q, skb);
|
|
spin_unlock_bh(&htt->tx_lock);
|
|
tasklet_schedule(&htt->txrx_compl_task);
|
|
return;
|
|
case HTT_T2H_MSG_TYPE_SEC_IND: {
|
|
struct ath10k *ar = htt->ar;
|
|
struct htt_security_indication *ev = &resp->security_indication;
|
|
|
|
ath10k_dbg(ATH10K_DBG_HTT,
|
|
"sec ind peer_id %d unicast %d type %d\n",
|
|
__le16_to_cpu(ev->peer_id),
|
|
!!(ev->flags & HTT_SECURITY_IS_UNICAST),
|
|
MS(ev->flags, HTT_SECURITY_TYPE));
|
|
complete(&ar->install_key_done);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
|
|
skb->data, skb->len);
|
|
ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
|
|
break;
|
|
}
|
|
case HTT_T2H_MSG_TYPE_TEST:
|
|
/* FIX THIS */
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_STATS_CONF:
|
|
trace_ath10k_htt_stats(skb->data, skb->len);
|
|
break;
|
|
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
|
|
case HTT_T2H_MSG_TYPE_RX_ADDBA:
|
|
case HTT_T2H_MSG_TYPE_RX_DELBA:
|
|
case HTT_T2H_MSG_TYPE_RX_FLUSH:
|
|
default:
|
|
ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
|
|
resp->hdr.msg_type);
|
|
ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
|
|
skb->data, skb->len);
|
|
break;
|
|
};
|
|
|
|
/* Free the indication buffer */
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
static void ath10k_htt_txrx_compl_task(unsigned long ptr)
|
|
{
|
|
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
|
|
struct htt_resp *resp;
|
|
struct sk_buff *skb;
|
|
|
|
spin_lock_bh(&htt->tx_lock);
|
|
while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
|
|
ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
spin_unlock_bh(&htt->tx_lock);
|
|
|
|
spin_lock_bh(&htt->rx_ring.lock);
|
|
while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
|
|
resp = (struct htt_resp *)skb->data;
|
|
ath10k_htt_rx_handler(htt, &resp->rx_ind);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
spin_unlock_bh(&htt->rx_ring.lock);
|
|
}
|