OpenCloudOS-Kernel/drivers/crypto/ccp/ccp-dev-v5.c

1124 lines
30 KiB
C

/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/compiler.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
/* Allocate the requested number of contiguous LSB slots
* from the LSB bitmap. Look in the private range for this
* queue first; failing that, check the public area.
* If no space is available, wait around.
* Return: first slot number
*/
static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
{
struct ccp_device *ccp;
int start;
/* First look at the map for the queue */
if (cmd_q->lsb >= 0) {
start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
LSB_SIZE,
0, count, 0);
if (start < LSB_SIZE) {
bitmap_set(cmd_q->lsbmap, start, count);
return start + cmd_q->lsb * LSB_SIZE;
}
}
/* No joy; try to get an entry from the shared blocks */
ccp = cmd_q->ccp;
for (;;) {
mutex_lock(&ccp->sb_mutex);
start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
MAX_LSB_CNT * LSB_SIZE,
0,
count, 0);
if (start <= MAX_LSB_CNT * LSB_SIZE) {
bitmap_set(ccp->lsbmap, start, count);
mutex_unlock(&ccp->sb_mutex);
return start;
}
ccp->sb_avail = 0;
mutex_unlock(&ccp->sb_mutex);
/* Wait for KSB entries to become available */
if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
return 0;
}
}
/* Free a number of LSB slots from the bitmap, starting at
* the indicated starting slot number.
*/
static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
unsigned int count)
{
if (!start)
return;
if (cmd_q->lsb == start) {
/* An entry from the private LSB */
bitmap_clear(cmd_q->lsbmap, start, count);
} else {
/* From the shared LSBs */
struct ccp_device *ccp = cmd_q->ccp;
mutex_lock(&ccp->sb_mutex);
bitmap_clear(ccp->lsbmap, start, count);
ccp->sb_avail = 1;
mutex_unlock(&ccp->sb_mutex);
wake_up_interruptible_all(&ccp->sb_queue);
}
}
/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
union ccp_function {
struct {
u16 size:7;
u16 encrypt:1;
u16 mode:5;
u16 type:2;
} aes;
struct {
u16 size:7;
u16 encrypt:1;
u16 rsvd:5;
u16 type:2;
} aes_xts;
struct {
u16 size:7;
u16 encrypt:1;
u16 mode:5;
u16 type:2;
} des3;
struct {
u16 rsvd1:10;
u16 type:4;
u16 rsvd2:1;
} sha;
struct {
u16 mode:3;
u16 size:12;
} rsa;
struct {
u16 byteswap:2;
u16 bitwise:3;
u16 reflect:2;
u16 rsvd:8;
} pt;
struct {
u16 rsvd:13;
} zlib;
struct {
u16 size:10;
u16 type:2;
u16 mode:3;
} ecc;
u16 raw;
};
#define CCP_AES_SIZE(p) ((p)->aes.size)
#define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
#define CCP_AES_MODE(p) ((p)->aes.mode)
#define CCP_AES_TYPE(p) ((p)->aes.type)
#define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
#define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
#define CCP_DES3_SIZE(p) ((p)->des3.size)
#define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
#define CCP_DES3_MODE(p) ((p)->des3.mode)
#define CCP_DES3_TYPE(p) ((p)->des3.type)
#define CCP_SHA_TYPE(p) ((p)->sha.type)
#define CCP_RSA_SIZE(p) ((p)->rsa.size)
#define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
#define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
#define CCP_ECC_MODE(p) ((p)->ecc.mode)
#define CCP_ECC_AFFINE(p) ((p)->ecc.one)
/* Word 0 */
#define CCP5_CMD_DW0(p) ((p)->dw0)
#define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
#define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
#define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
#define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
#define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
#define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
#define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
/* Word 1 */
#define CCP5_CMD_DW1(p) ((p)->length)
#define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
/* Word 2 */
#define CCP5_CMD_DW2(p) ((p)->src_lo)
#define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
/* Word 3 */
#define CCP5_CMD_DW3(p) ((p)->dw3)
#define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
#define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
#define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
#define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
/* Words 4/5 */
#define CCP5_CMD_DW4(p) ((p)->dw4)
#define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
#define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
#define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
#define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
#define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
#define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
#define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
/* Word 6/7 */
#define CCP5_CMD_DW6(p) ((p)->key_lo)
#define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
#define CCP5_CMD_DW7(p) ((p)->dw7)
#define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
#define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
static inline u32 low_address(unsigned long addr)
{
return (u64)addr & 0x0ffffffff;
}
static inline u32 high_address(unsigned long addr)
{
return ((u64)addr >> 32) & 0x00000ffff;
}
static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
{
unsigned int head_idx, n;
u32 head_lo, queue_start;
queue_start = low_address(cmd_q->qdma_tail);
head_lo = ioread32(cmd_q->reg_head_lo);
head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
}
static int ccp5_do_cmd(struct ccp5_desc *desc,
struct ccp_cmd_queue *cmd_q)
{
u32 *mP;
__le32 *dP;
u32 tail;
int i;
int ret = 0;
cmd_q->total_ops++;
if (CCP5_CMD_SOC(desc)) {
CCP5_CMD_IOC(desc) = 1;
CCP5_CMD_SOC(desc) = 0;
}
mutex_lock(&cmd_q->q_mutex);
mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
dP = (__le32 *) desc;
for (i = 0; i < 8; i++)
mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
/* The data used by this command must be flushed to memory */
wmb();
/* Write the new tail address back to the queue register */
tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
iowrite32(tail, cmd_q->reg_tail_lo);
/* Turn the queue back on using our cached control register */
iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
mutex_unlock(&cmd_q->q_mutex);
if (CCP5_CMD_IOC(desc)) {
/* Wait for the job to complete */
ret = wait_event_interruptible(cmd_q->int_queue,
cmd_q->int_rcvd);
if (ret || cmd_q->cmd_error) {
/* Log the error and flush the queue by
* moving the head pointer
*/
if (cmd_q->cmd_error)
ccp_log_error(cmd_q->ccp,
cmd_q->cmd_error);
iowrite32(tail, cmd_q->reg_head_lo);
if (!ret)
ret = -EIO;
}
cmd_q->int_rcvd = 0;
}
return ret;
}
static int ccp5_perform_aes(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
op->cmd_q->total_aes_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
CCP5_CMD_SOC(&desc) = op->soc;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = op->init;
CCP5_CMD_EOM(&desc) = op->eom;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_AES_ENCRYPT(&function) = op->u.aes.action;
CCP_AES_MODE(&function) = op->u.aes.mode;
CCP_AES_TYPE(&function) = op->u.aes.type;
CCP_AES_SIZE(&function) = op->u.aes.size;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
CCP5_CMD_KEY_HI(&desc) = 0;
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_xts_aes(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
op->cmd_q->total_xts_aes_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
CCP5_CMD_SOC(&desc) = op->soc;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = op->init;
CCP5_CMD_EOM(&desc) = op->eom;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
CCP5_CMD_KEY_HI(&desc) = 0;
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_sha(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
op->cmd_q->total_sha_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
CCP5_CMD_SOC(&desc) = op->soc;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = 1;
CCP5_CMD_EOM(&desc) = op->eom;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_SHA_TYPE(&function) = op->u.sha.type;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
if (op->eom) {
CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
} else {
CCP5_CMD_SHA_LO(&desc) = 0;
CCP5_CMD_SHA_HI(&desc) = 0;
}
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_des3(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
op->cmd_q->total_3des_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, sizeof(struct ccp5_desc));
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
CCP5_CMD_SOC(&desc) = op->soc;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = op->init;
CCP5_CMD_EOM(&desc) = op->eom;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
CCP_DES3_MODE(&function) = op->u.des3.mode;
CCP_DES3_TYPE(&function) = op->u.des3.type;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
CCP5_CMD_KEY_HI(&desc) = 0;
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_rsa(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
op->cmd_q->total_rsa_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
CCP5_CMD_SOC(&desc) = op->soc;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = 0;
CCP5_CMD_EOM(&desc) = 1;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
/* Source is from external memory */
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
/* Destination is in external memory */
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
/* Key (Exponent) is in external memory */
CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_passthru(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
struct ccp_dma_info *saddr = &op->src.u.dma;
struct ccp_dma_info *daddr = &op->dst.u.dma;
op->cmd_q->total_pt_ops++;
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
CCP5_CMD_SOC(&desc) = 0;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = 0;
CCP5_CMD_EOM(&desc) = op->eom;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
CCP5_CMD_FUNCTION(&desc) = function.raw;
/* Length of source data is always 256 bytes */
if (op->src.type == CCP_MEMTYPE_SYSTEM)
CCP5_CMD_LEN(&desc) = saddr->length;
else
CCP5_CMD_LEN(&desc) = daddr->length;
if (op->src.type == CCP_MEMTYPE_SYSTEM) {
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
CCP5_CMD_LSB_ID(&desc) = op->sb_key;
} else {
u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
CCP5_CMD_SRC_HI(&desc) = 0;
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
}
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
} else {
u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
CCP5_CMD_DST_HI(&desc) = 0;
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
}
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp5_perform_ecc(struct ccp_op *op)
{
struct ccp5_desc desc;
union ccp_function function;
op->cmd_q->total_ecc_ops++;
/* Zero out all the fields of the command desc */
memset(&desc, 0, Q_DESC_SIZE);
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
CCP5_CMD_SOC(&desc) = 0;
CCP5_CMD_IOC(&desc) = 1;
CCP5_CMD_INIT(&desc) = 0;
CCP5_CMD_EOM(&desc) = 1;
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
function.ecc.mode = op->u.ecc.function;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
return ccp5_do_cmd(&desc, op->cmd_q);
}
static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
{
int q_mask = 1 << cmd_q->id;
int queues = 0;
int j;
/* Build a bit mask to know which LSBs this queue has access to.
* Don't bother with segment 0 as it has special privileges.
*/
for (j = 1; j < MAX_LSB_CNT; j++) {
if (status & q_mask)
bitmap_set(cmd_q->lsbmask, j, 1);
status >>= LSB_REGION_WIDTH;
}
queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
cmd_q->id, queues);
return queues ? 0 : -EINVAL;
}
static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
int lsb_cnt, int n_lsbs,
unsigned long *lsb_pub)
{
DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
int bitno;
int qlsb_wgt;
int i;
/* For each queue:
* If the count of potential LSBs available to a queue matches the
* ordinal given to us in lsb_cnt:
* Copy the mask of possible LSBs for this queue into "qlsb";
* For each bit in qlsb, see if the corresponding bit in the
* aggregation mask is set; if so, we have a match.
* If we have a match, clear the bit in the aggregation to
* mark it as no longer available.
* If there is no match, clear the bit in qlsb and keep looking.
*/
for (i = 0; i < ccp->cmd_q_count; i++) {
struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
if (qlsb_wgt == lsb_cnt) {
bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
bitno = find_first_bit(qlsb, MAX_LSB_CNT);
while (bitno < MAX_LSB_CNT) {
if (test_bit(bitno, lsb_pub)) {
/* We found an available LSB
* that this queue can access
*/
cmd_q->lsb = bitno;
bitmap_clear(lsb_pub, bitno, 1);
dev_dbg(ccp->dev,
"Queue %d gets LSB %d\n",
i, bitno);
break;
}
bitmap_clear(qlsb, bitno, 1);
bitno = find_first_bit(qlsb, MAX_LSB_CNT);
}
if (bitno >= MAX_LSB_CNT)
return -EINVAL;
n_lsbs--;
}
}
return n_lsbs;
}
/* For each queue, from the most- to least-constrained:
* find an LSB that can be assigned to the queue. If there are N queues that
* can only use M LSBs, where N > M, fail; otherwise, every queue will get a
* dedicated LSB. Remaining LSB regions become a shared resource.
* If we have fewer LSBs than queues, all LSB regions become shared resources.
*/
static int ccp_assign_lsbs(struct ccp_device *ccp)
{
DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
int n_lsbs = 0;
int bitno;
int i, lsb_cnt;
int rc = 0;
bitmap_zero(lsb_pub, MAX_LSB_CNT);
/* Create an aggregate bitmap to get a total count of available LSBs */
for (i = 0; i < ccp->cmd_q_count; i++)
bitmap_or(lsb_pub,
lsb_pub, ccp->cmd_q[i].lsbmask,
MAX_LSB_CNT);
n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
if (n_lsbs >= ccp->cmd_q_count) {
/* We have enough LSBS to give every queue a private LSB.
* Brute force search to start with the queues that are more
* constrained in LSB choice. When an LSB is privately
* assigned, it is removed from the public mask.
* This is an ugly N squared algorithm with some optimization.
*/
for (lsb_cnt = 1;
n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
lsb_cnt++) {
rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
lsb_pub);
if (rc < 0)
return -EINVAL;
n_lsbs = rc;
}
}
rc = 0;
/* What's left of the LSBs, according to the public mask, now become
* shared. Any zero bits in the lsb_pub mask represent an LSB region
* that can't be used as a shared resource, so mark the LSB slots for
* them as "in use".
*/
bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
while (bitno < MAX_LSB_CNT) {
bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
bitmap_set(qlsb, bitno, 1);
bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
}
return rc;
}
static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
{
unsigned int i;
for (i = 0; i < ccp->cmd_q_count; i++)
iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
}
static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
{
unsigned int i;
for (i = 0; i < ccp->cmd_q_count; i++)
iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
}
static void ccp5_irq_bh(unsigned long data)
{
struct ccp_device *ccp = (struct ccp_device *)data;
u32 status;
unsigned int i;
for (i = 0; i < ccp->cmd_q_count; i++) {
struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
status = ioread32(cmd_q->reg_interrupt_status);
if (status) {
cmd_q->int_status = status;
cmd_q->q_status = ioread32(cmd_q->reg_status);
cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
/* On error, only save the first error value */
if ((status & INT_ERROR) && !cmd_q->cmd_error)
cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
cmd_q->int_rcvd = 1;
/* Acknowledge the interrupt and wake the kthread */
iowrite32(status, cmd_q->reg_interrupt_status);
wake_up_interruptible(&cmd_q->int_queue);
}
}
ccp5_enable_queue_interrupts(ccp);
}
static irqreturn_t ccp5_irq_handler(int irq, void *data)
{
struct ccp_device *ccp = (struct ccp_device *)data;
ccp5_disable_queue_interrupts(ccp);
ccp->total_interrupts++;
if (ccp->use_tasklet)
tasklet_schedule(&ccp->irq_tasklet);
else
ccp5_irq_bh((unsigned long)ccp);
return IRQ_HANDLED;
}
static int ccp5_init(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct ccp_cmd_queue *cmd_q;
struct dma_pool *dma_pool;
char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
unsigned int qmr, qim, i;
u64 status;
u32 status_lo, status_hi;
int ret;
/* Find available queues */
qim = 0;
qmr = ioread32(ccp->io_regs + Q_MASK_REG);
for (i = 0; i < MAX_HW_QUEUES; i++) {
if (!(qmr & (1 << i)))
continue;
/* Allocate a dma pool for this queue */
snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
ccp->name, i);
dma_pool = dma_pool_create(dma_pool_name, dev,
CCP_DMAPOOL_MAX_SIZE,
CCP_DMAPOOL_ALIGN, 0);
if (!dma_pool) {
dev_err(dev, "unable to allocate dma pool\n");
ret = -ENOMEM;
}
cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
ccp->cmd_q_count++;
cmd_q->ccp = ccp;
cmd_q->id = i;
cmd_q->dma_pool = dma_pool;
mutex_init(&cmd_q->q_mutex);
/* Page alignment satisfies our needs for N <= 128 */
BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
&cmd_q->qbase_dma,
GFP_KERNEL);
if (!cmd_q->qbase) {
dev_err(dev, "unable to allocate command queue\n");
ret = -ENOMEM;
goto e_pool;
}
cmd_q->qidx = 0;
/* Preset some register values and masks that are queue
* number dependent
*/
cmd_q->reg_control = ccp->io_regs +
CMD5_Q_STATUS_INCR * (i + 1);
cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
cmd_q->reg_int_enable = cmd_q->reg_control +
CMD5_Q_INT_ENABLE_BASE;
cmd_q->reg_interrupt_status = cmd_q->reg_control +
CMD5_Q_INTERRUPT_STATUS_BASE;
cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
cmd_q->reg_int_status = cmd_q->reg_control +
CMD5_Q_INT_STATUS_BASE;
cmd_q->reg_dma_status = cmd_q->reg_control +
CMD5_Q_DMA_STATUS_BASE;
cmd_q->reg_dma_read_status = cmd_q->reg_control +
CMD5_Q_DMA_READ_STATUS_BASE;
cmd_q->reg_dma_write_status = cmd_q->reg_control +
CMD5_Q_DMA_WRITE_STATUS_BASE;
init_waitqueue_head(&cmd_q->int_queue);
dev_dbg(dev, "queue #%u available\n", i);
}
if (ccp->cmd_q_count == 0) {
dev_notice(dev, "no command queues available\n");
ret = -EIO;
goto e_pool;
}
/* Turn off the queues and disable interrupts until ready */
ccp5_disable_queue_interrupts(ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
cmd_q->qcontrol = 0; /* Start with nothing */
iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
ioread32(cmd_q->reg_int_status);
ioread32(cmd_q->reg_status);
/* Clear the interrupt status */
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
}
dev_dbg(dev, "Requesting an IRQ...\n");
/* Request an irq */
ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
if (ret) {
dev_err(dev, "unable to allocate an IRQ\n");
goto e_pool;
}
/* Initialize the ISR tasklet */
if (ccp->use_tasklet)
tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
(unsigned long)ccp);
dev_dbg(dev, "Loading LSB map...\n");
/* Copy the private LSB mask to the public registers */
status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
status = ((u64)status_hi<<30) | (u64)status_lo;
dev_dbg(dev, "Configuring virtual queues...\n");
/* Configure size of each virtual queue accessible to host */
for (i = 0; i < ccp->cmd_q_count; i++) {
u32 dma_addr_lo;
u32 dma_addr_hi;
cmd_q = &ccp->cmd_q[i];
cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
cmd_q->qdma_tail = cmd_q->qbase_dma;
dma_addr_lo = low_address(cmd_q->qdma_tail);
iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
dma_addr_hi = high_address(cmd_q->qdma_tail);
cmd_q->qcontrol |= (dma_addr_hi << 16);
iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
/* Find the LSB regions accessible to the queue */
ccp_find_lsb_regions(cmd_q, status);
cmd_q->lsb = -1; /* Unassigned value */
}
dev_dbg(dev, "Assigning LSBs...\n");
ret = ccp_assign_lsbs(ccp);
if (ret) {
dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
goto e_irq;
}
/* Optimization: pre-allocate LSB slots for each queue */
for (i = 0; i < ccp->cmd_q_count; i++) {
ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
}
dev_dbg(dev, "Starting threads...\n");
/* Create a kthread for each queue */
for (i = 0; i < ccp->cmd_q_count; i++) {
struct task_struct *kthread;
cmd_q = &ccp->cmd_q[i];
kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
"%s-q%u", ccp->name, cmd_q->id);
if (IS_ERR(kthread)) {
dev_err(dev, "error creating queue thread (%ld)\n",
PTR_ERR(kthread));
ret = PTR_ERR(kthread);
goto e_kthread;
}
cmd_q->kthread = kthread;
wake_up_process(kthread);
}
dev_dbg(dev, "Enabling interrupts...\n");
ccp5_enable_queue_interrupts(ccp);
dev_dbg(dev, "Registering device...\n");
/* Put this on the unit list to make it available */
ccp_add_device(ccp);
ret = ccp_register_rng(ccp);
if (ret)
goto e_kthread;
/* Register the DMA engine support */
ret = ccp_dmaengine_register(ccp);
if (ret)
goto e_hwrng;
/* Set up debugfs entries */
ccp5_debugfs_setup(ccp);
return 0;
e_hwrng:
ccp_unregister_rng(ccp);
e_kthread:
for (i = 0; i < ccp->cmd_q_count; i++)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
e_irq:
sp_free_ccp_irq(ccp->sp, ccp);
e_pool:
for (i = 0; i < ccp->cmd_q_count; i++)
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
return ret;
}
static void ccp5_destroy(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct ccp_cmd_queue *cmd_q;
struct ccp_cmd *cmd;
unsigned int i;
/* Unregister the DMA engine */
ccp_dmaengine_unregister(ccp);
/* Unregister the RNG */
ccp_unregister_rng(ccp);
/* Remove this device from the list of available units first */
ccp_del_device(ccp);
/* We're in the process of tearing down the entire driver;
* when all the devices are gone clean up debugfs
*/
if (ccp_present())
ccp5_debugfs_destroy();
/* Disable and clear interrupts */
ccp5_disable_queue_interrupts(ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
/* Turn off the run bit */
iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
/* Clear the interrupt status */
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
ioread32(cmd_q->reg_int_status);
ioread32(cmd_q->reg_status);
}
/* Stop the queue kthreads */
for (i = 0; i < ccp->cmd_q_count; i++)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
sp_free_ccp_irq(ccp->sp, ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
cmd_q->qbase_dma);
}
/* Flush the cmd and backlog queue */
while (!list_empty(&ccp->cmd)) {
/* Invoke the callback directly with an error code */
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
list_del(&cmd->entry);
cmd->callback(cmd->data, -ENODEV);
}
while (!list_empty(&ccp->backlog)) {
/* Invoke the callback directly with an error code */
cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
list_del(&cmd->entry);
cmd->callback(cmd->data, -ENODEV);
}
}
static void ccp5_config(struct ccp_device *ccp)
{
/* Public side */
iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
}
static void ccp5other_config(struct ccp_device *ccp)
{
int i;
u32 rnd;
/* We own all of the queues on the NTB CCP */
iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
for (i = 0; i < 12; i++) {
rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
}
iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
ccp5_config(ccp);
}
/* Version 5 adds some function, but is essentially the same as v5 */
static const struct ccp_actions ccp5_actions = {
.aes = ccp5_perform_aes,
.xts_aes = ccp5_perform_xts_aes,
.sha = ccp5_perform_sha,
.des3 = ccp5_perform_des3,
.rsa = ccp5_perform_rsa,
.passthru = ccp5_perform_passthru,
.ecc = ccp5_perform_ecc,
.sballoc = ccp_lsb_alloc,
.sbfree = ccp_lsb_free,
.init = ccp5_init,
.destroy = ccp5_destroy,
.get_free_slots = ccp5_get_free_slots,
};
const struct ccp_vdata ccpv5a = {
.version = CCP_VERSION(5, 0),
.setup = ccp5_config,
.perform = &ccp5_actions,
.offset = 0x0,
};
const struct ccp_vdata ccpv5b = {
.version = CCP_VERSION(5, 0),
.dma_chan_attr = DMA_PRIVATE,
.setup = ccp5other_config,
.perform = &ccp5_actions,
.offset = 0x0,
};