OpenCloudOS-Kernel/block/genhd.c

2286 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* gendisk handling
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/kobj_map.h>
#include <linux/mutex.h>
#include <linux/idr.h>
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/badblocks.h>
#include "blk.h"
static DEFINE_MUTEX(block_class_lock);
static struct kobject *block_depr;
/* for extended dynamic devt allocation, currently only one major is used */
#define NR_EXT_DEVT (1 << MINORBITS)
/* For extended devt allocation. ext_devt_lock prevents look up
* results from going away underneath its user.
*/
static DEFINE_SPINLOCK(ext_devt_lock);
static DEFINE_IDR(ext_devt_idr);
static const struct device_type disk_type;
static void disk_check_events(struct disk_events *ev,
unsigned int *clearing_ptr);
static void disk_alloc_events(struct gendisk *disk);
static void disk_add_events(struct gendisk *disk);
static void disk_del_events(struct gendisk *disk);
static void disk_release_events(struct gendisk *disk);
/*
* Set disk capacity and notify if the size is not currently
* zero and will not be set to zero
*/
void set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
bool revalidate)
{
sector_t capacity = get_capacity(disk);
set_capacity(disk, size);
if (revalidate)
revalidate_disk(disk);
if (capacity != size && capacity != 0 && size != 0) {
char *envp[] = { "RESIZE=1", NULL };
kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
}
}
EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
/*
* Format the device name of the indicated disk into the supplied buffer and
* return a pointer to that same buffer for convenience.
*/
char *disk_name(struct gendisk *hd, int partno, char *buf)
{
if (!partno)
snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
else
snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
return buf;
}
const char *bdevname(struct block_device *bdev, char *buf)
{
return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
}
EXPORT_SYMBOL(bdevname);
#ifdef CONFIG_SMP
static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
{
int cpu;
memset(stat, 0, sizeof(struct disk_stats));
for_each_possible_cpu(cpu) {
struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
int group;
for (group = 0; group < NR_STAT_GROUPS; group++) {
stat->nsecs[group] += ptr->nsecs[group];
stat->sectors[group] += ptr->sectors[group];
stat->ios[group] += ptr->ios[group];
stat->merges[group] += ptr->merges[group];
}
stat->io_ticks += ptr->io_ticks;
}
}
#else /* CONFIG_SMP */
static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
{
memcpy(stat, &part->dkstats, sizeof(struct disk_stats));
}
#endif /* CONFIG_SMP */
void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
{
if (queue_is_mq(q))
return;
part_stat_local_inc(part, in_flight[rw]);
if (part->partno)
part_stat_local_inc(&part_to_disk(part)->part0, in_flight[rw]);
}
void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
{
if (queue_is_mq(q))
return;
part_stat_local_dec(part, in_flight[rw]);
if (part->partno)
part_stat_local_dec(&part_to_disk(part)->part0, in_flight[rw]);
}
static unsigned int part_in_flight(struct request_queue *q,
struct hd_struct *part)
{
int cpu;
unsigned int inflight;
if (queue_is_mq(q)) {
return blk_mq_in_flight(q, part);
}
inflight = 0;
for_each_possible_cpu(cpu) {
inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
part_stat_local_read_cpu(part, in_flight[1], cpu);
}
if ((int)inflight < 0)
inflight = 0;
return inflight;
}
static void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
unsigned int inflight[2])
{
int cpu;
if (queue_is_mq(q)) {
blk_mq_in_flight_rw(q, part, inflight);
return;
}
inflight[0] = 0;
inflight[1] = 0;
for_each_possible_cpu(cpu) {
inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
}
if ((int)inflight[0] < 0)
inflight[0] = 0;
if ((int)inflight[1] < 0)
inflight[1] = 0;
}
struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
{
struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
if (unlikely(partno < 0 || partno >= ptbl->len))
return NULL;
return rcu_dereference(ptbl->part[partno]);
}
/**
* disk_get_part - get partition
* @disk: disk to look partition from
* @partno: partition number
*
* Look for partition @partno from @disk. If found, increment
* reference count and return it.
*
* CONTEXT:
* Don't care.
*
* RETURNS:
* Pointer to the found partition on success, NULL if not found.
*/
struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
{
struct hd_struct *part;
rcu_read_lock();
part = __disk_get_part(disk, partno);
if (part)
get_device(part_to_dev(part));
rcu_read_unlock();
return part;
}
/**
* disk_part_iter_init - initialize partition iterator
* @piter: iterator to initialize
* @disk: disk to iterate over
* @flags: DISK_PITER_* flags
*
* Initialize @piter so that it iterates over partitions of @disk.
*
* CONTEXT:
* Don't care.
*/
void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
unsigned int flags)
{
struct disk_part_tbl *ptbl;
rcu_read_lock();
ptbl = rcu_dereference(disk->part_tbl);
piter->disk = disk;
piter->part = NULL;
if (flags & DISK_PITER_REVERSE)
piter->idx = ptbl->len - 1;
else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
piter->idx = 0;
else
piter->idx = 1;
piter->flags = flags;
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(disk_part_iter_init);
/**
* disk_part_iter_next - proceed iterator to the next partition and return it
* @piter: iterator of interest
*
* Proceed @piter to the next partition and return it.
*
* CONTEXT:
* Don't care.
*/
struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
{
struct disk_part_tbl *ptbl;
int inc, end;
/* put the last partition */
disk_put_part(piter->part);
piter->part = NULL;
/* get part_tbl */
rcu_read_lock();
ptbl = rcu_dereference(piter->disk->part_tbl);
/* determine iteration parameters */
if (piter->flags & DISK_PITER_REVERSE) {
inc = -1;
if (piter->flags & (DISK_PITER_INCL_PART0 |
DISK_PITER_INCL_EMPTY_PART0))
end = -1;
else
end = 0;
} else {
inc = 1;
end = ptbl->len;
}
/* iterate to the next partition */
for (; piter->idx != end; piter->idx += inc) {
struct hd_struct *part;
part = rcu_dereference(ptbl->part[piter->idx]);
if (!part)
continue;
if (!part_nr_sects_read(part) &&
!(piter->flags & DISK_PITER_INCL_EMPTY) &&
!(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
piter->idx == 0))
continue;
get_device(part_to_dev(part));
piter->part = part;
piter->idx += inc;
break;
}
rcu_read_unlock();
return piter->part;
}
EXPORT_SYMBOL_GPL(disk_part_iter_next);
/**
* disk_part_iter_exit - finish up partition iteration
* @piter: iter of interest
*
* Called when iteration is over. Cleans up @piter.
*
* CONTEXT:
* Don't care.
*/
void disk_part_iter_exit(struct disk_part_iter *piter)
{
disk_put_part(piter->part);
piter->part = NULL;
}
EXPORT_SYMBOL_GPL(disk_part_iter_exit);
static inline int sector_in_part(struct hd_struct *part, sector_t sector)
{
return part->start_sect <= sector &&
sector < part->start_sect + part_nr_sects_read(part);
}
/**
* disk_map_sector_rcu - map sector to partition
* @disk: gendisk of interest
* @sector: sector to map
*
* Find out which partition @sector maps to on @disk. This is
* primarily used for stats accounting.
*
* CONTEXT:
* RCU read locked. The returned partition pointer is valid only
* while preemption is disabled.
*
* RETURNS:
* Found partition on success, part0 is returned if no partition matches
*/
struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
{
struct disk_part_tbl *ptbl;
struct hd_struct *part;
int i;
ptbl = rcu_dereference(disk->part_tbl);
part = rcu_dereference(ptbl->last_lookup);
if (part && sector_in_part(part, sector))
return part;
for (i = 1; i < ptbl->len; i++) {
part = rcu_dereference(ptbl->part[i]);
if (part && sector_in_part(part, sector)) {
rcu_assign_pointer(ptbl->last_lookup, part);
return part;
}
}
return &disk->part0;
}
/**
* disk_has_partitions
* @disk: gendisk of interest
*
* Walk through the partition table and check if valid partition exists.
*
* CONTEXT:
* Don't care.
*
* RETURNS:
* True if the gendisk has at least one valid non-zero size partition.
* Otherwise false.
*/
bool disk_has_partitions(struct gendisk *disk)
{
struct disk_part_tbl *ptbl;
int i;
bool ret = false;
rcu_read_lock();
ptbl = rcu_dereference(disk->part_tbl);
/* Iterate partitions skipping the whole device at index 0 */
for (i = 1; i < ptbl->len; i++) {
if (rcu_dereference(ptbl->part[i])) {
ret = true;
break;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(disk_has_partitions);
/*
* Can be deleted altogether. Later.
*
*/
#define BLKDEV_MAJOR_HASH_SIZE 255
static struct blk_major_name {
struct blk_major_name *next;
int major;
char name[16];
} *major_names[BLKDEV_MAJOR_HASH_SIZE];
/* index in the above - for now: assume no multimajor ranges */
static inline int major_to_index(unsigned major)
{
return major % BLKDEV_MAJOR_HASH_SIZE;
}
#ifdef CONFIG_PROC_FS
void blkdev_show(struct seq_file *seqf, off_t offset)
{
struct blk_major_name *dp;
mutex_lock(&block_class_lock);
for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
if (dp->major == offset)
seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
mutex_unlock(&block_class_lock);
}
#endif /* CONFIG_PROC_FS */
/**
* register_blkdev - register a new block device
*
* @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
* @major = 0, try to allocate any unused major number.
* @name: the name of the new block device as a zero terminated string
*
* The @name must be unique within the system.
*
* The return value depends on the @major input parameter:
*
* - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
* then the function returns zero on success, or a negative error code
* - if any unused major number was requested with @major = 0 parameter
* then the return value is the allocated major number in range
* [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
*
* See Documentation/admin-guide/devices.txt for the list of allocated
* major numbers.
*/
int register_blkdev(unsigned int major, const char *name)
{
struct blk_major_name **n, *p;
int index, ret = 0;
mutex_lock(&block_class_lock);
/* temporary */
if (major == 0) {
for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
if (major_names[index] == NULL)
break;
}
if (index == 0) {
printk("%s: failed to get major for %s\n",
__func__, name);
ret = -EBUSY;
goto out;
}
major = index;
ret = major;
}
if (major >= BLKDEV_MAJOR_MAX) {
pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
__func__, major, BLKDEV_MAJOR_MAX-1, name);
ret = -EINVAL;
goto out;
}
p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
if (p == NULL) {
ret = -ENOMEM;
goto out;
}
p->major = major;
strlcpy(p->name, name, sizeof(p->name));
p->next = NULL;
index = major_to_index(major);
for (n = &major_names[index]; *n; n = &(*n)->next) {
if ((*n)->major == major)
break;
}
if (!*n)
*n = p;
else
ret = -EBUSY;
if (ret < 0) {
printk("register_blkdev: cannot get major %u for %s\n",
major, name);
kfree(p);
}
out:
mutex_unlock(&block_class_lock);
return ret;
}
EXPORT_SYMBOL(register_blkdev);
void unregister_blkdev(unsigned int major, const char *name)
{
struct blk_major_name **n;
struct blk_major_name *p = NULL;
int index = major_to_index(major);
mutex_lock(&block_class_lock);
for (n = &major_names[index]; *n; n = &(*n)->next)
if ((*n)->major == major)
break;
if (!*n || strcmp((*n)->name, name)) {
WARN_ON(1);
} else {
p = *n;
*n = p->next;
}
mutex_unlock(&block_class_lock);
kfree(p);
}
EXPORT_SYMBOL(unregister_blkdev);
static struct kobj_map *bdev_map;
/**
* blk_mangle_minor - scatter minor numbers apart
* @minor: minor number to mangle
*
* Scatter consecutively allocated @minor number apart if MANGLE_DEVT
* is enabled. Mangling twice gives the original value.
*
* RETURNS:
* Mangled value.
*
* CONTEXT:
* Don't care.
*/
static int blk_mangle_minor(int minor)
{
#ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
int i;
for (i = 0; i < MINORBITS / 2; i++) {
int low = minor & (1 << i);
int high = minor & (1 << (MINORBITS - 1 - i));
int distance = MINORBITS - 1 - 2 * i;
minor ^= low | high; /* clear both bits */
low <<= distance; /* swap the positions */
high >>= distance;
minor |= low | high; /* and set */
}
#endif
return minor;
}
/**
* blk_alloc_devt - allocate a dev_t for a partition
* @part: partition to allocate dev_t for
* @devt: out parameter for resulting dev_t
*
* Allocate a dev_t for block device.
*
* RETURNS:
* 0 on success, allocated dev_t is returned in *@devt. -errno on
* failure.
*
* CONTEXT:
* Might sleep.
*/
int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
{
struct gendisk *disk = part_to_disk(part);
int idx;
/* in consecutive minor range? */
if (part->partno < disk->minors) {
*devt = MKDEV(disk->major, disk->first_minor + part->partno);
return 0;
}
/* allocate ext devt */
idr_preload(GFP_KERNEL);
spin_lock_bh(&ext_devt_lock);
idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
spin_unlock_bh(&ext_devt_lock);
idr_preload_end();
if (idx < 0)
return idx == -ENOSPC ? -EBUSY : idx;
*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
return 0;
}
/**
* blk_free_devt - free a dev_t
* @devt: dev_t to free
*
* Free @devt which was allocated using blk_alloc_devt().
*
* CONTEXT:
* Might sleep.
*/
void blk_free_devt(dev_t devt)
{
if (devt == MKDEV(0, 0))
return;
if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
spin_lock_bh(&ext_devt_lock);
idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
spin_unlock_bh(&ext_devt_lock);
}
}
/*
* We invalidate devt by assigning NULL pointer for devt in idr.
*/
void blk_invalidate_devt(dev_t devt)
{
if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
spin_lock_bh(&ext_devt_lock);
idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
spin_unlock_bh(&ext_devt_lock);
}
}
static char *bdevt_str(dev_t devt, char *buf)
{
if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
char tbuf[BDEVT_SIZE];
snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
} else
snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
return buf;
}
/*
* Register device numbers dev..(dev+range-1)
* range must be nonzero
* The hash chain is sorted on range, so that subranges can override.
*/
void blk_register_region(dev_t devt, unsigned long range, struct module *module,
struct kobject *(*probe)(dev_t, int *, void *),
int (*lock)(dev_t, void *), void *data)
{
kobj_map(bdev_map, devt, range, module, probe, lock, data);
}
EXPORT_SYMBOL(blk_register_region);
void blk_unregister_region(dev_t devt, unsigned long range)
{
kobj_unmap(bdev_map, devt, range);
}
EXPORT_SYMBOL(blk_unregister_region);
static struct kobject *exact_match(dev_t devt, int *partno, void *data)
{
struct gendisk *p = data;
return &disk_to_dev(p)->kobj;
}
static int exact_lock(dev_t devt, void *data)
{
struct gendisk *p = data;
if (!get_disk_and_module(p))
return -1;
return 0;
}
static void register_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups)
{
struct device *ddev = disk_to_dev(disk);
struct block_device *bdev;
struct disk_part_iter piter;
struct hd_struct *part;
int err;
ddev->parent = parent;
dev_set_name(ddev, "%s", disk->disk_name);
/* delay uevents, until we scanned partition table */
dev_set_uevent_suppress(ddev, 1);
if (groups) {
WARN_ON(ddev->groups);
ddev->groups = groups;
}
if (device_add(ddev))
return;
if (!sysfs_deprecated) {
err = sysfs_create_link(block_depr, &ddev->kobj,
kobject_name(&ddev->kobj));
if (err) {
device_del(ddev);
return;
}
}
/*
* avoid probable deadlock caused by allocating memory with
* GFP_KERNEL in runtime_resume callback of its all ancestor
* devices
*/
pm_runtime_set_memalloc_noio(ddev, true);
disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
if (disk->flags & GENHD_FL_HIDDEN) {
dev_set_uevent_suppress(ddev, 0);
return;
}
/* No minors to use for partitions */
if (!disk_part_scan_enabled(disk))
goto exit;
/* No such device (e.g., media were just removed) */
if (!get_capacity(disk))
goto exit;
bdev = bdget_disk(disk, 0);
if (!bdev)
goto exit;
bdev->bd_invalidated = 1;
err = blkdev_get(bdev, FMODE_READ, NULL);
if (err < 0)
goto exit;
blkdev_put(bdev, FMODE_READ);
exit:
/* announce disk after possible partitions are created */
dev_set_uevent_suppress(ddev, 0);
kobject_uevent(&ddev->kobj, KOBJ_ADD);
/* announce possible partitions */
disk_part_iter_init(&piter, disk, 0);
while ((part = disk_part_iter_next(&piter)))
kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
disk_part_iter_exit(&piter);
if (disk->queue->backing_dev_info->dev) {
err = sysfs_create_link(&ddev->kobj,
&disk->queue->backing_dev_info->dev->kobj,
"bdi");
WARN_ON(err);
}
}
/**
* __device_add_disk - add disk information to kernel list
* @parent: parent device for the disk
* @disk: per-device partitioning information
* @groups: Additional per-device sysfs groups
* @register_queue: register the queue if set to true
*
* This function registers the partitioning information in @disk
* with the kernel.
*
* FIXME: error handling
*/
static void __device_add_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups,
bool register_queue)
{
dev_t devt;
int retval;
/*
* The disk queue should now be all set with enough information about
* the device for the elevator code to pick an adequate default
* elevator if one is needed, that is, for devices requesting queue
* registration.
*/
if (register_queue)
elevator_init_mq(disk->queue);
/* minors == 0 indicates to use ext devt from part0 and should
* be accompanied with EXT_DEVT flag. Make sure all
* parameters make sense.
*/
WARN_ON(disk->minors && !(disk->major || disk->first_minor));
WARN_ON(!disk->minors &&
!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
disk->flags |= GENHD_FL_UP;
retval = blk_alloc_devt(&disk->part0, &devt);
if (retval) {
WARN_ON(1);
return;
}
disk->major = MAJOR(devt);
disk->first_minor = MINOR(devt);
disk_alloc_events(disk);
if (disk->flags & GENHD_FL_HIDDEN) {
/*
* Don't let hidden disks show up in /proc/partitions,
* and don't bother scanning for partitions either.
*/
disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
disk->flags |= GENHD_FL_NO_PART_SCAN;
} else {
int ret;
/* Register BDI before referencing it from bdev */
disk_to_dev(disk)->devt = devt;
ret = bdi_register_owner(disk->queue->backing_dev_info,
disk_to_dev(disk));
WARN_ON(ret);
blk_register_region(disk_devt(disk), disk->minors, NULL,
exact_match, exact_lock, disk);
}
register_disk(parent, disk, groups);
if (register_queue)
blk_register_queue(disk);
/*
* Take an extra ref on queue which will be put on disk_release()
* so that it sticks around as long as @disk is there.
*/
WARN_ON_ONCE(!blk_get_queue(disk->queue));
disk_add_events(disk);
blk_integrity_add(disk);
}
void device_add_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups)
{
__device_add_disk(parent, disk, groups, true);
}
EXPORT_SYMBOL(device_add_disk);
void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
{
__device_add_disk(parent, disk, NULL, false);
}
EXPORT_SYMBOL(device_add_disk_no_queue_reg);
void del_gendisk(struct gendisk *disk)
{
struct disk_part_iter piter;
struct hd_struct *part;
blk_integrity_del(disk);
disk_del_events(disk);
/*
* Block lookups of the disk until all bdevs are unhashed and the
* disk is marked as dead (GENHD_FL_UP cleared).
*/
down_write(&disk->lookup_sem);
/* invalidate stuff */
disk_part_iter_init(&piter, disk,
DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
while ((part = disk_part_iter_next(&piter))) {
invalidate_partition(disk, part->partno);
bdev_unhash_inode(part_devt(part));
delete_partition(disk, part->partno);
}
disk_part_iter_exit(&piter);
invalidate_partition(disk, 0);
bdev_unhash_inode(disk_devt(disk));
set_capacity(disk, 0);
disk->flags &= ~GENHD_FL_UP;
up_write(&disk->lookup_sem);
if (!(disk->flags & GENHD_FL_HIDDEN))
sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
if (disk->queue) {
/*
* Unregister bdi before releasing device numbers (as they can
* get reused and we'd get clashes in sysfs).
*/
if (!(disk->flags & GENHD_FL_HIDDEN))
bdi_unregister(disk->queue->backing_dev_info);
blk_unregister_queue(disk);
} else {
WARN_ON(1);
}
if (!(disk->flags & GENHD_FL_HIDDEN))
blk_unregister_region(disk_devt(disk), disk->minors);
/*
* Remove gendisk pointer from idr so that it cannot be looked up
* while RCU period before freeing gendisk is running to prevent
* use-after-free issues. Note that the device number stays
* "in-use" until we really free the gendisk.
*/
blk_invalidate_devt(disk_devt(disk));
kobject_put(disk->part0.holder_dir);
kobject_put(disk->slave_dir);
part_stat_set_all(&disk->part0, 0);
disk->part0.stamp = 0;
if (!sysfs_deprecated)
sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
device_del(disk_to_dev(disk));
}
EXPORT_SYMBOL(del_gendisk);
/* sysfs access to bad-blocks list. */
static ssize_t disk_badblocks_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct gendisk *disk = dev_to_disk(dev);
if (!disk->bb)
return sprintf(page, "\n");
return badblocks_show(disk->bb, page, 0);
}
static ssize_t disk_badblocks_store(struct device *dev,
struct device_attribute *attr,
const char *page, size_t len)
{
struct gendisk *disk = dev_to_disk(dev);
if (!disk->bb)
return -ENXIO;
return badblocks_store(disk->bb, page, len, 0);
}
/**
* get_gendisk - get partitioning information for a given device
* @devt: device to get partitioning information for
* @partno: returned partition index
*
* This function gets the structure containing partitioning
* information for the given device @devt.
*/
struct gendisk *get_gendisk(dev_t devt, int *partno)
{
struct gendisk *disk = NULL;
if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
struct kobject *kobj;
kobj = kobj_lookup(bdev_map, devt, partno);
if (kobj)
disk = dev_to_disk(kobj_to_dev(kobj));
} else {
struct hd_struct *part;
spin_lock_bh(&ext_devt_lock);
part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
if (part && get_disk_and_module(part_to_disk(part))) {
*partno = part->partno;
disk = part_to_disk(part);
}
spin_unlock_bh(&ext_devt_lock);
}
if (!disk)
return NULL;
/*
* Synchronize with del_gendisk() to not return disk that is being
* destroyed.
*/
down_read(&disk->lookup_sem);
if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
!(disk->flags & GENHD_FL_UP))) {
up_read(&disk->lookup_sem);
put_disk_and_module(disk);
disk = NULL;
} else {
up_read(&disk->lookup_sem);
}
return disk;
}
/**
* bdget_disk - do bdget() by gendisk and partition number
* @disk: gendisk of interest
* @partno: partition number
*
* Find partition @partno from @disk, do bdget() on it.
*
* CONTEXT:
* Don't care.
*
* RETURNS:
* Resulting block_device on success, NULL on failure.
*/
struct block_device *bdget_disk(struct gendisk *disk, int partno)
{
struct hd_struct *part;
struct block_device *bdev = NULL;
part = disk_get_part(disk, partno);
if (part)
bdev = bdget(part_devt(part));
disk_put_part(part);
return bdev;
}
EXPORT_SYMBOL(bdget_disk);
/*
* print a full list of all partitions - intended for places where the root
* filesystem can't be mounted and thus to give the victim some idea of what
* went wrong
*/
void __init printk_all_partitions(void)
{
struct class_dev_iter iter;
struct device *dev;
class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
while ((dev = class_dev_iter_next(&iter))) {
struct gendisk *disk = dev_to_disk(dev);
struct disk_part_iter piter;
struct hd_struct *part;
char name_buf[BDEVNAME_SIZE];
char devt_buf[BDEVT_SIZE];
/*
* Don't show empty devices or things that have been
* suppressed
*/
if (get_capacity(disk) == 0 ||
(disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
continue;
/*
* Note, unlike /proc/partitions, I am showing the
* numbers in hex - the same format as the root=
* option takes.
*/
disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
while ((part = disk_part_iter_next(&piter))) {
bool is_part0 = part == &disk->part0;
printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
bdevt_str(part_devt(part), devt_buf),
(unsigned long long)part_nr_sects_read(part) >> 1
, disk_name(disk, part->partno, name_buf),
part->info ? part->info->uuid : "");
if (is_part0) {
if (dev->parent && dev->parent->driver)
printk(" driver: %s\n",
dev->parent->driver->name);
else
printk(" (driver?)\n");
} else
printk("\n");
}
disk_part_iter_exit(&piter);
}
class_dev_iter_exit(&iter);
}
#ifdef CONFIG_PROC_FS
/* iterator */
static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
{
loff_t skip = *pos;
struct class_dev_iter *iter;
struct device *dev;
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return ERR_PTR(-ENOMEM);
seqf->private = iter;
class_dev_iter_init(iter, &block_class, NULL, &disk_type);
do {
dev = class_dev_iter_next(iter);
if (!dev)
return NULL;
} while (skip--);
return dev_to_disk(dev);
}
static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
{
struct device *dev;
(*pos)++;
dev = class_dev_iter_next(seqf->private);
if (dev)
return dev_to_disk(dev);
return NULL;
}
static void disk_seqf_stop(struct seq_file *seqf, void *v)
{
struct class_dev_iter *iter = seqf->private;
/* stop is called even after start failed :-( */
if (iter) {
class_dev_iter_exit(iter);
kfree(iter);
seqf->private = NULL;
}
}
static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
{
void *p;
p = disk_seqf_start(seqf, pos);
if (!IS_ERR_OR_NULL(p) && !*pos)
seq_puts(seqf, "major minor #blocks name\n\n");
return p;
}
static int show_partition(struct seq_file *seqf, void *v)
{
struct gendisk *sgp = v;
struct disk_part_iter piter;
struct hd_struct *part;
char buf[BDEVNAME_SIZE];
/* Don't show non-partitionable removeable devices or empty devices */
if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
(sgp->flags & GENHD_FL_REMOVABLE)))
return 0;
if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
return 0;
/* show the full disk and all non-0 size partitions of it */
disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
while ((part = disk_part_iter_next(&piter)))
seq_printf(seqf, "%4d %7d %10llu %s\n",
MAJOR(part_devt(part)), MINOR(part_devt(part)),
(unsigned long long)part_nr_sects_read(part) >> 1,
disk_name(sgp, part->partno, buf));
disk_part_iter_exit(&piter);
return 0;
}
static const struct seq_operations partitions_op = {
.start = show_partition_start,
.next = disk_seqf_next,
.stop = disk_seqf_stop,
.show = show_partition
};
#endif
static struct kobject *base_probe(dev_t devt, int *partno, void *data)
{
if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
/* Make old-style 2.4 aliases work */
request_module("block-major-%d", MAJOR(devt));
return NULL;
}
static int __init genhd_device_init(void)
{
int error;
block_class.dev_kobj = sysfs_dev_block_kobj;
error = class_register(&block_class);
if (unlikely(error))
return error;
bdev_map = kobj_map_init(base_probe, &block_class_lock);
blk_dev_init();
register_blkdev(BLOCK_EXT_MAJOR, "blkext");
/* create top-level block dir */
if (!sysfs_deprecated)
block_depr = kobject_create_and_add("block", NULL);
return 0;
}
subsys_initcall(genhd_device_init);
static ssize_t disk_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", disk->minors);
}
static ssize_t disk_ext_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", disk_max_parts(disk));
}
static ssize_t disk_removable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n",
(disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
}
static ssize_t disk_hidden_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n",
(disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
}
static ssize_t disk_ro_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
}
ssize_t part_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct hd_struct *p = dev_to_part(dev);
return sprintf(buf, "%llu\n",
(unsigned long long)part_nr_sects_read(p));
}
ssize_t part_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct hd_struct *p = dev_to_part(dev);
struct request_queue *q = part_to_disk(p)->queue;
struct disk_stats stat;
unsigned int inflight;
part_stat_read_all(p, &stat);
inflight = part_in_flight(q, p);
return sprintf(buf,
"%8lu %8lu %8llu %8u "
"%8lu %8lu %8llu %8u "
"%8u %8u %8u "
"%8lu %8lu %8llu %8u "
"%8lu %8u"
"\n",
stat.ios[STAT_READ],
stat.merges[STAT_READ],
(unsigned long long)stat.sectors[STAT_READ],
(unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
stat.ios[STAT_WRITE],
stat.merges[STAT_WRITE],
(unsigned long long)stat.sectors[STAT_WRITE],
(unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
inflight,
jiffies_to_msecs(stat.io_ticks),
(unsigned int)div_u64(stat.nsecs[STAT_READ] +
stat.nsecs[STAT_WRITE] +
stat.nsecs[STAT_DISCARD] +
stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC),
stat.ios[STAT_DISCARD],
stat.merges[STAT_DISCARD],
(unsigned long long)stat.sectors[STAT_DISCARD],
(unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
stat.ios[STAT_FLUSH],
(unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
}
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct hd_struct *p = dev_to_part(dev);
struct request_queue *q = part_to_disk(p)->queue;
unsigned int inflight[2];
part_in_flight_rw(q, p, inflight);
return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
}
static ssize_t disk_capability_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%x\n", disk->flags);
}
static ssize_t disk_alignment_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
}
static ssize_t disk_discard_alignment_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
}
static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
static DEVICE_ATTR(size, 0444, part_size_show, NULL);
static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
#ifdef CONFIG_FAIL_MAKE_REQUEST
ssize_t part_fail_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct hd_struct *p = dev_to_part(dev);
return sprintf(buf, "%d\n", p->make_it_fail);
}
ssize_t part_fail_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct hd_struct *p = dev_to_part(dev);
int i;
if (count > 0 && sscanf(buf, "%d", &i) > 0)
p->make_it_fail = (i == 0) ? 0 : 1;
return count;
}
static struct device_attribute dev_attr_fail =
__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
#endif /* CONFIG_FAIL_MAKE_REQUEST */
#ifdef CONFIG_FAIL_IO_TIMEOUT
static struct device_attribute dev_attr_fail_timeout =
__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
#endif
static struct attribute *disk_attrs[] = {
&dev_attr_range.attr,
&dev_attr_ext_range.attr,
&dev_attr_removable.attr,
&dev_attr_hidden.attr,
&dev_attr_ro.attr,
&dev_attr_size.attr,
&dev_attr_alignment_offset.attr,
&dev_attr_discard_alignment.attr,
&dev_attr_capability.attr,
&dev_attr_stat.attr,
&dev_attr_inflight.attr,
&dev_attr_badblocks.attr,
#ifdef CONFIG_FAIL_MAKE_REQUEST
&dev_attr_fail.attr,
#endif
#ifdef CONFIG_FAIL_IO_TIMEOUT
&dev_attr_fail_timeout.attr,
#endif
NULL
};
static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct gendisk *disk = dev_to_disk(dev);
if (a == &dev_attr_badblocks.attr && !disk->bb)
return 0;
return a->mode;
}
static struct attribute_group disk_attr_group = {
.attrs = disk_attrs,
.is_visible = disk_visible,
};
static const struct attribute_group *disk_attr_groups[] = {
&disk_attr_group,
NULL
};
/**
* disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
* @disk: disk to replace part_tbl for
* @new_ptbl: new part_tbl to install
*
* Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
* original ptbl is freed using RCU callback.
*
* LOCKING:
* Matching bd_mutex locked or the caller is the only user of @disk.
*/
static void disk_replace_part_tbl(struct gendisk *disk,
struct disk_part_tbl *new_ptbl)
{
struct disk_part_tbl *old_ptbl =
rcu_dereference_protected(disk->part_tbl, 1);
rcu_assign_pointer(disk->part_tbl, new_ptbl);
if (old_ptbl) {
rcu_assign_pointer(old_ptbl->last_lookup, NULL);
kfree_rcu(old_ptbl, rcu_head);
}
}
/**
* disk_expand_part_tbl - expand disk->part_tbl
* @disk: disk to expand part_tbl for
* @partno: expand such that this partno can fit in
*
* Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
* uses RCU to allow unlocked dereferencing for stats and other stuff.
*
* LOCKING:
* Matching bd_mutex locked or the caller is the only user of @disk.
* Might sleep.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int disk_expand_part_tbl(struct gendisk *disk, int partno)
{
struct disk_part_tbl *old_ptbl =
rcu_dereference_protected(disk->part_tbl, 1);
struct disk_part_tbl *new_ptbl;
int len = old_ptbl ? old_ptbl->len : 0;
int i, target;
/*
* check for int overflow, since we can get here from blkpg_ioctl()
* with a user passed 'partno'.
*/
target = partno + 1;
if (target < 0)
return -EINVAL;
/* disk_max_parts() is zero during initialization, ignore if so */
if (disk_max_parts(disk) && target > disk_max_parts(disk))
return -EINVAL;
if (target <= len)
return 0;
new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
disk->node_id);
if (!new_ptbl)
return -ENOMEM;
new_ptbl->len = target;
for (i = 0; i < len; i++)
rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
disk_replace_part_tbl(disk, new_ptbl);
return 0;
}
static void disk_release(struct device *dev)
{
struct gendisk *disk = dev_to_disk(dev);
blk_free_devt(dev->devt);
disk_release_events(disk);
kfree(disk->random);
disk_replace_part_tbl(disk, NULL);
hd_free_part(&disk->part0);
if (disk->queue)
blk_put_queue(disk->queue);
kfree(disk);
}
struct class block_class = {
.name = "block",
};
static char *block_devnode(struct device *dev, umode_t *mode,
kuid_t *uid, kgid_t *gid)
{
struct gendisk *disk = dev_to_disk(dev);
if (disk->fops->devnode)
return disk->fops->devnode(disk, mode);
return NULL;
}
static const struct device_type disk_type = {
.name = "disk",
.groups = disk_attr_groups,
.release = disk_release,
.devnode = block_devnode,
};
#ifdef CONFIG_PROC_FS
/*
* aggregate disk stat collector. Uses the same stats that the sysfs
* entries do, above, but makes them available through one seq_file.
*
* The output looks suspiciously like /proc/partitions with a bunch of
* extra fields.
*/
static int diskstats_show(struct seq_file *seqf, void *v)
{
struct gendisk *gp = v;
struct disk_part_iter piter;
struct hd_struct *hd;
char buf[BDEVNAME_SIZE];
unsigned int inflight;
struct disk_stats stat;
/*
if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
seq_puts(seqf, "major minor name"
" rio rmerge rsect ruse wio wmerge "
"wsect wuse running use aveq"
"\n\n");
*/
disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
while ((hd = disk_part_iter_next(&piter))) {
part_stat_read_all(hd, &stat);
inflight = part_in_flight(gp->queue, hd);
seq_printf(seqf, "%4d %7d %s "
"%lu %lu %lu %u "
"%lu %lu %lu %u "
"%u %u %u "
"%lu %lu %lu %u "
"%lu %u"
"\n",
MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
disk_name(gp, hd->partno, buf),
stat.ios[STAT_READ],
stat.merges[STAT_READ],
stat.sectors[STAT_READ],
(unsigned int)div_u64(stat.nsecs[STAT_READ],
NSEC_PER_MSEC),
stat.ios[STAT_WRITE],
stat.merges[STAT_WRITE],
stat.sectors[STAT_WRITE],
(unsigned int)div_u64(stat.nsecs[STAT_WRITE],
NSEC_PER_MSEC),
inflight,
jiffies_to_msecs(stat.io_ticks),
(unsigned int)div_u64(stat.nsecs[STAT_READ] +
stat.nsecs[STAT_WRITE] +
stat.nsecs[STAT_DISCARD] +
stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC),
stat.ios[STAT_DISCARD],
stat.merges[STAT_DISCARD],
stat.sectors[STAT_DISCARD],
(unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
NSEC_PER_MSEC),
stat.ios[STAT_FLUSH],
(unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
NSEC_PER_MSEC)
);
}
disk_part_iter_exit(&piter);
return 0;
}
static const struct seq_operations diskstats_op = {
.start = disk_seqf_start,
.next = disk_seqf_next,
.stop = disk_seqf_stop,
.show = diskstats_show
};
static int __init proc_genhd_init(void)
{
proc_create_seq("diskstats", 0, NULL, &diskstats_op);
proc_create_seq("partitions", 0, NULL, &partitions_op);
return 0;
}
module_init(proc_genhd_init);
#endif /* CONFIG_PROC_FS */
dev_t blk_lookup_devt(const char *name, int partno)
{
dev_t devt = MKDEV(0, 0);
struct class_dev_iter iter;
struct device *dev;
class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
while ((dev = class_dev_iter_next(&iter))) {
struct gendisk *disk = dev_to_disk(dev);
struct hd_struct *part;
if (strcmp(dev_name(dev), name))
continue;
if (partno < disk->minors) {
/* We need to return the right devno, even
* if the partition doesn't exist yet.
*/
devt = MKDEV(MAJOR(dev->devt),
MINOR(dev->devt) + partno);
break;
}
part = disk_get_part(disk, partno);
if (part) {
devt = part_devt(part);
disk_put_part(part);
break;
}
disk_put_part(part);
}
class_dev_iter_exit(&iter);
return devt;
}
struct gendisk *__alloc_disk_node(int minors, int node_id)
{
struct gendisk *disk;
struct disk_part_tbl *ptbl;
if (minors > DISK_MAX_PARTS) {
printk(KERN_ERR
"block: can't allocate more than %d partitions\n",
DISK_MAX_PARTS);
minors = DISK_MAX_PARTS;
}
disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
if (disk) {
if (!init_part_stats(&disk->part0)) {
kfree(disk);
return NULL;
}
init_rwsem(&disk->lookup_sem);
disk->node_id = node_id;
if (disk_expand_part_tbl(disk, 0)) {
free_part_stats(&disk->part0);
kfree(disk);
return NULL;
}
ptbl = rcu_dereference_protected(disk->part_tbl, 1);
rcu_assign_pointer(ptbl->part[0], &disk->part0);
/*
* set_capacity() and get_capacity() currently don't use
* seqcounter to read/update the part0->nr_sects. Still init
* the counter as we can read the sectors in IO submission
* patch using seqence counters.
*
* TODO: Ideally set_capacity() and get_capacity() should be
* converted to make use of bd_mutex and sequence counters.
*/
seqcount_init(&disk->part0.nr_sects_seq);
if (hd_ref_init(&disk->part0)) {
hd_free_part(&disk->part0);
kfree(disk);
return NULL;
}
disk->minors = minors;
rand_initialize_disk(disk);
disk_to_dev(disk)->class = &block_class;
disk_to_dev(disk)->type = &disk_type;
device_initialize(disk_to_dev(disk));
}
return disk;
}
EXPORT_SYMBOL(__alloc_disk_node);
struct kobject *get_disk_and_module(struct gendisk *disk)
{
struct module *owner;
struct kobject *kobj;
if (!disk->fops)
return NULL;
owner = disk->fops->owner;
if (owner && !try_module_get(owner))
return NULL;
kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
if (kobj == NULL) {
module_put(owner);
return NULL;
}
return kobj;
}
EXPORT_SYMBOL(get_disk_and_module);
void put_disk(struct gendisk *disk)
{
if (disk)
kobject_put(&disk_to_dev(disk)->kobj);
}
EXPORT_SYMBOL(put_disk);
/*
* This is a counterpart of get_disk_and_module() and thus also of
* get_gendisk().
*/
void put_disk_and_module(struct gendisk *disk)
{
if (disk) {
struct module *owner = disk->fops->owner;
put_disk(disk);
module_put(owner);
}
}
EXPORT_SYMBOL(put_disk_and_module);
static void set_disk_ro_uevent(struct gendisk *gd, int ro)
{
char event[] = "DISK_RO=1";
char *envp[] = { event, NULL };
if (!ro)
event[8] = '0';
kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
}
void set_device_ro(struct block_device *bdev, int flag)
{
bdev->bd_part->policy = flag;
}
EXPORT_SYMBOL(set_device_ro);
void set_disk_ro(struct gendisk *disk, int flag)
{
struct disk_part_iter piter;
struct hd_struct *part;
if (disk->part0.policy != flag) {
set_disk_ro_uevent(disk, flag);
disk->part0.policy = flag;
}
disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
while ((part = disk_part_iter_next(&piter)))
part->policy = flag;
disk_part_iter_exit(&piter);
}
EXPORT_SYMBOL(set_disk_ro);
int bdev_read_only(struct block_device *bdev)
{
if (!bdev)
return 0;
return bdev->bd_part->policy;
}
EXPORT_SYMBOL(bdev_read_only);
int invalidate_partition(struct gendisk *disk, int partno)
{
int res = 0;
struct block_device *bdev = bdget_disk(disk, partno);
if (bdev) {
fsync_bdev(bdev);
res = __invalidate_device(bdev, true);
bdput(bdev);
}
return res;
}
EXPORT_SYMBOL(invalidate_partition);
/*
* Disk events - monitor disk events like media change and eject request.
*/
struct disk_events {
struct list_head node; /* all disk_event's */
struct gendisk *disk; /* the associated disk */
spinlock_t lock;
struct mutex block_mutex; /* protects blocking */
int block; /* event blocking depth */
unsigned int pending; /* events already sent out */
unsigned int clearing; /* events being cleared */
long poll_msecs; /* interval, -1 for default */
struct delayed_work dwork;
};
static const char *disk_events_strs[] = {
[ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
[ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
};
static char *disk_uevents[] = {
[ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
[ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
};
/* list of all disk_events */
static DEFINE_MUTEX(disk_events_mutex);
static LIST_HEAD(disk_events);
/* disable in-kernel polling by default */
static unsigned long disk_events_dfl_poll_msecs;
static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
{
struct disk_events *ev = disk->ev;
long intv_msecs = 0;
/*
* If device-specific poll interval is set, always use it. If
* the default is being used, poll if the POLL flag is set.
*/
if (ev->poll_msecs >= 0)
intv_msecs = ev->poll_msecs;
else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
intv_msecs = disk_events_dfl_poll_msecs;
return msecs_to_jiffies(intv_msecs);
}
/**
* disk_block_events - block and flush disk event checking
* @disk: disk to block events for
*
* On return from this function, it is guaranteed that event checking
* isn't in progress and won't happen until unblocked by
* disk_unblock_events(). Events blocking is counted and the actual
* unblocking happens after the matching number of unblocks are done.
*
* Note that this intentionally does not block event checking from
* disk_clear_events().
*
* CONTEXT:
* Might sleep.
*/
void disk_block_events(struct gendisk *disk)
{
struct disk_events *ev = disk->ev;
unsigned long flags;
bool cancel;
if (!ev)
return;
/*
* Outer mutex ensures that the first blocker completes canceling
* the event work before further blockers are allowed to finish.
*/
mutex_lock(&ev->block_mutex);
spin_lock_irqsave(&ev->lock, flags);
cancel = !ev->block++;
spin_unlock_irqrestore(&ev->lock, flags);
if (cancel)
cancel_delayed_work_sync(&disk->ev->dwork);
mutex_unlock(&ev->block_mutex);
}
static void __disk_unblock_events(struct gendisk *disk, bool check_now)
{
struct disk_events *ev = disk->ev;
unsigned long intv;
unsigned long flags;
spin_lock_irqsave(&ev->lock, flags);
if (WARN_ON_ONCE(ev->block <= 0))
goto out_unlock;
if (--ev->block)
goto out_unlock;
intv = disk_events_poll_jiffies(disk);
if (check_now)
queue_delayed_work(system_freezable_power_efficient_wq,
&ev->dwork, 0);
else if (intv)
queue_delayed_work(system_freezable_power_efficient_wq,
&ev->dwork, intv);
out_unlock:
spin_unlock_irqrestore(&ev->lock, flags);
}
/**
* disk_unblock_events - unblock disk event checking
* @disk: disk to unblock events for
*
* Undo disk_block_events(). When the block count reaches zero, it
* starts events polling if configured.
*
* CONTEXT:
* Don't care. Safe to call from irq context.
*/
void disk_unblock_events(struct gendisk *disk)
{
if (disk->ev)
__disk_unblock_events(disk, false);
}
/**
* disk_flush_events - schedule immediate event checking and flushing
* @disk: disk to check and flush events for
* @mask: events to flush
*
* Schedule immediate event checking on @disk if not blocked. Events in
* @mask are scheduled to be cleared from the driver. Note that this
* doesn't clear the events from @disk->ev.
*
* CONTEXT:
* If @mask is non-zero must be called with bdev->bd_mutex held.
*/
void disk_flush_events(struct gendisk *disk, unsigned int mask)
{
struct disk_events *ev = disk->ev;
if (!ev)
return;
spin_lock_irq(&ev->lock);
ev->clearing |= mask;
if (!ev->block)
mod_delayed_work(system_freezable_power_efficient_wq,
&ev->dwork, 0);
spin_unlock_irq(&ev->lock);
}
/**
* disk_clear_events - synchronously check, clear and return pending events
* @disk: disk to fetch and clear events from
* @mask: mask of events to be fetched and cleared
*
* Disk events are synchronously checked and pending events in @mask
* are cleared and returned. This ignores the block count.
*
* CONTEXT:
* Might sleep.
*/
unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
{
const struct block_device_operations *bdops = disk->fops;
struct disk_events *ev = disk->ev;
unsigned int pending;
unsigned int clearing = mask;
if (!ev) {
/* for drivers still using the old ->media_changed method */
if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
bdops->media_changed && bdops->media_changed(disk))
return DISK_EVENT_MEDIA_CHANGE;
return 0;
}
disk_block_events(disk);
/*
* store the union of mask and ev->clearing on the stack so that the
* race with disk_flush_events does not cause ambiguity (ev->clearing
* can still be modified even if events are blocked).
*/
spin_lock_irq(&ev->lock);
clearing |= ev->clearing;
ev->clearing = 0;
spin_unlock_irq(&ev->lock);
disk_check_events(ev, &clearing);
/*
* if ev->clearing is not 0, the disk_flush_events got called in the
* middle of this function, so we want to run the workfn without delay.
*/
__disk_unblock_events(disk, ev->clearing ? true : false);
/* then, fetch and clear pending events */
spin_lock_irq(&ev->lock);
pending = ev->pending & mask;
ev->pending &= ~mask;
spin_unlock_irq(&ev->lock);
WARN_ON_ONCE(clearing & mask);
return pending;
}
/*
* Separate this part out so that a different pointer for clearing_ptr can be
* passed in for disk_clear_events.
*/
static void disk_events_workfn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
disk_check_events(ev, &ev->clearing);
}
static void disk_check_events(struct disk_events *ev,
unsigned int *clearing_ptr)
{
struct gendisk *disk = ev->disk;
char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
unsigned int clearing = *clearing_ptr;
unsigned int events;
unsigned long intv;
int nr_events = 0, i;
/* check events */
events = disk->fops->check_events(disk, clearing);
/* accumulate pending events and schedule next poll if necessary */
spin_lock_irq(&ev->lock);
events &= ~ev->pending;
ev->pending |= events;
*clearing_ptr &= ~clearing;
intv = disk_events_poll_jiffies(disk);
if (!ev->block && intv)
queue_delayed_work(system_freezable_power_efficient_wq,
&ev->dwork, intv);
spin_unlock_irq(&ev->lock);
/*
* Tell userland about new events. Only the events listed in
* @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
* is set. Otherwise, events are processed internally but never
* get reported to userland.
*/
for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
if ((events & disk->events & (1 << i)) &&
(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
envp[nr_events++] = disk_uevents[i];
if (nr_events)
kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
}
/*
* A disk events enabled device has the following sysfs nodes under
* its /sys/block/X/ directory.
*
* events : list of all supported events
* events_async : list of events which can be detected w/o polling
* (always empty, only for backwards compatibility)
* events_poll_msecs : polling interval, 0: disable, -1: system default
*/
static ssize_t __disk_events_show(unsigned int events, char *buf)
{
const char *delim = "";
ssize_t pos = 0;
int i;
for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
if (events & (1 << i)) {
pos += sprintf(buf + pos, "%s%s",
delim, disk_events_strs[i]);
delim = " ";
}
if (pos)
pos += sprintf(buf + pos, "\n");
return pos;
}
static ssize_t disk_events_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
return 0;
return __disk_events_show(disk->events, buf);
}
static ssize_t disk_events_async_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return 0;
}
static ssize_t disk_events_poll_msecs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
if (!disk->ev)
return sprintf(buf, "-1\n");
return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
}
static ssize_t disk_events_poll_msecs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct gendisk *disk = dev_to_disk(dev);
long intv;
if (!count || !sscanf(buf, "%ld", &intv))
return -EINVAL;
if (intv < 0 && intv != -1)
return -EINVAL;
if (!disk->ev)
return -ENODEV;
disk_block_events(disk);
disk->ev->poll_msecs = intv;
__disk_unblock_events(disk, true);
return count;
}
static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
static const DEVICE_ATTR(events_poll_msecs, 0644,
disk_events_poll_msecs_show,
disk_events_poll_msecs_store);
static const struct attribute *disk_events_attrs[] = {
&dev_attr_events.attr,
&dev_attr_events_async.attr,
&dev_attr_events_poll_msecs.attr,
NULL,
};
/*
* The default polling interval can be specified by the kernel
* parameter block.events_dfl_poll_msecs which defaults to 0
* (disable). This can also be modified runtime by writing to
* /sys/module/block/parameters/events_dfl_poll_msecs.
*/
static int disk_events_set_dfl_poll_msecs(const char *val,
const struct kernel_param *kp)
{
struct disk_events *ev;
int ret;
ret = param_set_ulong(val, kp);
if (ret < 0)
return ret;
mutex_lock(&disk_events_mutex);
list_for_each_entry(ev, &disk_events, node)
disk_flush_events(ev->disk, 0);
mutex_unlock(&disk_events_mutex);
return 0;
}
static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
.set = disk_events_set_dfl_poll_msecs,
.get = param_get_ulong,
};
#undef MODULE_PARAM_PREFIX
#define MODULE_PARAM_PREFIX "block."
module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
&disk_events_dfl_poll_msecs, 0644);
/*
* disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
*/
static void disk_alloc_events(struct gendisk *disk)
{
struct disk_events *ev;
if (!disk->fops->check_events || !disk->events)
return;
ev = kzalloc(sizeof(*ev), GFP_KERNEL);
if (!ev) {
pr_warn("%s: failed to initialize events\n", disk->disk_name);
return;
}
INIT_LIST_HEAD(&ev->node);
ev->disk = disk;
spin_lock_init(&ev->lock);
mutex_init(&ev->block_mutex);
ev->block = 1;
ev->poll_msecs = -1;
INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
disk->ev = ev;
}
static void disk_add_events(struct gendisk *disk)
{
/* FIXME: error handling */
if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
pr_warn("%s: failed to create sysfs files for events\n",
disk->disk_name);
if (!disk->ev)
return;
mutex_lock(&disk_events_mutex);
list_add_tail(&disk->ev->node, &disk_events);
mutex_unlock(&disk_events_mutex);
/*
* Block count is initialized to 1 and the following initial
* unblock kicks it into action.
*/
__disk_unblock_events(disk, true);
}
static void disk_del_events(struct gendisk *disk)
{
if (disk->ev) {
disk_block_events(disk);
mutex_lock(&disk_events_mutex);
list_del_init(&disk->ev->node);
mutex_unlock(&disk_events_mutex);
}
sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
}
static void disk_release_events(struct gendisk *disk)
{
/* the block count should be 1 from disk_del_events() */
WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
kfree(disk->ev);
}