OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_cik.c

458 lines
12 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/printk.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "cik_structs.h"
#include "oss/oss_2_4_sh_mask.h"
static inline struct cik_mqd *get_mqd(void *mqd)
{
return (struct cik_mqd *)mqd;
}
static int init_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
uint64_t addr;
struct cik_mqd *m;
int retval;
BUG_ON(!mm || !q || !mqd);
pr_debug("kfd: In func %s\n", __func__);
retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
mqd_mem_obj);
if (retval != 0)
return -ENOMEM;
m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
addr = (*mqd_mem_obj)->gpu_addr;
memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
m->header = 0xC0310800;
m->compute_pipelinestat_enable = 1;
m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
/*
* Make sure to use the last queue state saved on mqd when the cp
* reassigns the queue, so when queue is switched on/off (e.g over
* subscription or quantum timeout) the context will be consistent
*/
m->cp_hqd_persistent_state =
DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
m->cp_mqd_base_addr_lo = lower_32_bits(addr);
m->cp_mqd_base_addr_hi = upper_32_bits(addr);
m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
/* Although WinKFD writes this, I suspect it should not be necessary */
m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
QUANTUM_DURATION(10);
/*
* Pipe Priority
* Identifies the pipe relative priority when this queue is connected
* to the pipeline. The pipe priority is against the GFX pipe and HP3D.
* In KFD we are using a fixed pipe priority set to CS_MEDIUM.
* 0 = CS_LOW (typically below GFX)
* 1 = CS_MEDIUM (typically between HP3D and GFX
* 2 = CS_HIGH (typically above HP3D)
*/
m->cp_hqd_pipe_priority = 1;
m->cp_hqd_queue_priority = 15;
if (q->format == KFD_QUEUE_FORMAT_AQL)
m->cp_hqd_iq_rptr = AQL_ENABLE;
*mqd = m;
if (gart_addr != NULL)
*gart_addr = addr;
retval = mm->update_mqd(mm, m, q);
return retval;
}
static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
int retval;
struct cik_sdma_rlc_registers *m;
BUG_ON(!mm || !mqd || !mqd_mem_obj);
retval = kfd_gtt_sa_allocate(mm->dev,
sizeof(struct cik_sdma_rlc_registers),
mqd_mem_obj);
if (retval != 0)
return -ENOMEM;
m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
*mqd = m;
if (gart_addr != NULL)
*gart_addr = (*mqd_mem_obj)->gpu_addr;
retval = mm->update_mqd(mm, m, q);
return retval;
}
static void uninit_mqd(struct mqd_manager *mm, void *mqd,
struct kfd_mem_obj *mqd_mem_obj)
{
BUG_ON(!mm || !mqd);
kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
}
static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct kfd_mem_obj *mqd_mem_obj)
{
BUG_ON(!mm || !mqd);
kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
}
static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr)
{
return mm->dev->kfd2kgd->hqd_load
(mm->dev->kgd, mqd, pipe_id, queue_id, wptr);
}
static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t __user *wptr)
{
return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
}
static int update_mqd(struct mqd_manager *mm, void *mqd,
struct queue_properties *q)
{
struct cik_mqd *m;
BUG_ON(!mm || !q || !mqd);
pr_debug("kfd: In func %s\n", __func__);
m = get_mqd(mqd);
m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
/*
* Calculating queue size which is log base 2 of actual queue size -1
* dwords and another -1 for ffs
*/
m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
- 1 - 1;
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
DOORBELL_OFFSET(q->doorbell_off);
m->cp_hqd_vmid = q->vmid;
if (q->format == KFD_QUEUE_FORMAT_AQL) {
m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
}
m->cp_hqd_active = 0;
q->is_active = false;
if (q->queue_size > 0 &&
q->queue_address != 0 &&
q->queue_percent > 0) {
m->cp_hqd_active = 1;
q->is_active = true;
}
return 0;
}
static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct queue_properties *q)
{
struct cik_sdma_rlc_registers *m;
BUG_ON(!mm || !mqd || !q);
m = get_sdma_mqd(mqd);
m->sdma_rlc_rb_cntl = ffs(q->queue_size / sizeof(unsigned int)) <<
SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->sdma_rlc_doorbell = q->doorbell_off <<
SDMA0_RLC0_DOORBELL__OFFSET__SHIFT |
1 << SDMA0_RLC0_DOORBELL__ENABLE__SHIFT;
m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
m->sdma_engine_id = q->sdma_engine_id;
m->sdma_queue_id = q->sdma_queue_id;
q->is_active = false;
if (q->queue_size > 0 &&
q->queue_address != 0 &&
q->queue_percent > 0) {
m->sdma_rlc_rb_cntl |=
1 << SDMA0_RLC0_RB_CNTL__RB_ENABLE__SHIFT;
q->is_active = true;
}
return 0;
}
static int destroy_mqd(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type,
unsigned int timeout, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, type, timeout,
pipe_id, queue_id);
}
/*
* preempt type here is ignored because there is only one way
* to preempt sdma queue
*/
static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type,
unsigned int timeout, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
}
static bool is_occupied(struct mqd_manager *mm, void *mqd,
uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
pipe_id, queue_id);
}
static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
}
/*
* HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
* The HIQ queue in Kaveri is using the same MQD structure as all the user mode
* queues but with different initial values.
*/
static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
uint64_t addr;
struct cik_mqd *m;
int retval;
BUG_ON(!mm || !q || !mqd || !mqd_mem_obj);
pr_debug("kfd: In func %s\n", __func__);
retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
mqd_mem_obj);
if (retval != 0)
return -ENOMEM;
m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
addr = (*mqd_mem_obj)->gpu_addr;
memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
m->header = 0xC0310800;
m->compute_pipelinestat_enable = 1;
m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
PRELOAD_REQ;
m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
QUANTUM_DURATION(10);
m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN;
m->cp_mqd_base_addr_lo = lower_32_bits(addr);
m->cp_mqd_base_addr_hi = upper_32_bits(addr);
m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
/*
* Pipe Priority
* Identifies the pipe relative priority when this queue is connected
* to the pipeline. The pipe priority is against the GFX pipe and HP3D.
* In KFD we are using a fixed pipe priority set to CS_MEDIUM.
* 0 = CS_LOW (typically below GFX)
* 1 = CS_MEDIUM (typically between HP3D and GFX
* 2 = CS_HIGH (typically above HP3D)
*/
m->cp_hqd_pipe_priority = 1;
m->cp_hqd_queue_priority = 15;
*mqd = m;
if (gart_addr)
*gart_addr = addr;
retval = mm->update_mqd(mm, m, q);
return retval;
}
static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
struct queue_properties *q)
{
struct cik_mqd *m;
BUG_ON(!mm || !q || !mqd);
pr_debug("kfd: In func %s\n", __func__);
m = get_mqd(mqd);
m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
DEFAULT_MIN_AVAIL_SIZE |
PRIV_STATE |
KMD_QUEUE;
/*
* Calculating queue size which is log base 2 of actual queue
* size -1 dwords
*/
m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
- 1 - 1;
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
DOORBELL_OFFSET(q->doorbell_off);
m->cp_hqd_vmid = q->vmid;
m->cp_hqd_active = 0;
q->is_active = false;
if (q->queue_size > 0 &&
q->queue_address != 0 &&
q->queue_percent > 0) {
m->cp_hqd_active = 1;
q->is_active = true;
}
return 0;
}
struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
struct cik_sdma_rlc_registers *m;
BUG_ON(!mqd);
m = (struct cik_sdma_rlc_registers *)mqd;
return m;
}
struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
struct kfd_dev *dev)
{
struct mqd_manager *mqd;
BUG_ON(!dev);
BUG_ON(type >= KFD_MQD_TYPE_MAX);
pr_debug("kfd: In func %s\n", __func__);
mqd = kzalloc(sizeof(struct mqd_manager), GFP_KERNEL);
if (!mqd)
return NULL;
mqd->dev = dev;
switch (type) {
case KFD_MQD_TYPE_CP:
case KFD_MQD_TYPE_COMPUTE:
mqd->init_mqd = init_mqd;
mqd->uninit_mqd = uninit_mqd;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd;
mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied;
break;
case KFD_MQD_TYPE_HIQ:
mqd->init_mqd = init_mqd_hiq;
mqd->uninit_mqd = uninit_mqd;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd_hiq;
mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied;
break;
case KFD_MQD_TYPE_SDMA:
mqd->init_mqd = init_mqd_sdma;
mqd->uninit_mqd = uninit_mqd_sdma;
mqd->load_mqd = load_mqd_sdma;
mqd->update_mqd = update_mqd_sdma;
mqd->destroy_mqd = destroy_mqd_sdma;
mqd->is_occupied = is_occupied_sdma;
break;
default:
kfree(mqd);
return NULL;
}
return mqd;
}