OpenCloudOS-Kernel/drivers/scsi/csiostor/csio_hw_t4.c

404 lines
13 KiB
C

/*
* This file is part of the Chelsio FCoE driver for Linux.
*
* Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "csio_hw.h"
#include "csio_init.h"
/*
* Return the specified PCI-E Configuration Space register from our Physical
* Function. We try first via a Firmware LDST Command since we prefer to let
* the firmware own all of these registers, but if that fails we go for it
* directly ourselves.
*/
static uint32_t
csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg)
{
u32 val = 0;
struct csio_mb *mbp;
int rv;
struct fw_ldst_cmd *ldst_cmd;
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
if (!mbp) {
CSIO_INC_STATS(hw, n_err_nomem);
pci_read_config_dword(hw->pdev, reg, &val);
return val;
}
csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
rv = csio_mb_issue(hw, mbp);
/*
* If the LDST Command suucceeded, exctract the returned register
* value. Otherwise read it directly ourself.
*/
if (rv == 0) {
ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
val = ntohl(ldst_cmd->u.pcie.data[0]);
} else
pci_read_config_dword(hw->pdev, reg, &val);
mempool_free(mbp, hw->mb_mempool);
return val;
}
static int
csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win)
{
u32 bar0;
u32 mem_win_base;
/*
* Truncation intentional: we only read the bottom 32-bits of the
* 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
* read BAR0 instead of using pci_resource_start() because we could be
* operating from within a Virtual Machine which is trapping our
* accesses to our Configuration Space and we need to set up the PCI-E
* Memory Window decoders with the actual addresses which will be
* coming across the PCI-E link.
*/
bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
mem_win_base = bar0 + MEMWIN_BASE;
/*
* Set up memory window for accessing adapter memory ranges. (Read
* back MA register to ensure that changes propagate before we attempt
* to use the new values.)
*/
csio_wr_reg32(hw, mem_win_base | BIR(0) |
WINDOW(ilog2(MEMWIN_APERTURE) - 10),
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
csio_rd_reg32(hw,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
return 0;
}
/*
* Interrupt handler for the PCIE module.
*/
static void
csio_t4_pcie_intr_handler(struct csio_hw *hw)
{
static struct intr_info sysbus_intr_info[] = {
{ RNPP, "RXNP array parity error", -1, 1 },
{ RPCP, "RXPC array parity error", -1, 1 },
{ RCIP, "RXCIF array parity error", -1, 1 },
{ RCCP, "Rx completions control array parity error", -1, 1 },
{ RFTP, "RXFT array parity error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info pcie_port_intr_info[] = {
{ TPCP, "TXPC array parity error", -1, 1 },
{ TNPP, "TXNP array parity error", -1, 1 },
{ TFTP, "TXFT array parity error", -1, 1 },
{ TCAP, "TXCA array parity error", -1, 1 },
{ TCIP, "TXCIF array parity error", -1, 1 },
{ RCAP, "RXCA array parity error", -1, 1 },
{ OTDD, "outbound request TLP discarded", -1, 1 },
{ RDPE, "Rx data parity error", -1, 1 },
{ TDUE, "Tx uncorrectable data error", -1, 1 },
{ 0, NULL, 0, 0 }
};
static struct intr_info pcie_intr_info[] = {
{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
{ MSIDATAPERR, "MSI data parity error", -1, 1 },
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ FIDPERR, "PCI FID parity error", -1, 1 },
{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
{ PCIESINT, "PCI core secondary fault", -1, 1 },
{ PCIEPINT, "PCI core primary fault", -1, 1 },
{ UNXSPLCPLERR, "PCI unexpected split completion error", -1,
0 },
{ 0, NULL, 0, 0 }
};
int fat;
fat = csio_handle_intr_status(hw,
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
sysbus_intr_info) +
csio_handle_intr_status(hw,
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
pcie_port_intr_info) +
csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info);
if (fat)
csio_hw_fatal_err(hw);
}
/*
* csio_t4_flash_cfg_addr - return the address of the flash configuration file
* @hw: the HW module
*
* Return the address within the flash where the Firmware Configuration
* File is stored.
*/
static unsigned int
csio_t4_flash_cfg_addr(struct csio_hw *hw)
{
return FLASH_CFG_OFFSET;
}
/*
* csio_t4_mc_read - read from MC through backdoor accesses
* @hw: the hw module
* @idx: not used for T4 adapter
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
static int
csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
uint64_t *ecc)
{
int i;
if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST)
return -EBUSY;
csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR);
csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN);
csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN);
csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1),
MC_BIST_CMD);
i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST,
0, 10, 1, NULL);
if (i)
return i;
#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
for (i = 15; i >= 0; i--)
*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
if (ecc)
*ecc = csio_rd_reg64(hw, MC_DATA(16));
#undef MC_DATA
return 0;
}
/*
* csio_t4_edc_read - read from EDC through backdoor accesses
* @hw: the hw module
* @idx: which EDC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
static int
csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
uint64_t *ecc)
{
int i;
idx *= EDC_STRIDE;
if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST)
return -EBUSY;
csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx);
csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx);
csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx);
csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST,
EDC_BIST_CMD + idx);
i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST,
0, 10, 1, NULL);
if (i)
return i;
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
for (i = 15; i >= 0; i--)
*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
if (ecc)
*ecc = csio_rd_reg64(hw, EDC_DATA(16));
#undef EDC_DATA
return 0;
}
/*
* csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
* @hw: the csio_hw
* @win: PCI-E memory Window to use
* @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
* @addr: address within indicated memory type
* @len: amount of memory to transfer
* @buf: host memory buffer
* @dir: direction of transfer 1 => read, 0 => write
*
* Reads/writes an [almost] arbitrary memory region in the firmware: the
* firmware memory address, length and host buffer must be aligned on
* 32-bit boudaries. The memory is transferred as a raw byte sequence
* from/to the firmware's memory. If this memory contains data
* structures which contain multi-byte integers, it's the callers
* responsibility to perform appropriate byte order conversions.
*/
static int
csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
u32 len, uint32_t *buf, int dir)
{
u32 pos, start, offset, memoffset, bar0;
u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base;
/*
* Argument sanity checks ...
*/
if ((addr & 0x3) || (len & 0x3))
return -EINVAL;
/* Offset into the region of memory which is being accessed
* MEM_EDC0 = 0
* MEM_EDC1 = 1
* MEM_MC = 2 -- T4
*/
edc_size = EDRAM_SIZE_GET(csio_rd_reg32(hw, MA_EDRAM0_BAR));
if (mtype != MEM_MC1)
memoffset = (mtype * (edc_size * 1024 * 1024));
else {
mc_size = EXT_MEM_SIZE_GET(csio_rd_reg32(hw,
MA_EXT_MEMORY_BAR));
memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
}
/* Determine the PCIE_MEM_ACCESS_OFFSET */
addr = addr + memoffset;
/*
* Each PCI-E Memory Window is programmed with a window size -- or
* "aperture" -- which controls the granularity of its mapping onto
* adapter memory. We need to grab that aperture in order to know
* how to use the specified window. The window is also programmed
* with the base address of the Memory Window in BAR0's address
* space. For T4 this is an absolute PCI-E Bus Address. For T5
* the address is relative to BAR0.
*/
mem_reg = csio_rd_reg32(hw,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
mem_aperture = 1 << (WINDOW(mem_reg) + 10);
mem_base = GET_PCIEOFST(mem_reg) << 10;
bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
mem_base -= bar0;
start = addr & ~(mem_aperture-1);
offset = addr - start;
csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
mem_reg, mem_aperture);
csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
mem_base, memoffset);
csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n",
bar0, start, offset);
csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
mtype, addr, len);
for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
/*
* Move PCI-E Memory Window to our current transfer
* position. Read it back to ensure that changes propagate
* before we attempt to use the new value.
*/
csio_wr_reg32(hw, pos,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
csio_rd_reg32(hw,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
while (offset < mem_aperture && len > 0) {
if (dir)
*buf++ = csio_rd_reg32(hw, mem_base + offset);
else
csio_wr_reg32(hw, *buf++, mem_base + offset);
offset += sizeof(__be32);
len -= sizeof(__be32);
}
}
return 0;
}
/*
* csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values
* @hw: the csio_hw
*
* This function creates files in the debugfs with external memory region MC.
*/
static void
csio_t4_dfs_create_ext_mem(struct csio_hw *hw)
{
u32 size;
int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE);
if (i & EXT_MEM_ENABLE) {
size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR);
csio_add_debugfs_mem(hw, "mc", MEM_MC,
EXT_MEM_SIZE_GET(size));
}
}
/* T4 adapter specific function */
struct csio_hw_chip_ops t4_ops = {
.chip_set_mem_win = csio_t4_set_mem_win,
.chip_pcie_intr_handler = csio_t4_pcie_intr_handler,
.chip_flash_cfg_addr = csio_t4_flash_cfg_addr,
.chip_mc_read = csio_t4_mc_read,
.chip_edc_read = csio_t4_edc_read,
.chip_memory_rw = csio_t4_memory_rw,
.chip_dfs_create_ext_mem = csio_t4_dfs_create_ext_mem,
};