OpenCloudOS-Kernel/drivers/clk/renesas/renesas-cpg-mssr.c

1082 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Renesas Clock Pulse Generator / Module Standby and Software Reset
*
* Copyright (C) 2015 Glider bvba
*
* Based on clk-mstp.c, clk-rcar-gen2.c, and clk-rcar-gen3.c
*
* Copyright (C) 2013 Ideas On Board SPRL
* Copyright (C) 2015 Renesas Electronics Corp.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clk/renesas.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_clock.h>
#include <linux/pm_domain.h>
#include <linux/psci.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>
#include <dt-bindings/clock/renesas-cpg-mssr.h>
#include "renesas-cpg-mssr.h"
#include "clk-div6.h"
#ifdef DEBUG
#define WARN_DEBUG(x) WARN_ON(x)
#else
#define WARN_DEBUG(x) do { } while (0)
#endif
/*
* Module Standby and Software Reset register offets.
*
* If the registers exist, these are valid for SH-Mobile, R-Mobile,
* R-Car Gen2, R-Car Gen3, and RZ/G1.
* These are NOT valid for R-Car Gen1 and RZ/A1!
*/
/*
* Module Stop Status Register offsets
*/
static const u16 mstpsr[] = {
0x030, 0x038, 0x040, 0x048, 0x04C, 0x03C, 0x1C0, 0x1C4,
0x9A0, 0x9A4, 0x9A8, 0x9AC,
};
#define MSTPSR(i) mstpsr[i]
/*
* System Module Stop Control Register offsets
*/
static const u16 smstpcr[] = {
0x130, 0x134, 0x138, 0x13C, 0x140, 0x144, 0x148, 0x14C,
0x990, 0x994, 0x998, 0x99C,
};
#define SMSTPCR(i) smstpcr[i]
/*
* Standby Control Register offsets (RZ/A)
* Base address is FRQCR register
*/
static const u16 stbcr[] = {
0xFFFF/*dummy*/, 0x010, 0x014, 0x410, 0x414, 0x418, 0x41C, 0x420,
0x424, 0x428, 0x42C,
};
#define STBCR(i) stbcr[i]
/*
* Software Reset Register offsets
*/
static const u16 srcr[] = {
0x0A0, 0x0A8, 0x0B0, 0x0B8, 0x0BC, 0x0C4, 0x1C8, 0x1CC,
0x920, 0x924, 0x928, 0x92C,
};
#define SRCR(i) srcr[i]
/* Realtime Module Stop Control Register offsets */
#define RMSTPCR(i) (smstpcr[i] - 0x20)
/* Modem Module Stop Control Register offsets (r8a73a4) */
#define MMSTPCR(i) (smstpcr[i] + 0x20)
/* Software Reset Clearing Register offsets */
#define SRSTCLR(i) (0x940 + (i) * 4)
/**
* Clock Pulse Generator / Module Standby and Software Reset Private Data
*
* @rcdev: Optional reset controller entity
* @dev: CPG/MSSR device
* @base: CPG/MSSR register block base address
* @rmw_lock: protects RMW register accesses
* @clks: Array containing all Core and Module Clocks
* @num_core_clks: Number of Core Clocks in clks[]
* @num_mod_clks: Number of Module Clocks in clks[]
* @last_dt_core_clk: ID of the last Core Clock exported to DT
* @notifiers: Notifier chain to save/restore clock state for system resume
* @smstpcr_saved[].mask: Mask of SMSTPCR[] bits under our control
* @smstpcr_saved[].val: Saved values of SMSTPCR[]
* @stbyctrl: This device has Standby Control Registers
*/
struct cpg_mssr_priv {
#ifdef CONFIG_RESET_CONTROLLER
struct reset_controller_dev rcdev;
#endif
struct device *dev;
void __iomem *base;
spinlock_t rmw_lock;
struct device_node *np;
struct clk **clks;
unsigned int num_core_clks;
unsigned int num_mod_clks;
unsigned int last_dt_core_clk;
bool stbyctrl;
struct raw_notifier_head notifiers;
struct {
u32 mask;
u32 val;
} smstpcr_saved[ARRAY_SIZE(smstpcr)];
};
static struct cpg_mssr_priv *cpg_mssr_priv;
/**
* struct mstp_clock - MSTP gating clock
* @hw: handle between common and hardware-specific interfaces
* @index: MSTP clock number
* @priv: CPG/MSSR private data
*/
struct mstp_clock {
struct clk_hw hw;
u32 index;
struct cpg_mssr_priv *priv;
};
#define to_mstp_clock(_hw) container_of(_hw, struct mstp_clock, hw)
static int cpg_mstp_clock_endisable(struct clk_hw *hw, bool enable)
{
struct mstp_clock *clock = to_mstp_clock(hw);
struct cpg_mssr_priv *priv = clock->priv;
unsigned int reg = clock->index / 32;
unsigned int bit = clock->index % 32;
struct device *dev = priv->dev;
u32 bitmask = BIT(bit);
unsigned long flags;
unsigned int i;
u32 value;
dev_dbg(dev, "MSTP %u%02u/%pC %s\n", reg, bit, hw->clk,
enable ? "ON" : "OFF");
spin_lock_irqsave(&priv->rmw_lock, flags);
if (priv->stbyctrl) {
value = readb(priv->base + STBCR(reg));
if (enable)
value &= ~bitmask;
else
value |= bitmask;
writeb(value, priv->base + STBCR(reg));
/* dummy read to ensure write has completed */
readb(priv->base + STBCR(reg));
barrier_data(priv->base + STBCR(reg));
} else {
value = readl(priv->base + SMSTPCR(reg));
if (enable)
value &= ~bitmask;
else
value |= bitmask;
writel(value, priv->base + SMSTPCR(reg));
}
spin_unlock_irqrestore(&priv->rmw_lock, flags);
if (!enable || priv->stbyctrl)
return 0;
for (i = 1000; i > 0; --i) {
if (!(readl(priv->base + MSTPSR(reg)) & bitmask))
break;
cpu_relax();
}
if (!i) {
dev_err(dev, "Failed to enable SMSTP %p[%d]\n",
priv->base + SMSTPCR(reg), bit);
return -ETIMEDOUT;
}
return 0;
}
static int cpg_mstp_clock_enable(struct clk_hw *hw)
{
return cpg_mstp_clock_endisable(hw, true);
}
static void cpg_mstp_clock_disable(struct clk_hw *hw)
{
cpg_mstp_clock_endisable(hw, false);
}
static int cpg_mstp_clock_is_enabled(struct clk_hw *hw)
{
struct mstp_clock *clock = to_mstp_clock(hw);
struct cpg_mssr_priv *priv = clock->priv;
u32 value;
if (priv->stbyctrl)
value = readb(priv->base + STBCR(clock->index / 32));
else
value = readl(priv->base + MSTPSR(clock->index / 32));
return !(value & BIT(clock->index % 32));
}
static const struct clk_ops cpg_mstp_clock_ops = {
.enable = cpg_mstp_clock_enable,
.disable = cpg_mstp_clock_disable,
.is_enabled = cpg_mstp_clock_is_enabled,
};
static
struct clk *cpg_mssr_clk_src_twocell_get(struct of_phandle_args *clkspec,
void *data)
{
unsigned int clkidx = clkspec->args[1];
struct cpg_mssr_priv *priv = data;
struct device *dev = priv->dev;
unsigned int idx;
const char *type;
struct clk *clk;
int range_check;
switch (clkspec->args[0]) {
case CPG_CORE:
type = "core";
if (clkidx > priv->last_dt_core_clk) {
dev_err(dev, "Invalid %s clock index %u\n", type,
clkidx);
return ERR_PTR(-EINVAL);
}
clk = priv->clks[clkidx];
break;
case CPG_MOD:
type = "module";
if (priv->stbyctrl) {
idx = MOD_CLK_PACK_10(clkidx);
range_check = 7 - (clkidx % 10);
} else {
idx = MOD_CLK_PACK(clkidx);
range_check = 31 - (clkidx % 100);
}
if (range_check < 0 || idx >= priv->num_mod_clks) {
dev_err(dev, "Invalid %s clock index %u\n", type,
clkidx);
return ERR_PTR(-EINVAL);
}
clk = priv->clks[priv->num_core_clks + idx];
break;
default:
dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]);
return ERR_PTR(-EINVAL);
}
if (IS_ERR(clk))
dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx,
PTR_ERR(clk));
else
dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n",
clkspec->args[0], clkspec->args[1], clk,
clk_get_rate(clk));
return clk;
}
static void __init cpg_mssr_register_core_clk(const struct cpg_core_clk *core,
const struct cpg_mssr_info *info,
struct cpg_mssr_priv *priv)
{
struct clk *clk = ERR_PTR(-ENOTSUPP), *parent;
struct device *dev = priv->dev;
unsigned int id = core->id, div = core->div;
const char *parent_name;
WARN_DEBUG(id >= priv->num_core_clks);
WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
if (!core->name) {
/* Skip NULLified clock */
return;
}
switch (core->type) {
case CLK_TYPE_IN:
clk = of_clk_get_by_name(priv->np, core->name);
break;
case CLK_TYPE_FF:
case CLK_TYPE_DIV6P1:
case CLK_TYPE_DIV6_RO:
WARN_DEBUG(core->parent >= priv->num_core_clks);
parent = priv->clks[core->parent];
if (IS_ERR(parent)) {
clk = parent;
goto fail;
}
parent_name = __clk_get_name(parent);
if (core->type == CLK_TYPE_DIV6_RO)
/* Multiply with the DIV6 register value */
div *= (readl(priv->base + core->offset) & 0x3f) + 1;
if (core->type == CLK_TYPE_DIV6P1) {
clk = cpg_div6_register(core->name, 1, &parent_name,
priv->base + core->offset,
&priv->notifiers);
} else {
clk = clk_register_fixed_factor(NULL, core->name,
parent_name, 0,
core->mult, div);
}
break;
case CLK_TYPE_FR:
clk = clk_register_fixed_rate(NULL, core->name, NULL, 0,
core->mult);
break;
default:
if (info->cpg_clk_register)
clk = info->cpg_clk_register(dev, core, info,
priv->clks, priv->base,
&priv->notifiers);
else
dev_err(dev, "%s has unsupported core clock type %u\n",
core->name, core->type);
break;
}
if (IS_ERR_OR_NULL(clk))
goto fail;
dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
priv->clks[id] = clk;
return;
fail:
dev_err(dev, "Failed to register %s clock %s: %ld\n", "core",
core->name, PTR_ERR(clk));
}
static void __init cpg_mssr_register_mod_clk(const struct mssr_mod_clk *mod,
const struct cpg_mssr_info *info,
struct cpg_mssr_priv *priv)
{
struct mstp_clock *clock = NULL;
struct device *dev = priv->dev;
unsigned int id = mod->id;
struct clk_init_data init;
struct clk *parent, *clk;
const char *parent_name;
unsigned int i;
WARN_DEBUG(id < priv->num_core_clks);
WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks);
WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks);
WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
if (!mod->name) {
/* Skip NULLified clock */
return;
}
parent = priv->clks[mod->parent];
if (IS_ERR(parent)) {
clk = parent;
goto fail;
}
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock) {
clk = ERR_PTR(-ENOMEM);
goto fail;
}
init.name = mod->name;
init.ops = &cpg_mstp_clock_ops;
init.flags = CLK_SET_RATE_PARENT;
for (i = 0; i < info->num_crit_mod_clks; i++)
if (id == info->crit_mod_clks[i]) {
dev_dbg(dev, "MSTP %s setting CLK_IS_CRITICAL\n",
mod->name);
init.flags |= CLK_IS_CRITICAL;
break;
}
parent_name = __clk_get_name(parent);
init.parent_names = &parent_name;
init.num_parents = 1;
clock->index = id - priv->num_core_clks;
clock->priv = priv;
clock->hw.init = &init;
clk = clk_register(NULL, &clock->hw);
if (IS_ERR(clk))
goto fail;
dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
priv->clks[id] = clk;
priv->smstpcr_saved[clock->index / 32].mask |= BIT(clock->index % 32);
return;
fail:
dev_err(dev, "Failed to register %s clock %s: %ld\n", "module",
mod->name, PTR_ERR(clk));
kfree(clock);
}
struct cpg_mssr_clk_domain {
struct generic_pm_domain genpd;
struct device_node *np;
unsigned int num_core_pm_clks;
unsigned int core_pm_clks[0];
};
static struct cpg_mssr_clk_domain *cpg_mssr_clk_domain;
static bool cpg_mssr_is_pm_clk(const struct of_phandle_args *clkspec,
struct cpg_mssr_clk_domain *pd)
{
unsigned int i;
if (clkspec->np != pd->np || clkspec->args_count != 2)
return false;
switch (clkspec->args[0]) {
case CPG_CORE:
for (i = 0; i < pd->num_core_pm_clks; i++)
if (clkspec->args[1] == pd->core_pm_clks[i])
return true;
return false;
case CPG_MOD:
return true;
default:
return false;
}
}
int cpg_mssr_attach_dev(struct generic_pm_domain *unused, struct device *dev)
{
struct cpg_mssr_clk_domain *pd = cpg_mssr_clk_domain;
struct device_node *np = dev->of_node;
struct of_phandle_args clkspec;
struct clk *clk;
int i = 0;
int error;
if (!pd) {
dev_dbg(dev, "CPG/MSSR clock domain not yet available\n");
return -EPROBE_DEFER;
}
while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
&clkspec)) {
if (cpg_mssr_is_pm_clk(&clkspec, pd))
goto found;
of_node_put(clkspec.np);
i++;
}
return 0;
found:
clk = of_clk_get_from_provider(&clkspec);
of_node_put(clkspec.np);
if (IS_ERR(clk))
return PTR_ERR(clk);
error = pm_clk_create(dev);
if (error) {
dev_err(dev, "pm_clk_create failed %d\n", error);
goto fail_put;
}
error = pm_clk_add_clk(dev, clk);
if (error) {
dev_err(dev, "pm_clk_add_clk %pC failed %d\n", clk, error);
goto fail_destroy;
}
return 0;
fail_destroy:
pm_clk_destroy(dev);
fail_put:
clk_put(clk);
return error;
}
void cpg_mssr_detach_dev(struct generic_pm_domain *unused, struct device *dev)
{
if (!pm_clk_no_clocks(dev))
pm_clk_destroy(dev);
}
static int __init cpg_mssr_add_clk_domain(struct device *dev,
const unsigned int *core_pm_clks,
unsigned int num_core_pm_clks)
{
struct device_node *np = dev->of_node;
struct generic_pm_domain *genpd;
struct cpg_mssr_clk_domain *pd;
size_t pm_size = num_core_pm_clks * sizeof(core_pm_clks[0]);
pd = devm_kzalloc(dev, sizeof(*pd) + pm_size, GFP_KERNEL);
if (!pd)
return -ENOMEM;
pd->np = np;
pd->num_core_pm_clks = num_core_pm_clks;
memcpy(pd->core_pm_clks, core_pm_clks, pm_size);
genpd = &pd->genpd;
genpd->name = np->name;
genpd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP;
genpd->attach_dev = cpg_mssr_attach_dev;
genpd->detach_dev = cpg_mssr_detach_dev;
pm_genpd_init(genpd, &pm_domain_always_on_gov, false);
cpg_mssr_clk_domain = pd;
of_genpd_add_provider_simple(np, genpd);
return 0;
}
#ifdef CONFIG_RESET_CONTROLLER
#define rcdev_to_priv(x) container_of(x, struct cpg_mssr_priv, rcdev)
static int cpg_mssr_reset(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
unsigned int reg = id / 32;
unsigned int bit = id % 32;
u32 bitmask = BIT(bit);
unsigned long flags;
u32 value;
dev_dbg(priv->dev, "reset %u%02u\n", reg, bit);
/* Reset module */
spin_lock_irqsave(&priv->rmw_lock, flags);
value = readl(priv->base + SRCR(reg));
value |= bitmask;
writel(value, priv->base + SRCR(reg));
spin_unlock_irqrestore(&priv->rmw_lock, flags);
/* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */
udelay(35);
/* Release module from reset state */
writel(bitmask, priv->base + SRSTCLR(reg));
return 0;
}
static int cpg_mssr_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
unsigned int reg = id / 32;
unsigned int bit = id % 32;
u32 bitmask = BIT(bit);
unsigned long flags;
u32 value;
dev_dbg(priv->dev, "assert %u%02u\n", reg, bit);
spin_lock_irqsave(&priv->rmw_lock, flags);
value = readl(priv->base + SRCR(reg));
value |= bitmask;
writel(value, priv->base + SRCR(reg));
spin_unlock_irqrestore(&priv->rmw_lock, flags);
return 0;
}
static int cpg_mssr_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
unsigned int reg = id / 32;
unsigned int bit = id % 32;
u32 bitmask = BIT(bit);
dev_dbg(priv->dev, "deassert %u%02u\n", reg, bit);
writel(bitmask, priv->base + SRSTCLR(reg));
return 0;
}
static int cpg_mssr_status(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
unsigned int reg = id / 32;
unsigned int bit = id % 32;
u32 bitmask = BIT(bit);
return !!(readl(priv->base + SRCR(reg)) & bitmask);
}
static const struct reset_control_ops cpg_mssr_reset_ops = {
.reset = cpg_mssr_reset,
.assert = cpg_mssr_assert,
.deassert = cpg_mssr_deassert,
.status = cpg_mssr_status,
};
static int cpg_mssr_reset_xlate(struct reset_controller_dev *rcdev,
const struct of_phandle_args *reset_spec)
{
struct cpg_mssr_priv *priv = rcdev_to_priv(rcdev);
unsigned int unpacked = reset_spec->args[0];
unsigned int idx = MOD_CLK_PACK(unpacked);
if (unpacked % 100 > 31 || idx >= rcdev->nr_resets) {
dev_err(priv->dev, "Invalid reset index %u\n", unpacked);
return -EINVAL;
}
return idx;
}
static int cpg_mssr_reset_controller_register(struct cpg_mssr_priv *priv)
{
priv->rcdev.ops = &cpg_mssr_reset_ops;
priv->rcdev.of_node = priv->dev->of_node;
priv->rcdev.of_reset_n_cells = 1;
priv->rcdev.of_xlate = cpg_mssr_reset_xlate;
priv->rcdev.nr_resets = priv->num_mod_clks;
return devm_reset_controller_register(priv->dev, &priv->rcdev);
}
#else /* !CONFIG_RESET_CONTROLLER */
static inline int cpg_mssr_reset_controller_register(struct cpg_mssr_priv *priv)
{
return 0;
}
#endif /* !CONFIG_RESET_CONTROLLER */
static const struct of_device_id cpg_mssr_match[] = {
#ifdef CONFIG_CLK_R7S9210
{
.compatible = "renesas,r7s9210-cpg-mssr",
.data = &r7s9210_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7743
{
.compatible = "renesas,r8a7743-cpg-mssr",
.data = &r8a7743_cpg_mssr_info,
},
/* RZ/G1N is (almost) identical to RZ/G1M w.r.t. clocks. */
{
.compatible = "renesas,r8a7744-cpg-mssr",
.data = &r8a7743_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7745
{
.compatible = "renesas,r8a7745-cpg-mssr",
.data = &r8a7745_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77470
{
.compatible = "renesas,r8a77470-cpg-mssr",
.data = &r8a77470_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A774A1
{
.compatible = "renesas,r8a774a1-cpg-mssr",
.data = &r8a774a1_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A774C0
{
.compatible = "renesas,r8a774c0-cpg-mssr",
.data = &r8a774c0_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7790
{
.compatible = "renesas,r8a7790-cpg-mssr",
.data = &r8a7790_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7791
{
.compatible = "renesas,r8a7791-cpg-mssr",
.data = &r8a7791_cpg_mssr_info,
},
/* R-Car M2-N is (almost) identical to R-Car M2-W w.r.t. clocks. */
{
.compatible = "renesas,r8a7793-cpg-mssr",
.data = &r8a7791_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7792
{
.compatible = "renesas,r8a7792-cpg-mssr",
.data = &r8a7792_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7794
{
.compatible = "renesas,r8a7794-cpg-mssr",
.data = &r8a7794_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7795
{
.compatible = "renesas,r8a7795-cpg-mssr",
.data = &r8a7795_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A7796
{
.compatible = "renesas,r8a7796-cpg-mssr",
.data = &r8a7796_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77965
{
.compatible = "renesas,r8a77965-cpg-mssr",
.data = &r8a77965_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77970
{
.compatible = "renesas,r8a77970-cpg-mssr",
.data = &r8a77970_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77980
{
.compatible = "renesas,r8a77980-cpg-mssr",
.data = &r8a77980_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77990
{
.compatible = "renesas,r8a77990-cpg-mssr",
.data = &r8a77990_cpg_mssr_info,
},
#endif
#ifdef CONFIG_CLK_R8A77995
{
.compatible = "renesas,r8a77995-cpg-mssr",
.data = &r8a77995_cpg_mssr_info,
},
#endif
{ /* sentinel */ }
};
static void cpg_mssr_del_clk_provider(void *data)
{
of_clk_del_provider(data);
}
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM_PSCI_FW)
static int cpg_mssr_suspend_noirq(struct device *dev)
{
struct cpg_mssr_priv *priv = dev_get_drvdata(dev);
unsigned int reg;
/* This is the best we can do to check for the presence of PSCI */
if (!psci_ops.cpu_suspend)
return 0;
/* Save module registers with bits under our control */
for (reg = 0; reg < ARRAY_SIZE(priv->smstpcr_saved); reg++) {
if (priv->smstpcr_saved[reg].mask)
priv->smstpcr_saved[reg].val =
readl(priv->base + SMSTPCR(reg));
}
/* Save core clocks */
raw_notifier_call_chain(&priv->notifiers, PM_EVENT_SUSPEND, NULL);
return 0;
}
static int cpg_mssr_resume_noirq(struct device *dev)
{
struct cpg_mssr_priv *priv = dev_get_drvdata(dev);
unsigned int reg, i;
u32 mask, oldval, newval;
/* This is the best we can do to check for the presence of PSCI */
if (!psci_ops.cpu_suspend)
return 0;
/* Restore core clocks */
raw_notifier_call_chain(&priv->notifiers, PM_EVENT_RESUME, NULL);
/* Restore module clocks */
for (reg = 0; reg < ARRAY_SIZE(priv->smstpcr_saved); reg++) {
mask = priv->smstpcr_saved[reg].mask;
if (!mask)
continue;
if (priv->stbyctrl)
oldval = readb(priv->base + STBCR(reg));
else
oldval = readl(priv->base + SMSTPCR(reg));
newval = oldval & ~mask;
newval |= priv->smstpcr_saved[reg].val & mask;
if (newval == oldval)
continue;
if (priv->stbyctrl) {
writeb(newval, priv->base + STBCR(reg));
/* dummy read to ensure write has completed */
readb(priv->base + STBCR(reg));
barrier_data(priv->base + STBCR(reg));
continue;
} else
writel(newval, priv->base + SMSTPCR(reg));
/* Wait until enabled clocks are really enabled */
mask &= ~priv->smstpcr_saved[reg].val;
if (!mask)
continue;
for (i = 1000; i > 0; --i) {
oldval = readl(priv->base + MSTPSR(reg));
if (!(oldval & mask))
break;
cpu_relax();
}
if (!i)
dev_warn(dev, "Failed to enable SMSTP %p[0x%x]\n",
priv->base + SMSTPCR(reg), oldval & mask);
}
return 0;
}
static const struct dev_pm_ops cpg_mssr_pm = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(cpg_mssr_suspend_noirq,
cpg_mssr_resume_noirq)
};
#define DEV_PM_OPS &cpg_mssr_pm
#else
#define DEV_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP && CONFIG_ARM_PSCI_FW */
static int __init cpg_mssr_common_init(struct device *dev,
struct device_node *np,
const struct cpg_mssr_info *info)
{
struct cpg_mssr_priv *priv;
struct clk **clks = NULL;
unsigned int nclks, i;
int error;
if (info->init) {
error = info->init(dev);
if (error)
return error;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->np = np;
priv->dev = dev;
spin_lock_init(&priv->rmw_lock);
priv->base = of_iomap(np, 0);
if (!priv->base) {
error = -ENOMEM;
goto out_err;
}
nclks = info->num_total_core_clks + info->num_hw_mod_clks;
clks = kmalloc_array(nclks, sizeof(*clks), GFP_KERNEL);
if (!clks) {
error = -ENOMEM;
goto out_err;
}
cpg_mssr_priv = priv;
priv->clks = clks;
priv->num_core_clks = info->num_total_core_clks;
priv->num_mod_clks = info->num_hw_mod_clks;
priv->last_dt_core_clk = info->last_dt_core_clk;
RAW_INIT_NOTIFIER_HEAD(&priv->notifiers);
priv->stbyctrl = info->stbyctrl;
for (i = 0; i < nclks; i++)
clks[i] = ERR_PTR(-ENOENT);
error = of_clk_add_provider(np, cpg_mssr_clk_src_twocell_get, priv);
if (error)
goto out_err;
return 0;
out_err:
kfree(clks);
if (priv->base)
iounmap(priv->base);
kfree(priv);
return error;
}
void __init cpg_mssr_early_init(struct device_node *np,
const struct cpg_mssr_info *info)
{
int error;
int i;
error = cpg_mssr_common_init(NULL, np, info);
if (error)
return;
for (i = 0; i < info->num_early_core_clks; i++)
cpg_mssr_register_core_clk(&info->early_core_clks[i], info,
cpg_mssr_priv);
for (i = 0; i < info->num_early_mod_clks; i++)
cpg_mssr_register_mod_clk(&info->early_mod_clks[i], info,
cpg_mssr_priv);
}
static int __init cpg_mssr_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const struct cpg_mssr_info *info;
struct cpg_mssr_priv *priv;
unsigned int i;
int error;
info = of_device_get_match_data(dev);
if (!cpg_mssr_priv) {
error = cpg_mssr_common_init(dev, dev->of_node, info);
if (error)
return error;
}
priv = cpg_mssr_priv;
priv->dev = dev;
dev_set_drvdata(dev, priv);
for (i = 0; i < info->num_core_clks; i++)
cpg_mssr_register_core_clk(&info->core_clks[i], info, priv);
for (i = 0; i < info->num_mod_clks; i++)
cpg_mssr_register_mod_clk(&info->mod_clks[i], info, priv);
error = devm_add_action_or_reset(dev,
cpg_mssr_del_clk_provider,
np);
if (error)
return error;
error = cpg_mssr_add_clk_domain(dev, info->core_pm_clks,
info->num_core_pm_clks);
if (error)
return error;
/* Reset Controller not supported for Standby Control SoCs */
if (info->stbyctrl)
return 0;
error = cpg_mssr_reset_controller_register(priv);
if (error)
return error;
return 0;
}
static struct platform_driver cpg_mssr_driver = {
.driver = {
.name = "renesas-cpg-mssr",
.of_match_table = cpg_mssr_match,
.pm = DEV_PM_OPS,
},
};
static int __init cpg_mssr_init(void)
{
return platform_driver_probe(&cpg_mssr_driver, cpg_mssr_probe);
}
subsys_initcall(cpg_mssr_init);
void __init cpg_core_nullify_range(struct cpg_core_clk *core_clks,
unsigned int num_core_clks,
unsigned int first_clk,
unsigned int last_clk)
{
unsigned int i;
for (i = 0; i < num_core_clks; i++)
if (core_clks[i].id >= first_clk &&
core_clks[i].id <= last_clk)
core_clks[i].name = NULL;
}
void __init mssr_mod_nullify(struct mssr_mod_clk *mod_clks,
unsigned int num_mod_clks,
const unsigned int *clks, unsigned int n)
{
unsigned int i, j;
for (i = 0, j = 0; i < num_mod_clks && j < n; i++)
if (mod_clks[i].id == clks[j]) {
mod_clks[i].name = NULL;
j++;
}
}
void __init mssr_mod_reparent(struct mssr_mod_clk *mod_clks,
unsigned int num_mod_clks,
const struct mssr_mod_reparent *clks,
unsigned int n)
{
unsigned int i, j;
for (i = 0, j = 0; i < num_mod_clks && j < n; i++)
if (mod_clks[i].id == clks[j].clk) {
mod_clks[i].parent = clks[j].parent;
j++;
}
}
MODULE_DESCRIPTION("Renesas CPG/MSSR Driver");
MODULE_LICENSE("GPL v2");