3154 lines
75 KiB
C
3154 lines
75 KiB
C
/*
|
|
* Copyright (c) 2006, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* Copyright (C) 2006-2008 Intel Corporation
|
|
* Author: Ashok Raj <ashok.raj@intel.com>
|
|
* Author: Shaohua Li <shaohua.li@intel.com>
|
|
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
* Author: Fenghua Yu <fenghua.yu@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/iommu.h>
|
|
#include "pci.h"
|
|
|
|
#define ROOT_SIZE VTD_PAGE_SIZE
|
|
#define CONTEXT_SIZE VTD_PAGE_SIZE
|
|
|
|
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
|
|
|
|
#define IOAPIC_RANGE_START (0xfee00000)
|
|
#define IOAPIC_RANGE_END (0xfeefffff)
|
|
#define IOVA_START_ADDR (0x1000)
|
|
|
|
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
|
|
|
|
#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
|
|
|
|
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
|
|
#define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
|
|
#define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
|
|
|
|
/* global iommu list, set NULL for ignored DMAR units */
|
|
static struct intel_iommu **g_iommus;
|
|
|
|
static int rwbf_quirk;
|
|
|
|
/*
|
|
* 0: Present
|
|
* 1-11: Reserved
|
|
* 12-63: Context Ptr (12 - (haw-1))
|
|
* 64-127: Reserved
|
|
*/
|
|
struct root_entry {
|
|
u64 val;
|
|
u64 rsvd1;
|
|
};
|
|
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
|
|
static inline bool root_present(struct root_entry *root)
|
|
{
|
|
return (root->val & 1);
|
|
}
|
|
static inline void set_root_present(struct root_entry *root)
|
|
{
|
|
root->val |= 1;
|
|
}
|
|
static inline void set_root_value(struct root_entry *root, unsigned long value)
|
|
{
|
|
root->val |= value & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static inline struct context_entry *
|
|
get_context_addr_from_root(struct root_entry *root)
|
|
{
|
|
return (struct context_entry *)
|
|
(root_present(root)?phys_to_virt(
|
|
root->val & VTD_PAGE_MASK) :
|
|
NULL);
|
|
}
|
|
|
|
/*
|
|
* low 64 bits:
|
|
* 0: present
|
|
* 1: fault processing disable
|
|
* 2-3: translation type
|
|
* 12-63: address space root
|
|
* high 64 bits:
|
|
* 0-2: address width
|
|
* 3-6: aval
|
|
* 8-23: domain id
|
|
*/
|
|
struct context_entry {
|
|
u64 lo;
|
|
u64 hi;
|
|
};
|
|
|
|
static inline bool context_present(struct context_entry *context)
|
|
{
|
|
return (context->lo & 1);
|
|
}
|
|
static inline void context_set_present(struct context_entry *context)
|
|
{
|
|
context->lo |= 1;
|
|
}
|
|
|
|
static inline void context_set_fault_enable(struct context_entry *context)
|
|
{
|
|
context->lo &= (((u64)-1) << 2) | 1;
|
|
}
|
|
|
|
#define CONTEXT_TT_MULTI_LEVEL 0
|
|
|
|
static inline void context_set_translation_type(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo &= (((u64)-1) << 4) | 3;
|
|
context->lo |= (value & 3) << 2;
|
|
}
|
|
|
|
static inline void context_set_address_root(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->lo |= value & VTD_PAGE_MASK;
|
|
}
|
|
|
|
static inline void context_set_address_width(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= value & 7;
|
|
}
|
|
|
|
static inline void context_set_domain_id(struct context_entry *context,
|
|
unsigned long value)
|
|
{
|
|
context->hi |= (value & ((1 << 16) - 1)) << 8;
|
|
}
|
|
|
|
static inline void context_clear_entry(struct context_entry *context)
|
|
{
|
|
context->lo = 0;
|
|
context->hi = 0;
|
|
}
|
|
|
|
/*
|
|
* 0: readable
|
|
* 1: writable
|
|
* 2-6: reserved
|
|
* 7: super page
|
|
* 8-11: available
|
|
* 12-63: Host physcial address
|
|
*/
|
|
struct dma_pte {
|
|
u64 val;
|
|
};
|
|
|
|
static inline void dma_clear_pte(struct dma_pte *pte)
|
|
{
|
|
pte->val = 0;
|
|
}
|
|
|
|
static inline void dma_set_pte_readable(struct dma_pte *pte)
|
|
{
|
|
pte->val |= DMA_PTE_READ;
|
|
}
|
|
|
|
static inline void dma_set_pte_writable(struct dma_pte *pte)
|
|
{
|
|
pte->val |= DMA_PTE_WRITE;
|
|
}
|
|
|
|
static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
|
|
{
|
|
pte->val = (pte->val & ~3) | (prot & 3);
|
|
}
|
|
|
|
static inline u64 dma_pte_addr(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & VTD_PAGE_MASK);
|
|
}
|
|
|
|
static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
|
|
{
|
|
pte->val |= (addr & VTD_PAGE_MASK);
|
|
}
|
|
|
|
static inline bool dma_pte_present(struct dma_pte *pte)
|
|
{
|
|
return (pte->val & 3) != 0;
|
|
}
|
|
|
|
/* devices under the same p2p bridge are owned in one domain */
|
|
#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
|
|
|
|
/* domain represents a virtual machine, more than one devices
|
|
* across iommus may be owned in one domain, e.g. kvm guest.
|
|
*/
|
|
#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
|
|
|
|
struct dmar_domain {
|
|
int id; /* domain id */
|
|
unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
|
|
|
|
struct list_head devices; /* all devices' list */
|
|
struct iova_domain iovad; /* iova's that belong to this domain */
|
|
|
|
struct dma_pte *pgd; /* virtual address */
|
|
spinlock_t mapping_lock; /* page table lock */
|
|
int gaw; /* max guest address width */
|
|
|
|
/* adjusted guest address width, 0 is level 2 30-bit */
|
|
int agaw;
|
|
|
|
int flags; /* flags to find out type of domain */
|
|
|
|
int iommu_coherency;/* indicate coherency of iommu access */
|
|
int iommu_count; /* reference count of iommu */
|
|
spinlock_t iommu_lock; /* protect iommu set in domain */
|
|
u64 max_addr; /* maximum mapped address */
|
|
};
|
|
|
|
/* PCI domain-device relationship */
|
|
struct device_domain_info {
|
|
struct list_head link; /* link to domain siblings */
|
|
struct list_head global; /* link to global list */
|
|
u8 bus; /* PCI bus numer */
|
|
u8 devfn; /* PCI devfn number */
|
|
struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
|
|
struct dmar_domain *domain; /* pointer to domain */
|
|
};
|
|
|
|
static void flush_unmaps_timeout(unsigned long data);
|
|
|
|
DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
|
|
|
|
#define HIGH_WATER_MARK 250
|
|
struct deferred_flush_tables {
|
|
int next;
|
|
struct iova *iova[HIGH_WATER_MARK];
|
|
struct dmar_domain *domain[HIGH_WATER_MARK];
|
|
};
|
|
|
|
static struct deferred_flush_tables *deferred_flush;
|
|
|
|
/* bitmap for indexing intel_iommus */
|
|
static int g_num_of_iommus;
|
|
|
|
static DEFINE_SPINLOCK(async_umap_flush_lock);
|
|
static LIST_HEAD(unmaps_to_do);
|
|
|
|
static int timer_on;
|
|
static long list_size;
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain);
|
|
|
|
#ifdef CONFIG_DMAR_DEFAULT_ON
|
|
int dmar_disabled = 0;
|
|
#else
|
|
int dmar_disabled = 1;
|
|
#endif /*CONFIG_DMAR_DEFAULT_ON*/
|
|
|
|
static int __initdata dmar_map_gfx = 1;
|
|
static int dmar_forcedac;
|
|
static int intel_iommu_strict;
|
|
|
|
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
|
|
static DEFINE_SPINLOCK(device_domain_lock);
|
|
static LIST_HEAD(device_domain_list);
|
|
|
|
static struct iommu_ops intel_iommu_ops;
|
|
|
|
static int __init intel_iommu_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
while (*str) {
|
|
if (!strncmp(str, "on", 2)) {
|
|
dmar_disabled = 0;
|
|
printk(KERN_INFO "Intel-IOMMU: enabled\n");
|
|
} else if (!strncmp(str, "off", 3)) {
|
|
dmar_disabled = 1;
|
|
printk(KERN_INFO "Intel-IOMMU: disabled\n");
|
|
} else if (!strncmp(str, "igfx_off", 8)) {
|
|
dmar_map_gfx = 0;
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable GFX device mapping\n");
|
|
} else if (!strncmp(str, "forcedac", 8)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: Forcing DAC for PCI devices\n");
|
|
dmar_forcedac = 1;
|
|
} else if (!strncmp(str, "strict", 6)) {
|
|
printk(KERN_INFO
|
|
"Intel-IOMMU: disable batched IOTLB flush\n");
|
|
intel_iommu_strict = 1;
|
|
}
|
|
|
|
str += strcspn(str, ",");
|
|
while (*str == ',')
|
|
str++;
|
|
}
|
|
return 0;
|
|
}
|
|
__setup("intel_iommu=", intel_iommu_setup);
|
|
|
|
static struct kmem_cache *iommu_domain_cache;
|
|
static struct kmem_cache *iommu_devinfo_cache;
|
|
static struct kmem_cache *iommu_iova_cache;
|
|
|
|
static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
|
|
{
|
|
unsigned int flags;
|
|
void *vaddr;
|
|
|
|
/* trying to avoid low memory issues */
|
|
flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
|
|
current->flags &= (~PF_MEMALLOC | flags);
|
|
return vaddr;
|
|
}
|
|
|
|
|
|
static inline void *alloc_pgtable_page(void)
|
|
{
|
|
unsigned int flags;
|
|
void *vaddr;
|
|
|
|
/* trying to avoid low memory issues */
|
|
flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
current->flags &= (~PF_MEMALLOC | flags);
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void free_pgtable_page(void *vaddr)
|
|
{
|
|
free_page((unsigned long)vaddr);
|
|
}
|
|
|
|
static inline void *alloc_domain_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_domain_cache);
|
|
}
|
|
|
|
static void free_domain_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_domain_cache, vaddr);
|
|
}
|
|
|
|
static inline void * alloc_devinfo_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_devinfo_cache);
|
|
}
|
|
|
|
static inline void free_devinfo_mem(void *vaddr)
|
|
{
|
|
kmem_cache_free(iommu_devinfo_cache, vaddr);
|
|
}
|
|
|
|
struct iova *alloc_iova_mem(void)
|
|
{
|
|
return iommu_kmem_cache_alloc(iommu_iova_cache);
|
|
}
|
|
|
|
void free_iova_mem(struct iova *iova)
|
|
{
|
|
kmem_cache_free(iommu_iova_cache, iova);
|
|
}
|
|
|
|
|
|
static inline int width_to_agaw(int width);
|
|
|
|
/* calculate agaw for each iommu.
|
|
* "SAGAW" may be different across iommus, use a default agaw, and
|
|
* get a supported less agaw for iommus that don't support the default agaw.
|
|
*/
|
|
int iommu_calculate_agaw(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long sagaw;
|
|
int agaw = -1;
|
|
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
agaw >= 0; agaw--) {
|
|
if (test_bit(agaw, &sagaw))
|
|
break;
|
|
}
|
|
|
|
return agaw;
|
|
}
|
|
|
|
/* in native case, each domain is related to only one iommu */
|
|
static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
|
|
{
|
|
int iommu_id;
|
|
|
|
BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
|
|
|
|
iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
|
|
if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
|
|
return NULL;
|
|
|
|
return g_iommus[iommu_id];
|
|
}
|
|
|
|
/* "Coherency" capability may be different across iommus */
|
|
static void domain_update_iommu_coherency(struct dmar_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
domain->iommu_coherency = 1;
|
|
|
|
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
|
|
for (; i < g_num_of_iommus; ) {
|
|
if (!ecap_coherent(g_iommus[i]->ecap)) {
|
|
domain->iommu_coherency = 0;
|
|
break;
|
|
}
|
|
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
|
|
}
|
|
}
|
|
|
|
static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
|
|
{
|
|
struct dmar_drhd_unit *drhd = NULL;
|
|
int i;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] &&
|
|
drhd->devices[i]->bus->number == bus &&
|
|
drhd->devices[i]->devfn == devfn)
|
|
return drhd->iommu;
|
|
|
|
if (drhd->include_all)
|
|
return drhd->iommu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void domain_flush_cache(struct dmar_domain *domain,
|
|
void *addr, int size)
|
|
{
|
|
if (!domain->iommu_coherency)
|
|
clflush_cache_range(addr, size);
|
|
}
|
|
|
|
/* Gets context entry for a given bus and devfn */
|
|
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long phy_addr;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
context = (struct context_entry *)alloc_pgtable_page();
|
|
if (!context) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return NULL;
|
|
}
|
|
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
|
|
phy_addr = virt_to_phys((void *)context);
|
|
set_root_value(root, phy_addr);
|
|
set_root_present(root);
|
|
__iommu_flush_cache(iommu, root, sizeof(*root));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return &context[devfn];
|
|
}
|
|
|
|
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (!context) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
ret = context_present(&context[devfn]);
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
struct root_entry *root;
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
root = &iommu->root_entry[bus];
|
|
context = get_context_addr_from_root(root);
|
|
if (context) {
|
|
context_clear_entry(&context[devfn]);
|
|
__iommu_flush_cache(iommu, &context[devfn], \
|
|
sizeof(*context));
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void free_context_table(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
int i;
|
|
unsigned long flags;
|
|
struct context_entry *context;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (!iommu->root_entry) {
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ROOT_ENTRY_NR; i++) {
|
|
root = &iommu->root_entry[i];
|
|
context = get_context_addr_from_root(root);
|
|
if (context)
|
|
free_pgtable_page(context);
|
|
}
|
|
free_pgtable_page(iommu->root_entry);
|
|
iommu->root_entry = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
/* page table handling */
|
|
#define LEVEL_STRIDE (9)
|
|
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
|
|
|
|
static inline int agaw_to_level(int agaw)
|
|
{
|
|
return agaw + 2;
|
|
}
|
|
|
|
static inline int agaw_to_width(int agaw)
|
|
{
|
|
return 30 + agaw * LEVEL_STRIDE;
|
|
|
|
}
|
|
|
|
static inline int width_to_agaw(int width)
|
|
{
|
|
return (width - 30) / LEVEL_STRIDE;
|
|
}
|
|
|
|
static inline unsigned int level_to_offset_bits(int level)
|
|
{
|
|
return (12 + (level - 1) * LEVEL_STRIDE);
|
|
}
|
|
|
|
static inline int address_level_offset(u64 addr, int level)
|
|
{
|
|
return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
|
|
}
|
|
|
|
static inline u64 level_mask(int level)
|
|
{
|
|
return ((u64)-1 << level_to_offset_bits(level));
|
|
}
|
|
|
|
static inline u64 level_size(int level)
|
|
{
|
|
return ((u64)1 << level_to_offset_bits(level));
|
|
}
|
|
|
|
static inline u64 align_to_level(u64 addr, int level)
|
|
{
|
|
return ((addr + level_size(level) - 1) & level_mask(level));
|
|
}
|
|
|
|
static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int level = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!domain->pgd);
|
|
|
|
addr &= (((u64)1) << addr_width) - 1;
|
|
parent = domain->pgd;
|
|
|
|
spin_lock_irqsave(&domain->mapping_lock, flags);
|
|
while (level > 0) {
|
|
void *tmp_page;
|
|
|
|
offset = address_level_offset(addr, level);
|
|
pte = &parent[offset];
|
|
if (level == 1)
|
|
break;
|
|
|
|
if (!dma_pte_present(pte)) {
|
|
tmp_page = alloc_pgtable_page();
|
|
|
|
if (!tmp_page) {
|
|
spin_unlock_irqrestore(&domain->mapping_lock,
|
|
flags);
|
|
return NULL;
|
|
}
|
|
domain_flush_cache(domain, tmp_page, PAGE_SIZE);
|
|
dma_set_pte_addr(pte, virt_to_phys(tmp_page));
|
|
/*
|
|
* high level table always sets r/w, last level page
|
|
* table control read/write
|
|
*/
|
|
dma_set_pte_readable(pte);
|
|
dma_set_pte_writable(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
level--;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&domain->mapping_lock, flags);
|
|
return pte;
|
|
}
|
|
|
|
/* return address's pte at specific level */
|
|
static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
|
|
int level)
|
|
{
|
|
struct dma_pte *parent, *pte = NULL;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int offset;
|
|
|
|
parent = domain->pgd;
|
|
while (level <= total) {
|
|
offset = address_level_offset(addr, total);
|
|
pte = &parent[offset];
|
|
if (level == total)
|
|
return pte;
|
|
|
|
if (!dma_pte_present(pte))
|
|
break;
|
|
parent = phys_to_virt(dma_pte_addr(pte));
|
|
total--;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* clear one page's page table */
|
|
static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
|
|
{
|
|
struct dma_pte *pte = NULL;
|
|
|
|
/* get last level pte */
|
|
pte = dma_addr_level_pte(domain, addr, 1);
|
|
|
|
if (pte) {
|
|
dma_clear_pte(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
}
|
|
|
|
/* clear last level pte, a tlb flush should be followed */
|
|
static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
|
|
start &= (((u64)1) << addr_width) - 1;
|
|
end &= (((u64)1) << addr_width) - 1;
|
|
/* in case it's partial page */
|
|
start = PAGE_ALIGN(start);
|
|
end &= PAGE_MASK;
|
|
|
|
/* we don't need lock here, nobody else touches the iova range */
|
|
while (start < end) {
|
|
dma_pte_clear_one(domain, start);
|
|
start += VTD_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/* free page table pages. last level pte should already be cleared */
|
|
static void dma_pte_free_pagetable(struct dmar_domain *domain,
|
|
u64 start, u64 end)
|
|
{
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
struct dma_pte *pte;
|
|
int total = agaw_to_level(domain->agaw);
|
|
int level;
|
|
u64 tmp;
|
|
|
|
start &= (((u64)1) << addr_width) - 1;
|
|
end &= (((u64)1) << addr_width) - 1;
|
|
|
|
/* we don't need lock here, nobody else touches the iova range */
|
|
level = 2;
|
|
while (level <= total) {
|
|
tmp = align_to_level(start, level);
|
|
if (tmp >= end || (tmp + level_size(level) > end))
|
|
return;
|
|
|
|
while (tmp < end) {
|
|
pte = dma_addr_level_pte(domain, tmp, level);
|
|
if (pte) {
|
|
free_pgtable_page(
|
|
phys_to_virt(dma_pte_addr(pte)));
|
|
dma_clear_pte(pte);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
}
|
|
tmp += level_size(level);
|
|
}
|
|
level++;
|
|
}
|
|
/* free pgd */
|
|
if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
|
|
free_pgtable_page(domain->pgd);
|
|
domain->pgd = NULL;
|
|
}
|
|
}
|
|
|
|
/* iommu handling */
|
|
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
struct root_entry *root;
|
|
unsigned long flags;
|
|
|
|
root = (struct root_entry *)alloc_pgtable_page();
|
|
if (!root)
|
|
return -ENOMEM;
|
|
|
|
__iommu_flush_cache(iommu, root, ROOT_SIZE);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
iommu->root_entry = root;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_set_root_entry(struct intel_iommu *iommu)
|
|
{
|
|
void *addr;
|
|
u32 cmd, sts;
|
|
unsigned long flag;
|
|
|
|
addr = iommu->root_entry;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
|
|
|
|
cmd = iommu->gcmd | DMA_GCMD_SRTP;
|
|
writel(cmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_RTPS), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
|
|
{
|
|
u32 val;
|
|
unsigned long flag;
|
|
|
|
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
|
|
return;
|
|
val = iommu->gcmd | DMA_GCMD_WBF;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(val, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(val & DMA_GSTS_WBFS)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static int __iommu_flush_context(struct intel_iommu *iommu,
|
|
u16 did, u16 source_id, u8 function_mask, u64 type,
|
|
int non_present_entry_flush)
|
|
{
|
|
u64 val = 0;
|
|
unsigned long flag;
|
|
|
|
/*
|
|
* In the non-present entry flush case, if hardware doesn't cache
|
|
* non-present entry we do nothing and if hardware cache non-present
|
|
* entry, we flush entries of domain 0 (the domain id is used to cache
|
|
* any non-present entries)
|
|
*/
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
switch (type) {
|
|
case DMA_CCMD_GLOBAL_INVL:
|
|
val = DMA_CCMD_GLOBAL_INVL;
|
|
break;
|
|
case DMA_CCMD_DOMAIN_INVL:
|
|
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
|
|
break;
|
|
case DMA_CCMD_DEVICE_INVL:
|
|
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
|
|
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
val |= DMA_CCMD_ICC;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
|
|
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* flush context entry will implicitly flush write buffer */
|
|
return 0;
|
|
}
|
|
|
|
/* return value determine if we need a write buffer flush */
|
|
static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int size_order, u64 type,
|
|
int non_present_entry_flush)
|
|
{
|
|
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
|
|
u64 val = 0, val_iva = 0;
|
|
unsigned long flag;
|
|
|
|
/*
|
|
* In the non-present entry flush case, if hardware doesn't cache
|
|
* non-present entry we do nothing and if hardware cache non-present
|
|
* entry, we flush entries of domain 0 (the domain id is used to cache
|
|
* any non-present entries)
|
|
*/
|
|
if (non_present_entry_flush) {
|
|
if (!cap_caching_mode(iommu->cap))
|
|
return 1;
|
|
else
|
|
did = 0;
|
|
}
|
|
|
|
switch (type) {
|
|
case DMA_TLB_GLOBAL_FLUSH:
|
|
/* global flush doesn't need set IVA_REG */
|
|
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
|
|
break;
|
|
case DMA_TLB_DSI_FLUSH:
|
|
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
break;
|
|
case DMA_TLB_PSI_FLUSH:
|
|
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
|
|
/* Note: always flush non-leaf currently */
|
|
val_iva = size_order | addr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
/* Note: set drain read/write */
|
|
#if 0
|
|
/*
|
|
* This is probably to be super secure.. Looks like we can
|
|
* ignore it without any impact.
|
|
*/
|
|
if (cap_read_drain(iommu->cap))
|
|
val |= DMA_TLB_READ_DRAIN;
|
|
#endif
|
|
if (cap_write_drain(iommu->cap))
|
|
val |= DMA_TLB_WRITE_DRAIN;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
/* Note: Only uses first TLB reg currently */
|
|
if (val_iva)
|
|
dmar_writeq(iommu->reg + tlb_offset, val_iva);
|
|
dmar_writeq(iommu->reg + tlb_offset + 8, val);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
|
|
dmar_readq, (!(val & DMA_TLB_IVT)), val);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
/* check IOTLB invalidation granularity */
|
|
if (DMA_TLB_IAIG(val) == 0)
|
|
printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
|
|
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
|
|
pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
|
|
(unsigned long long)DMA_TLB_IIRG(type),
|
|
(unsigned long long)DMA_TLB_IAIG(val));
|
|
/* flush iotlb entry will implicitly flush write buffer */
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
|
|
u64 addr, unsigned int pages, int non_present_entry_flush)
|
|
{
|
|
unsigned int mask;
|
|
|
|
BUG_ON(addr & (~VTD_PAGE_MASK));
|
|
BUG_ON(pages == 0);
|
|
|
|
/* Fallback to domain selective flush if no PSI support */
|
|
if (!cap_pgsel_inv(iommu->cap))
|
|
return iommu->flush.flush_iotlb(iommu, did, 0, 0,
|
|
DMA_TLB_DSI_FLUSH,
|
|
non_present_entry_flush);
|
|
|
|
/*
|
|
* PSI requires page size to be 2 ^ x, and the base address is naturally
|
|
* aligned to the size
|
|
*/
|
|
mask = ilog2(__roundup_pow_of_two(pages));
|
|
/* Fallback to domain selective flush if size is too big */
|
|
if (mask > cap_max_amask_val(iommu->cap))
|
|
return iommu->flush.flush_iotlb(iommu, did, 0, 0,
|
|
DMA_TLB_DSI_FLUSH, non_present_entry_flush);
|
|
|
|
return iommu->flush.flush_iotlb(iommu, did, addr, mask,
|
|
DMA_TLB_PSI_FLUSH,
|
|
non_present_entry_flush);
|
|
}
|
|
|
|
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
|
|
{
|
|
u32 pmen;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
pmen = readl(iommu->reg + DMAR_PMEN_REG);
|
|
pmen &= ~DMA_PMEN_EPM;
|
|
writel(pmen, iommu->reg + DMAR_PMEN_REG);
|
|
|
|
/* wait for the protected region status bit to clear */
|
|
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
|
|
readl, !(pmen & DMA_PMEN_PRS), pmen);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
static int iommu_enable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_TES), sts);
|
|
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_disable_translation(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
iommu->gcmd &= ~DMA_GCMD_TE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (!(sts & DMA_GSTS_TES)), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return 0;
|
|
}
|
|
|
|
/* iommu interrupt handling. Most stuff are MSI-like. */
|
|
|
|
static const char *fault_reason_strings[] =
|
|
{
|
|
"Software",
|
|
"Present bit in root entry is clear",
|
|
"Present bit in context entry is clear",
|
|
"Invalid context entry",
|
|
"Access beyond MGAW",
|
|
"PTE Write access is not set",
|
|
"PTE Read access is not set",
|
|
"Next page table ptr is invalid",
|
|
"Root table address invalid",
|
|
"Context table ptr is invalid",
|
|
"non-zero reserved fields in RTP",
|
|
"non-zero reserved fields in CTP",
|
|
"non-zero reserved fields in PTE",
|
|
};
|
|
#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
|
|
|
|
const char *dmar_get_fault_reason(u8 fault_reason)
|
|
{
|
|
if (fault_reason > MAX_FAULT_REASON_IDX)
|
|
return "Unknown";
|
|
else
|
|
return fault_reason_strings[fault_reason];
|
|
}
|
|
|
|
void dmar_msi_unmask(unsigned int irq)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
/* unmask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(0, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_mask(unsigned int irq)
|
|
{
|
|
unsigned long flag;
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
|
|
/* mask it */
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + DMAR_FECTL_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_write(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
|
|
writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
|
|
writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_read(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = get_irq_data(irq);
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
|
|
msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
|
|
msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
|
|
u8 fault_reason, u16 source_id, unsigned long long addr)
|
|
{
|
|
const char *reason;
|
|
|
|
reason = dmar_get_fault_reason(fault_reason);
|
|
|
|
printk(KERN_ERR
|
|
"DMAR:[%s] Request device [%02x:%02x.%d] "
|
|
"fault addr %llx \n"
|
|
"DMAR:[fault reason %02d] %s\n",
|
|
(type ? "DMA Read" : "DMA Write"),
|
|
(source_id >> 8), PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
|
|
return 0;
|
|
}
|
|
|
|
#define PRIMARY_FAULT_REG_LEN (16)
|
|
static irqreturn_t iommu_page_fault(int irq, void *dev_id)
|
|
{
|
|
struct intel_iommu *iommu = dev_id;
|
|
int reg, fault_index;
|
|
u32 fault_status;
|
|
unsigned long flag;
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
|
|
/* TBD: ignore advanced fault log currently */
|
|
if (!(fault_status & DMA_FSTS_PPF))
|
|
goto clear_overflow;
|
|
|
|
fault_index = dma_fsts_fault_record_index(fault_status);
|
|
reg = cap_fault_reg_offset(iommu->cap);
|
|
while (1) {
|
|
u8 fault_reason;
|
|
u16 source_id;
|
|
u64 guest_addr;
|
|
int type;
|
|
u32 data;
|
|
|
|
/* highest 32 bits */
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
if (!(data & DMA_FRCD_F))
|
|
break;
|
|
|
|
fault_reason = dma_frcd_fault_reason(data);
|
|
type = dma_frcd_type(data);
|
|
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 8);
|
|
source_id = dma_frcd_source_id(data);
|
|
|
|
guest_addr = dmar_readq(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN);
|
|
guest_addr = dma_frcd_page_addr(guest_addr);
|
|
/* clear the fault */
|
|
writel(DMA_FRCD_F, iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
iommu_page_fault_do_one(iommu, type, fault_reason,
|
|
source_id, guest_addr);
|
|
|
|
fault_index++;
|
|
if (fault_index > cap_num_fault_regs(iommu->cap))
|
|
fault_index = 0;
|
|
spin_lock_irqsave(&iommu->register_lock, flag);
|
|
}
|
|
clear_overflow:
|
|
/* clear primary fault overflow */
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
if (fault_status & DMA_FSTS_PFO)
|
|
writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int dmar_set_interrupt(struct intel_iommu *iommu)
|
|
{
|
|
int irq, ret;
|
|
|
|
irq = create_irq();
|
|
if (!irq) {
|
|
printk(KERN_ERR "IOMMU: no free vectors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_irq_data(irq, iommu);
|
|
iommu->irq = irq;
|
|
|
|
ret = arch_setup_dmar_msi(irq);
|
|
if (ret) {
|
|
set_irq_data(irq, NULL);
|
|
iommu->irq = 0;
|
|
destroy_irq(irq);
|
|
return 0;
|
|
}
|
|
|
|
/* Force fault register is cleared */
|
|
iommu_page_fault(irq, iommu);
|
|
|
|
ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
|
|
if (ret)
|
|
printk(KERN_ERR "IOMMU: can't request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
static int iommu_init_domains(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long ndomains;
|
|
unsigned long nlongs;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
pr_debug("Number of Domains supportd <%ld>\n", ndomains);
|
|
nlongs = BITS_TO_LONGS(ndomains);
|
|
|
|
/* TBD: there might be 64K domains,
|
|
* consider other allocation for future chip
|
|
*/
|
|
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
|
|
if (!iommu->domain_ids) {
|
|
printk(KERN_ERR "Allocating domain id array failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
|
|
GFP_KERNEL);
|
|
if (!iommu->domains) {
|
|
printk(KERN_ERR "Allocating domain array failed\n");
|
|
kfree(iommu->domain_ids);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&iommu->lock);
|
|
|
|
/*
|
|
* if Caching mode is set, then invalid translations are tagged
|
|
* with domainid 0. Hence we need to pre-allocate it.
|
|
*/
|
|
if (cap_caching_mode(iommu->cap))
|
|
set_bit(0, iommu->domain_ids);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void domain_exit(struct dmar_domain *domain);
|
|
static void vm_domain_exit(struct dmar_domain *domain);
|
|
|
|
void free_dmar_iommu(struct intel_iommu *iommu)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
|
|
for (; i < cap_ndoms(iommu->cap); ) {
|
|
domain = iommu->domains[i];
|
|
clear_bit(i, iommu->domain_ids);
|
|
|
|
spin_lock_irqsave(&domain->iommu_lock, flags);
|
|
if (--domain->iommu_count == 0) {
|
|
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
|
|
vm_domain_exit(domain);
|
|
else
|
|
domain_exit(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags);
|
|
|
|
i = find_next_bit(iommu->domain_ids,
|
|
cap_ndoms(iommu->cap), i+1);
|
|
}
|
|
|
|
if (iommu->gcmd & DMA_GCMD_TE)
|
|
iommu_disable_translation(iommu);
|
|
|
|
if (iommu->irq) {
|
|
set_irq_data(iommu->irq, NULL);
|
|
/* This will mask the irq */
|
|
free_irq(iommu->irq, iommu);
|
|
destroy_irq(iommu->irq);
|
|
}
|
|
|
|
kfree(iommu->domains);
|
|
kfree(iommu->domain_ids);
|
|
|
|
g_iommus[iommu->seq_id] = NULL;
|
|
|
|
/* if all iommus are freed, free g_iommus */
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
if (g_iommus[i])
|
|
break;
|
|
}
|
|
|
|
if (i == g_num_of_iommus)
|
|
kfree(g_iommus);
|
|
|
|
/* free context mapping */
|
|
free_context_table(iommu);
|
|
}
|
|
|
|
static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long num;
|
|
unsigned long ndomains;
|
|
struct dmar_domain *domain;
|
|
unsigned long flags;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
free_domain_mem(domain);
|
|
printk(KERN_ERR "IOMMU: no free domain ids\n");
|
|
return NULL;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
domain->id = num;
|
|
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
|
|
set_bit(iommu->seq_id, &domain->iommu_bmp);
|
|
domain->flags = 0;
|
|
iommu->domains[num] = domain;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void iommu_free_domain(struct dmar_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
struct intel_iommu *iommu;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
clear_bit(domain->id, iommu->domain_ids);
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static struct iova_domain reserved_iova_list;
|
|
static struct lock_class_key reserved_alloc_key;
|
|
static struct lock_class_key reserved_rbtree_key;
|
|
|
|
static void dmar_init_reserved_ranges(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct iova *iova;
|
|
int i;
|
|
u64 addr, size;
|
|
|
|
init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
|
|
|
|
lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
|
|
&reserved_alloc_key);
|
|
lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
|
|
&reserved_rbtree_key);
|
|
|
|
/* IOAPIC ranges shouldn't be accessed by DMA */
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
|
|
IOVA_PFN(IOAPIC_RANGE_END));
|
|
if (!iova)
|
|
printk(KERN_ERR "Reserve IOAPIC range failed\n");
|
|
|
|
/* Reserve all PCI MMIO to avoid peer-to-peer access */
|
|
for_each_pci_dev(pdev) {
|
|
struct resource *r;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
r = &pdev->resource[i];
|
|
if (!r->flags || !(r->flags & IORESOURCE_MEM))
|
|
continue;
|
|
addr = r->start;
|
|
addr &= PAGE_MASK;
|
|
size = r->end - addr;
|
|
size = PAGE_ALIGN(size);
|
|
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
|
|
IOVA_PFN(size + addr) - 1);
|
|
if (!iova)
|
|
printk(KERN_ERR "Reserve iova failed\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void domain_reserve_special_ranges(struct dmar_domain *domain)
|
|
{
|
|
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
|
|
}
|
|
|
|
static inline int guestwidth_to_adjustwidth(int gaw)
|
|
{
|
|
int agaw;
|
|
int r = (gaw - 12) % 9;
|
|
|
|
if (r == 0)
|
|
agaw = gaw;
|
|
else
|
|
agaw = gaw + 9 - r;
|
|
if (agaw > 64)
|
|
agaw = 64;
|
|
return agaw;
|
|
}
|
|
|
|
static int domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
int adjust_width, agaw;
|
|
unsigned long sagaw;
|
|
|
|
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
|
|
spin_lock_init(&domain->mapping_lock);
|
|
spin_lock_init(&domain->iommu_lock);
|
|
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
iommu = domain_get_iommu(domain);
|
|
if (guest_width > cap_mgaw(iommu->cap))
|
|
guest_width = cap_mgaw(iommu->cap);
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
agaw = width_to_agaw(adjust_width);
|
|
sagaw = cap_sagaw(iommu->cap);
|
|
if (!test_bit(agaw, &sagaw)) {
|
|
/* hardware doesn't support it, choose a bigger one */
|
|
pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
|
|
agaw = find_next_bit(&sagaw, 5, agaw);
|
|
if (agaw >= 5)
|
|
return -ENODEV;
|
|
}
|
|
domain->agaw = agaw;
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
if (ecap_coherent(iommu->ecap))
|
|
domain->iommu_coherency = 1;
|
|
else
|
|
domain->iommu_coherency = 0;
|
|
|
|
domain->iommu_count = 1;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void domain_exit(struct dmar_domain *domain)
|
|
{
|
|
u64 end;
|
|
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
domain_remove_dev_info(domain);
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
end = DOMAIN_MAX_ADDR(domain->gaw);
|
|
end = end & (~PAGE_MASK);
|
|
|
|
/* clear ptes */
|
|
dma_pte_clear_range(domain, 0, end);
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, 0, end);
|
|
|
|
iommu_free_domain(domain);
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int domain_context_mapping_one(struct dmar_domain *domain,
|
|
u8 bus, u8 devfn)
|
|
{
|
|
struct context_entry *context;
|
|
unsigned long flags;
|
|
struct intel_iommu *iommu;
|
|
struct dma_pte *pgd;
|
|
unsigned long num;
|
|
unsigned long ndomains;
|
|
int id;
|
|
int agaw;
|
|
|
|
pr_debug("Set context mapping for %02x:%02x.%d\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
BUG_ON(!domain->pgd);
|
|
|
|
iommu = device_to_iommu(bus, devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
context = device_to_context_entry(iommu, bus, devfn);
|
|
if (!context)
|
|
return -ENOMEM;
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
if (context_present(context)) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
id = domain->id;
|
|
pgd = domain->pgd;
|
|
|
|
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
|
|
int found = 0;
|
|
|
|
/* find an available domain id for this device in iommu */
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
num = find_first_bit(iommu->domain_ids, ndomains);
|
|
for (; num < ndomains; ) {
|
|
if (iommu->domains[num] == domain) {
|
|
id = num;
|
|
found = 1;
|
|
break;
|
|
}
|
|
num = find_next_bit(iommu->domain_ids,
|
|
cap_ndoms(iommu->cap), num+1);
|
|
}
|
|
|
|
if (found == 0) {
|
|
num = find_first_zero_bit(iommu->domain_ids, ndomains);
|
|
if (num >= ndomains) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
printk(KERN_ERR "IOMMU: no free domain ids\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
set_bit(num, iommu->domain_ids);
|
|
iommu->domains[num] = domain;
|
|
id = num;
|
|
}
|
|
|
|
/* Skip top levels of page tables for
|
|
* iommu which has less agaw than default.
|
|
*/
|
|
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
|
|
pgd = phys_to_virt(dma_pte_addr(pgd));
|
|
if (!dma_pte_present(pgd)) {
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
context_set_domain_id(context, id);
|
|
context_set_address_width(context, iommu->agaw);
|
|
context_set_address_root(context, virt_to_phys(pgd));
|
|
context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
|
|
context_set_fault_enable(context);
|
|
context_set_present(context);
|
|
domain_flush_cache(domain, context, sizeof(*context));
|
|
|
|
/* it's a non-present to present mapping */
|
|
if (iommu->flush.flush_context(iommu, domain->id,
|
|
(((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
|
|
DMA_CCMD_DEVICE_INVL, 1))
|
|
iommu_flush_write_buffer(iommu);
|
|
else
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
spin_lock_irqsave(&domain->iommu_lock, flags);
|
|
if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
|
|
domain->iommu_count++;
|
|
domain_update_iommu_coherency(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
|
|
ret = domain_context_mapping_one(domain, pdev->bus->number,
|
|
pdev->devfn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return 0;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = domain_context_mapping_one(domain, parent->bus->number,
|
|
parent->devfn);
|
|
if (ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
tmp->subordinate->number, 0);
|
|
else /* this is a legacy PCI bridge */
|
|
return domain_context_mapping_one(domain,
|
|
tmp->bus->number, tmp->devfn);
|
|
}
|
|
|
|
static int domain_context_mapped(struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
struct pci_dev *tmp, *parent;
|
|
struct intel_iommu *iommu;
|
|
|
|
iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
ret = device_context_mapped(iommu,
|
|
pdev->bus->number, pdev->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
/* dependent device mapping */
|
|
tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (!tmp)
|
|
return ret;
|
|
/* Secondary interface's bus number and devfn 0 */
|
|
parent = pdev->bus->self;
|
|
while (parent != tmp) {
|
|
ret = device_context_mapped(iommu, parent->bus->number,
|
|
parent->devfn);
|
|
if (!ret)
|
|
return ret;
|
|
parent = parent->bus->self;
|
|
}
|
|
if (tmp->is_pcie)
|
|
return device_context_mapped(iommu,
|
|
tmp->subordinate->number, 0);
|
|
else
|
|
return device_context_mapped(iommu,
|
|
tmp->bus->number, tmp->devfn);
|
|
}
|
|
|
|
static int
|
|
domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
|
|
u64 hpa, size_t size, int prot)
|
|
{
|
|
u64 start_pfn, end_pfn;
|
|
struct dma_pte *pte;
|
|
int index;
|
|
int addr_width = agaw_to_width(domain->agaw);
|
|
|
|
hpa &= (((u64)1) << addr_width) - 1;
|
|
|
|
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
|
|
return -EINVAL;
|
|
iova &= PAGE_MASK;
|
|
start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
|
|
end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
|
|
index = 0;
|
|
while (start_pfn < end_pfn) {
|
|
pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
/* We don't need lock here, nobody else
|
|
* touches the iova range
|
|
*/
|
|
BUG_ON(dma_pte_addr(pte));
|
|
dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
|
|
dma_set_pte_prot(pte, prot);
|
|
domain_flush_cache(domain, pte, sizeof(*pte));
|
|
start_pfn++;
|
|
index++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
|
|
{
|
|
if (!iommu)
|
|
return;
|
|
|
|
clear_context_table(iommu, bus, devfn);
|
|
iommu->flush.flush_context(iommu, 0, 0, 0,
|
|
DMA_CCMD_GLOBAL_INVL, 0);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH, 0);
|
|
}
|
|
|
|
static void domain_remove_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
while (!list_empty(&domain->devices)) {
|
|
info = list_entry(domain->devices.next,
|
|
struct device_domain_info, link);
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->dev.archdata.iommu = NULL;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
iommu = device_to_iommu(info->bus, info->devfn);
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
free_devinfo_mem(info);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* find_domain
|
|
* Note: we use struct pci_dev->dev.archdata.iommu stores the info
|
|
*/
|
|
static struct dmar_domain *
|
|
find_domain(struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
|
|
/* No lock here, assumes no domain exit in normal case */
|
|
info = pdev->dev.archdata.iommu;
|
|
if (info)
|
|
return info->domain;
|
|
return NULL;
|
|
}
|
|
|
|
/* domain is initialized */
|
|
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
|
|
{
|
|
struct dmar_domain *domain, *found = NULL;
|
|
struct intel_iommu *iommu;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct device_domain_info *info, *tmp;
|
|
struct pci_dev *dev_tmp;
|
|
unsigned long flags;
|
|
int bus = 0, devfn = 0;
|
|
|
|
domain = find_domain(pdev);
|
|
if (domain)
|
|
return domain;
|
|
|
|
dev_tmp = pci_find_upstream_pcie_bridge(pdev);
|
|
if (dev_tmp) {
|
|
if (dev_tmp->is_pcie) {
|
|
bus = dev_tmp->subordinate->number;
|
|
devfn = 0;
|
|
} else {
|
|
bus = dev_tmp->bus->number;
|
|
devfn = dev_tmp->devfn;
|
|
}
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(info, &device_domain_list, global) {
|
|
if (info->bus == bus && info->devfn == devfn) {
|
|
found = info->domain;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
/* pcie-pci bridge already has a domain, uses it */
|
|
if (found) {
|
|
domain = found;
|
|
goto found_domain;
|
|
}
|
|
}
|
|
|
|
/* Allocate new domain for the device */
|
|
drhd = dmar_find_matched_drhd_unit(pdev);
|
|
if (!drhd) {
|
|
printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
iommu = drhd->iommu;
|
|
|
|
domain = iommu_alloc_domain(iommu);
|
|
if (!domain)
|
|
goto error;
|
|
|
|
if (domain_init(domain, gaw)) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
|
|
/* register pcie-to-pci device */
|
|
if (dev_tmp) {
|
|
info = alloc_devinfo_mem();
|
|
if (!info) {
|
|
domain_exit(domain);
|
|
goto error;
|
|
}
|
|
info->bus = bus;
|
|
info->devfn = devfn;
|
|
info->dev = NULL;
|
|
info->domain = domain;
|
|
/* This domain is shared by devices under p2p bridge */
|
|
domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
|
|
|
|
/* pcie-to-pci bridge already has a domain, uses it */
|
|
found = NULL;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_entry(tmp, &device_domain_list, global) {
|
|
if (tmp->bus == bus && tmp->devfn == devfn) {
|
|
found = tmp->domain;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
free_devinfo_mem(info);
|
|
domain_exit(domain);
|
|
domain = found;
|
|
} else {
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
found_domain:
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
goto error;
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->dev = pdev;
|
|
info->domain = domain;
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
/* somebody is fast */
|
|
found = find_domain(pdev);
|
|
if (found != NULL) {
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
if (found != domain) {
|
|
domain_exit(domain);
|
|
domain = found;
|
|
}
|
|
free_devinfo_mem(info);
|
|
return domain;
|
|
}
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
pdev->dev.archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
return domain;
|
|
error:
|
|
/* recheck it here, maybe others set it */
|
|
return find_domain(pdev);
|
|
}
|
|
|
|
static int iommu_prepare_identity_map(struct pci_dev *pdev,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
struct dmar_domain *domain;
|
|
unsigned long size;
|
|
unsigned long long base;
|
|
int ret;
|
|
|
|
printk(KERN_INFO
|
|
"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
|
|
pci_name(pdev), start, end);
|
|
/* page table init */
|
|
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain)
|
|
return -ENOMEM;
|
|
|
|
/* The address might not be aligned */
|
|
base = start & PAGE_MASK;
|
|
size = end - base;
|
|
size = PAGE_ALIGN(size);
|
|
if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
|
|
IOVA_PFN(base + size) - 1)) {
|
|
printk(KERN_ERR "IOMMU: reserve iova failed\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
pr_debug("Mapping reserved region %lx@%llx for %s\n",
|
|
size, base, pci_name(pdev));
|
|
/*
|
|
* RMRR range might have overlap with physical memory range,
|
|
* clear it first
|
|
*/
|
|
dma_pte_clear_range(domain, base, base + size);
|
|
|
|
ret = domain_page_mapping(domain, base, base, size,
|
|
DMA_PTE_READ|DMA_PTE_WRITE);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* context entry init */
|
|
ret = domain_context_mapping(domain, pdev);
|
|
if (!ret)
|
|
return 0;
|
|
error:
|
|
domain_exit(domain);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
|
|
struct pci_dev *pdev)
|
|
{
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return 0;
|
|
return iommu_prepare_identity_map(pdev, rmrr->base_address,
|
|
rmrr->end_address + 1);
|
|
}
|
|
|
|
#ifdef CONFIG_DMAR_GFX_WA
|
|
struct iommu_prepare_data {
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
};
|
|
|
|
static int __init iommu_prepare_work_fn(unsigned long start_pfn,
|
|
unsigned long end_pfn, void *datax)
|
|
{
|
|
struct iommu_prepare_data *data;
|
|
|
|
data = (struct iommu_prepare_data *)datax;
|
|
|
|
data->ret = iommu_prepare_identity_map(data->pdev,
|
|
start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
|
|
return data->ret;
|
|
|
|
}
|
|
|
|
static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
|
|
{
|
|
int nid;
|
|
struct iommu_prepare_data data;
|
|
|
|
data.pdev = pdev;
|
|
data.ret = 0;
|
|
|
|
for_each_online_node(nid) {
|
|
work_with_active_regions(nid, iommu_prepare_work_fn, &data);
|
|
if (data.ret)
|
|
return data.ret;
|
|
}
|
|
return data.ret;
|
|
}
|
|
|
|
static void __init iommu_prepare_gfx_mapping(void)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
int ret;
|
|
|
|
for_each_pci_dev(pdev) {
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
|
|
!IS_GFX_DEVICE(pdev))
|
|
continue;
|
|
printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
|
|
pci_name(pdev));
|
|
ret = iommu_prepare_with_active_regions(pdev);
|
|
if (ret)
|
|
printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
|
|
}
|
|
}
|
|
#else /* !CONFIG_DMAR_GFX_WA */
|
|
static inline void iommu_prepare_gfx_mapping(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_DMAR_FLOPPY_WA
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
|
|
if (!pdev)
|
|
return;
|
|
|
|
printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
|
|
ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
|
|
|
|
if (ret)
|
|
printk("IOMMU: Failed to create 0-64M identity map, "
|
|
"floppy might not work\n");
|
|
|
|
}
|
|
#else
|
|
static inline void iommu_prepare_isa(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif /* !CONFIG_DMAR_FLPY_WA */
|
|
|
|
static int __init init_dmars(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct dmar_rmrr_unit *rmrr;
|
|
struct pci_dev *pdev;
|
|
struct intel_iommu *iommu;
|
|
int i, ret, unit = 0;
|
|
|
|
/*
|
|
* for each drhd
|
|
* allocate root
|
|
* initialize and program root entry to not present
|
|
* endfor
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
g_num_of_iommus++;
|
|
/*
|
|
* lock not needed as this is only incremented in the single
|
|
* threaded kernel __init code path all other access are read
|
|
* only
|
|
*/
|
|
}
|
|
|
|
g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
|
|
GFP_KERNEL);
|
|
if (!g_iommus) {
|
|
printk(KERN_ERR "Allocating global iommu array failed\n");
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
deferred_flush = kzalloc(g_num_of_iommus *
|
|
sizeof(struct deferred_flush_tables), GFP_KERNEL);
|
|
if (!deferred_flush) {
|
|
kfree(g_iommus);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
iommu = drhd->iommu;
|
|
g_iommus[iommu->seq_id] = iommu;
|
|
|
|
ret = iommu_init_domains(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/*
|
|
* TBD:
|
|
* we could share the same root & context tables
|
|
* amoung all IOMMU's. Need to Split it later.
|
|
*/
|
|
ret = iommu_alloc_root_entry(iommu);
|
|
if (ret) {
|
|
printk(KERN_ERR "IOMMU: allocate root entry failed\n");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
|
|
iommu = drhd->iommu;
|
|
if (dmar_enable_qi(iommu)) {
|
|
/*
|
|
* Queued Invalidate not enabled, use Register Based
|
|
* Invalidate
|
|
*/
|
|
iommu->flush.flush_context = __iommu_flush_context;
|
|
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
|
|
printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
|
|
"invalidation\n",
|
|
(unsigned long long)drhd->reg_base_addr);
|
|
} else {
|
|
iommu->flush.flush_context = qi_flush_context;
|
|
iommu->flush.flush_iotlb = qi_flush_iotlb;
|
|
printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
|
|
"invalidation\n",
|
|
(unsigned long long)drhd->reg_base_addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each rmrr
|
|
* for each dev attached to rmrr
|
|
* do
|
|
* locate drhd for dev, alloc domain for dev
|
|
* allocate free domain
|
|
* allocate page table entries for rmrr
|
|
* if context not allocated for bus
|
|
* allocate and init context
|
|
* set present in root table for this bus
|
|
* init context with domain, translation etc
|
|
* endfor
|
|
* endfor
|
|
*/
|
|
for_each_rmrr_units(rmrr) {
|
|
for (i = 0; i < rmrr->devices_cnt; i++) {
|
|
pdev = rmrr->devices[i];
|
|
/* some BIOS lists non-exist devices in DMAR table */
|
|
if (!pdev)
|
|
continue;
|
|
ret = iommu_prepare_rmrr_dev(rmrr, pdev);
|
|
if (ret)
|
|
printk(KERN_ERR
|
|
"IOMMU: mapping reserved region failed\n");
|
|
}
|
|
}
|
|
|
|
iommu_prepare_gfx_mapping();
|
|
|
|
iommu_prepare_isa();
|
|
|
|
/*
|
|
* for each drhd
|
|
* enable fault log
|
|
* global invalidate context cache
|
|
* global invalidate iotlb
|
|
* enable translation
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
sprintf (iommu->name, "dmar%d", unit++);
|
|
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
ret = dmar_set_interrupt(iommu);
|
|
if (ret)
|
|
goto error;
|
|
|
|
iommu_set_root_entry(iommu);
|
|
|
|
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
|
|
0);
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
|
|
0);
|
|
iommu_disable_protect_mem_regions(iommu);
|
|
|
|
ret = iommu_enable_translation(iommu);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
free_iommu(iommu);
|
|
}
|
|
kfree(g_iommus);
|
|
return ret;
|
|
}
|
|
|
|
static inline u64 aligned_size(u64 host_addr, size_t size)
|
|
{
|
|
u64 addr;
|
|
addr = (host_addr & (~PAGE_MASK)) + size;
|
|
return PAGE_ALIGN(addr);
|
|
}
|
|
|
|
struct iova *
|
|
iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
|
|
{
|
|
struct iova *piova;
|
|
|
|
/* Make sure it's in range */
|
|
end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
|
|
if (!size || (IOVA_START_ADDR + size > end))
|
|
return NULL;
|
|
|
|
piova = alloc_iova(&domain->iovad,
|
|
size >> PAGE_SHIFT, IOVA_PFN(end), 1);
|
|
return piova;
|
|
}
|
|
|
|
static struct iova *
|
|
__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
|
|
size_t size, u64 dma_mask)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iova *iova = NULL;
|
|
|
|
if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
|
|
iova = iommu_alloc_iova(domain, size, dma_mask);
|
|
else {
|
|
/*
|
|
* First try to allocate an io virtual address in
|
|
* DMA_32BIT_MASK and if that fails then try allocating
|
|
* from higher range
|
|
*/
|
|
iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
|
|
if (!iova)
|
|
iova = iommu_alloc_iova(domain, size, dma_mask);
|
|
}
|
|
|
|
if (!iova) {
|
|
printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
return iova;
|
|
}
|
|
|
|
static struct dmar_domain *
|
|
get_valid_domain_for_dev(struct pci_dev *pdev)
|
|
{
|
|
struct dmar_domain *domain;
|
|
int ret;
|
|
|
|
domain = get_domain_for_dev(pdev,
|
|
DEFAULT_DOMAIN_ADDRESS_WIDTH);
|
|
if (!domain) {
|
|
printk(KERN_ERR
|
|
"Allocating domain for %s failed", pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure context mapping is ok */
|
|
if (unlikely(!domain_context_mapped(pdev))) {
|
|
ret = domain_context_mapping(domain, pdev);
|
|
if (ret) {
|
|
printk(KERN_ERR
|
|
"Domain context map for %s failed",
|
|
pci_name(pdev));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
|
|
size_t size, int dir, u64 dma_mask)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
phys_addr_t start_paddr;
|
|
struct iova *iova;
|
|
int prot = 0;
|
|
int ret;
|
|
struct intel_iommu *iommu;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return paddr;
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
size = aligned_size((u64)paddr, size);
|
|
|
|
iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
|
|
if (!iova)
|
|
goto error;
|
|
|
|
start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
/*
|
|
* paddr - (paddr + size) might be partial page, we should map the whole
|
|
* page. Note: if two part of one page are separately mapped, we
|
|
* might have two guest_addr mapping to the same host paddr, but this
|
|
* is not a big problem
|
|
*/
|
|
ret = domain_page_mapping(domain, start_paddr,
|
|
((u64)paddr) & PAGE_MASK, size, prot);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* it's a non-present to present mapping */
|
|
ret = iommu_flush_iotlb_psi(iommu, domain->id,
|
|
start_paddr, size >> VTD_PAGE_SHIFT, 1);
|
|
if (ret)
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
return start_paddr + ((u64)paddr & (~PAGE_MASK));
|
|
|
|
error:
|
|
if (iova)
|
|
__free_iova(&domain->iovad, iova);
|
|
printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
|
|
pci_name(pdev), size, (unsigned long long)paddr, dir);
|
|
return 0;
|
|
}
|
|
|
|
dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr,
|
|
size_t size, int dir)
|
|
{
|
|
return __intel_map_single(hwdev, paddr, size, dir,
|
|
to_pci_dev(hwdev)->dma_mask);
|
|
}
|
|
|
|
static void flush_unmaps(void)
|
|
{
|
|
int i, j;
|
|
|
|
timer_on = 0;
|
|
|
|
/* just flush them all */
|
|
for (i = 0; i < g_num_of_iommus; i++) {
|
|
struct intel_iommu *iommu = g_iommus[i];
|
|
if (!iommu)
|
|
continue;
|
|
|
|
if (deferred_flush[i].next) {
|
|
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
|
|
DMA_TLB_GLOBAL_FLUSH, 0);
|
|
for (j = 0; j < deferred_flush[i].next; j++) {
|
|
__free_iova(&deferred_flush[i].domain[j]->iovad,
|
|
deferred_flush[i].iova[j]);
|
|
}
|
|
deferred_flush[i].next = 0;
|
|
}
|
|
}
|
|
|
|
list_size = 0;
|
|
}
|
|
|
|
static void flush_unmaps_timeout(unsigned long data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&async_umap_flush_lock, flags);
|
|
flush_unmaps();
|
|
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
|
|
}
|
|
|
|
static void add_unmap(struct dmar_domain *dom, struct iova *iova)
|
|
{
|
|
unsigned long flags;
|
|
int next, iommu_id;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock_irqsave(&async_umap_flush_lock, flags);
|
|
if (list_size == HIGH_WATER_MARK)
|
|
flush_unmaps();
|
|
|
|
iommu = domain_get_iommu(dom);
|
|
iommu_id = iommu->seq_id;
|
|
|
|
next = deferred_flush[iommu_id].next;
|
|
deferred_flush[iommu_id].domain[next] = dom;
|
|
deferred_flush[iommu_id].iova[next] = iova;
|
|
deferred_flush[iommu_id].next++;
|
|
|
|
if (!timer_on) {
|
|
mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
|
|
timer_on = 1;
|
|
}
|
|
list_size++;
|
|
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
|
|
}
|
|
|
|
void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
|
|
int dir)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_addr;
|
|
struct iova *iova;
|
|
struct intel_iommu *iommu;
|
|
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return;
|
|
domain = find_domain(pdev);
|
|
BUG_ON(!domain);
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
|
|
if (!iova)
|
|
return;
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT;
|
|
size = aligned_size((u64)dev_addr, size);
|
|
|
|
pr_debug("Device %s unmapping: %lx@%llx\n",
|
|
pci_name(pdev), size, (unsigned long long)start_addr);
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_addr, start_addr + size);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr, start_addr + size);
|
|
if (intel_iommu_strict) {
|
|
if (iommu_flush_iotlb_psi(iommu,
|
|
domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
|
|
iommu_flush_write_buffer(iommu);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
} else {
|
|
add_unmap(domain, iova);
|
|
/*
|
|
* queue up the release of the unmap to save the 1/6th of the
|
|
* cpu used up by the iotlb flush operation...
|
|
*/
|
|
}
|
|
}
|
|
|
|
void *intel_alloc_coherent(struct device *hwdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags)
|
|
{
|
|
void *vaddr;
|
|
int order;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
flags &= ~(GFP_DMA | GFP_DMA32);
|
|
|
|
vaddr = (void *)__get_free_pages(flags, order);
|
|
if (!vaddr)
|
|
return NULL;
|
|
memset(vaddr, 0, size);
|
|
|
|
*dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
|
|
DMA_BIDIRECTIONAL,
|
|
hwdev->coherent_dma_mask);
|
|
if (*dma_handle)
|
|
return vaddr;
|
|
free_pages((unsigned long)vaddr, order);
|
|
return NULL;
|
|
}
|
|
|
|
void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle)
|
|
{
|
|
int order;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
|
|
free_pages((unsigned long)vaddr, order);
|
|
}
|
|
|
|
#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
|
|
|
|
void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
|
|
int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
unsigned long start_addr;
|
|
struct iova *iova;
|
|
size_t size = 0;
|
|
void *addr;
|
|
struct scatterlist *sg;
|
|
struct intel_iommu *iommu;
|
|
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return;
|
|
|
|
domain = find_domain(pdev);
|
|
BUG_ON(!domain);
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
|
|
if (!iova)
|
|
return;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
size += aligned_size((u64)addr, sg->length);
|
|
}
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT;
|
|
|
|
/* clear the whole page */
|
|
dma_pte_clear_range(domain, start_addr, start_addr + size);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr, start_addr + size);
|
|
|
|
if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
|
|
size >> VTD_PAGE_SHIFT, 0))
|
|
iommu_flush_write_buffer(iommu);
|
|
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
}
|
|
|
|
static int intel_nontranslate_map_sg(struct device *hddev,
|
|
struct scatterlist *sglist, int nelems, int dir)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
BUG_ON(!sg_page(sg));
|
|
sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
|
|
sg->dma_length = sg->length;
|
|
}
|
|
return nelems;
|
|
}
|
|
|
|
int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
|
|
int dir)
|
|
{
|
|
void *addr;
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(hwdev);
|
|
struct dmar_domain *domain;
|
|
size_t size = 0;
|
|
int prot = 0;
|
|
size_t offset = 0;
|
|
struct iova *iova = NULL;
|
|
int ret;
|
|
struct scatterlist *sg;
|
|
unsigned long start_addr;
|
|
struct intel_iommu *iommu;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
|
|
return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
|
|
|
|
domain = get_valid_domain_for_dev(pdev);
|
|
if (!domain)
|
|
return 0;
|
|
|
|
iommu = domain_get_iommu(domain);
|
|
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
addr = (void *)virt_to_phys(addr);
|
|
size += aligned_size((u64)addr, sg->length);
|
|
}
|
|
|
|
iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
|
|
if (!iova) {
|
|
sglist->dma_length = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if DMAR supports zero-length reads on write only
|
|
* mappings..
|
|
*/
|
|
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
|
|
!cap_zlr(iommu->cap))
|
|
prot |= DMA_PTE_READ;
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
prot |= DMA_PTE_WRITE;
|
|
|
|
start_addr = iova->pfn_lo << PAGE_SHIFT;
|
|
offset = 0;
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
addr = SG_ENT_VIRT_ADDRESS(sg);
|
|
addr = (void *)virt_to_phys(addr);
|
|
size = aligned_size((u64)addr, sg->length);
|
|
ret = domain_page_mapping(domain, start_addr + offset,
|
|
((u64)addr) & PAGE_MASK,
|
|
size, prot);
|
|
if (ret) {
|
|
/* clear the page */
|
|
dma_pte_clear_range(domain, start_addr,
|
|
start_addr + offset);
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, start_addr,
|
|
start_addr + offset);
|
|
/* free iova */
|
|
__free_iova(&domain->iovad, iova);
|
|
return 0;
|
|
}
|
|
sg->dma_address = start_addr + offset +
|
|
((u64)addr & (~PAGE_MASK));
|
|
sg->dma_length = sg->length;
|
|
offset += size;
|
|
}
|
|
|
|
/* it's a non-present to present mapping */
|
|
if (iommu_flush_iotlb_psi(iommu, domain->id,
|
|
start_addr, offset >> VTD_PAGE_SHIFT, 1))
|
|
iommu_flush_write_buffer(iommu);
|
|
return nelems;
|
|
}
|
|
|
|
static struct dma_mapping_ops intel_dma_ops = {
|
|
.alloc_coherent = intel_alloc_coherent,
|
|
.free_coherent = intel_free_coherent,
|
|
.map_single = intel_map_single,
|
|
.unmap_single = intel_unmap_single,
|
|
.map_sg = intel_map_sg,
|
|
.unmap_sg = intel_unmap_sg,
|
|
};
|
|
|
|
static inline int iommu_domain_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_domain_cache = kmem_cache_create("iommu_domain",
|
|
sizeof(struct dmar_domain),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
|
|
NULL);
|
|
if (!iommu_domain_cache) {
|
|
printk(KERN_ERR "Couldn't create iommu_domain cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_devinfo_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
|
|
sizeof(struct device_domain_info),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (!iommu_devinfo_cache) {
|
|
printk(KERN_ERR "Couldn't create devinfo cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int iommu_iova_cache_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
iommu_iova_cache = kmem_cache_create("iommu_iova",
|
|
sizeof(struct iova),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (!iommu_iova_cache) {
|
|
printk(KERN_ERR "Couldn't create iova cache\n");
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init iommu_init_mempool(void)
|
|
{
|
|
int ret;
|
|
ret = iommu_iova_cache_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = iommu_domain_cache_init();
|
|
if (ret)
|
|
goto domain_error;
|
|
|
|
ret = iommu_devinfo_cache_init();
|
|
if (!ret)
|
|
return ret;
|
|
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
domain_error:
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __init iommu_exit_mempool(void)
|
|
{
|
|
kmem_cache_destroy(iommu_devinfo_cache);
|
|
kmem_cache_destroy(iommu_domain_cache);
|
|
kmem_cache_destroy(iommu_iova_cache);
|
|
|
|
}
|
|
|
|
static void __init init_no_remapping_devices(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (!drhd->include_all) {
|
|
int i;
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] != NULL)
|
|
break;
|
|
/* ignore DMAR unit if no pci devices exist */
|
|
if (i == drhd->devices_cnt)
|
|
drhd->ignored = 1;
|
|
}
|
|
}
|
|
|
|
if (dmar_map_gfx)
|
|
return;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
int i;
|
|
if (drhd->ignored || drhd->include_all)
|
|
continue;
|
|
|
|
for (i = 0; i < drhd->devices_cnt; i++)
|
|
if (drhd->devices[i] &&
|
|
!IS_GFX_DEVICE(drhd->devices[i]))
|
|
break;
|
|
|
|
if (i < drhd->devices_cnt)
|
|
continue;
|
|
|
|
/* bypass IOMMU if it is just for gfx devices */
|
|
drhd->ignored = 1;
|
|
for (i = 0; i < drhd->devices_cnt; i++) {
|
|
if (!drhd->devices[i])
|
|
continue;
|
|
drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
|
|
}
|
|
}
|
|
}
|
|
|
|
int __init intel_iommu_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (dmar_table_init())
|
|
return -ENODEV;
|
|
|
|
if (dmar_dev_scope_init())
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Check the need for DMA-remapping initialization now.
|
|
* Above initialization will also be used by Interrupt-remapping.
|
|
*/
|
|
if (no_iommu || swiotlb || dmar_disabled)
|
|
return -ENODEV;
|
|
|
|
iommu_init_mempool();
|
|
dmar_init_reserved_ranges();
|
|
|
|
init_no_remapping_devices();
|
|
|
|
ret = init_dmars();
|
|
if (ret) {
|
|
printk(KERN_ERR "IOMMU: dmar init failed\n");
|
|
put_iova_domain(&reserved_iova_list);
|
|
iommu_exit_mempool();
|
|
return ret;
|
|
}
|
|
printk(KERN_INFO
|
|
"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
|
|
|
|
init_timer(&unmap_timer);
|
|
force_iommu = 1;
|
|
dma_ops = &intel_dma_ops;
|
|
|
|
register_iommu(&intel_iommu_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vm_domain_add_dev_info(struct dmar_domain *domain,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
unsigned long flags;
|
|
|
|
info = alloc_devinfo_mem();
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
info->dev = pdev;
|
|
info->domain = domain;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_add(&info->link, &domain->devices);
|
|
list_add(&info->global, &device_domain_list);
|
|
pdev->dev.archdata.iommu = info;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags;
|
|
int found = 0;
|
|
struct list_head *entry, *tmp;
|
|
|
|
iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
|
|
if (!iommu)
|
|
return;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
list_for_each_safe(entry, tmp, &domain->devices) {
|
|
info = list_entry(entry, struct device_domain_info, link);
|
|
if (info->bus == pdev->bus->number &&
|
|
info->devfn == pdev->devfn) {
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->dev.archdata.iommu = NULL;
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
free_devinfo_mem(info);
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags);
|
|
|
|
if (found)
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* if there is no other devices under the same iommu
|
|
* owned by this domain, clear this iommu in iommu_bmp
|
|
* update iommu count and coherency
|
|
*/
|
|
if (device_to_iommu(info->bus, info->devfn) == iommu)
|
|
found = 1;
|
|
}
|
|
|
|
if (found == 0) {
|
|
unsigned long tmp_flags;
|
|
spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
|
|
clear_bit(iommu->seq_id, &domain->iommu_bmp);
|
|
domain->iommu_count--;
|
|
domain_update_iommu_coherency(domain);
|
|
spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&device_domain_lock, flags);
|
|
}
|
|
|
|
static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
|
|
{
|
|
struct device_domain_info *info;
|
|
struct intel_iommu *iommu;
|
|
unsigned long flags1, flags2;
|
|
|
|
spin_lock_irqsave(&device_domain_lock, flags1);
|
|
while (!list_empty(&domain->devices)) {
|
|
info = list_entry(domain->devices.next,
|
|
struct device_domain_info, link);
|
|
list_del(&info->link);
|
|
list_del(&info->global);
|
|
if (info->dev)
|
|
info->dev->dev.archdata.iommu = NULL;
|
|
|
|
spin_unlock_irqrestore(&device_domain_lock, flags1);
|
|
|
|
iommu = device_to_iommu(info->bus, info->devfn);
|
|
iommu_detach_dev(iommu, info->bus, info->devfn);
|
|
|
|
/* clear this iommu in iommu_bmp, update iommu count
|
|
* and coherency
|
|
*/
|
|
spin_lock_irqsave(&domain->iommu_lock, flags2);
|
|
if (test_and_clear_bit(iommu->seq_id,
|
|
&domain->iommu_bmp)) {
|
|
domain->iommu_count--;
|
|
domain_update_iommu_coherency(domain);
|
|
}
|
|
spin_unlock_irqrestore(&domain->iommu_lock, flags2);
|
|
|
|
free_devinfo_mem(info);
|
|
spin_lock_irqsave(&device_domain_lock, flags1);
|
|
}
|
|
spin_unlock_irqrestore(&device_domain_lock, flags1);
|
|
}
|
|
|
|
/* domain id for virtual machine, it won't be set in context */
|
|
static unsigned long vm_domid;
|
|
|
|
static int vm_domain_min_agaw(struct dmar_domain *domain)
|
|
{
|
|
int i;
|
|
int min_agaw = domain->agaw;
|
|
|
|
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
|
|
for (; i < g_num_of_iommus; ) {
|
|
if (min_agaw > g_iommus[i]->agaw)
|
|
min_agaw = g_iommus[i]->agaw;
|
|
|
|
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
|
|
}
|
|
|
|
return min_agaw;
|
|
}
|
|
|
|
static struct dmar_domain *iommu_alloc_vm_domain(void)
|
|
{
|
|
struct dmar_domain *domain;
|
|
|
|
domain = alloc_domain_mem();
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
domain->id = vm_domid++;
|
|
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
|
|
domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static int vm_domain_init(struct dmar_domain *domain, int guest_width)
|
|
{
|
|
int adjust_width;
|
|
|
|
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
|
|
spin_lock_init(&domain->mapping_lock);
|
|
spin_lock_init(&domain->iommu_lock);
|
|
|
|
domain_reserve_special_ranges(domain);
|
|
|
|
/* calculate AGAW */
|
|
domain->gaw = guest_width;
|
|
adjust_width = guestwidth_to_adjustwidth(guest_width);
|
|
domain->agaw = width_to_agaw(adjust_width);
|
|
|
|
INIT_LIST_HEAD(&domain->devices);
|
|
|
|
domain->iommu_count = 0;
|
|
domain->iommu_coherency = 0;
|
|
domain->max_addr = 0;
|
|
|
|
/* always allocate the top pgd */
|
|
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
|
|
if (!domain->pgd)
|
|
return -ENOMEM;
|
|
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_free_vm_domain(struct dmar_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
unsigned long i;
|
|
unsigned long ndomains;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->ignored)
|
|
continue;
|
|
iommu = drhd->iommu;
|
|
|
|
ndomains = cap_ndoms(iommu->cap);
|
|
i = find_first_bit(iommu->domain_ids, ndomains);
|
|
for (; i < ndomains; ) {
|
|
if (iommu->domains[i] == domain) {
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
clear_bit(i, iommu->domain_ids);
|
|
iommu->domains[i] = NULL;
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
break;
|
|
}
|
|
i = find_next_bit(iommu->domain_ids, ndomains, i+1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vm_domain_exit(struct dmar_domain *domain)
|
|
{
|
|
u64 end;
|
|
|
|
/* Domain 0 is reserved, so dont process it */
|
|
if (!domain)
|
|
return;
|
|
|
|
vm_domain_remove_all_dev_info(domain);
|
|
/* destroy iovas */
|
|
put_iova_domain(&domain->iovad);
|
|
end = DOMAIN_MAX_ADDR(domain->gaw);
|
|
end = end & (~VTD_PAGE_MASK);
|
|
|
|
/* clear ptes */
|
|
dma_pte_clear_range(domain, 0, end);
|
|
|
|
/* free page tables */
|
|
dma_pte_free_pagetable(domain, 0, end);
|
|
|
|
iommu_free_vm_domain(domain);
|
|
free_domain_mem(domain);
|
|
}
|
|
|
|
static int intel_iommu_domain_init(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain;
|
|
|
|
dmar_domain = iommu_alloc_vm_domain();
|
|
if (!dmar_domain) {
|
|
printk(KERN_ERR
|
|
"intel_iommu_domain_init: dmar_domain == NULL\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
|
|
printk(KERN_ERR
|
|
"intel_iommu_domain_init() failed\n");
|
|
vm_domain_exit(dmar_domain);
|
|
return -ENOMEM;
|
|
}
|
|
domain->priv = dmar_domain;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_iommu_domain_destroy(struct iommu_domain *domain)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
|
|
domain->priv = NULL;
|
|
vm_domain_exit(dmar_domain);
|
|
}
|
|
|
|
static int intel_iommu_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct intel_iommu *iommu;
|
|
int addr_width;
|
|
u64 end;
|
|
int ret;
|
|
|
|
/* normally pdev is not mapped */
|
|
if (unlikely(domain_context_mapped(pdev))) {
|
|
struct dmar_domain *old_domain;
|
|
|
|
old_domain = find_domain(pdev);
|
|
if (old_domain) {
|
|
if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
|
|
vm_domain_remove_one_dev_info(old_domain, pdev);
|
|
else
|
|
domain_remove_dev_info(old_domain);
|
|
}
|
|
}
|
|
|
|
iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
/* check if this iommu agaw is sufficient for max mapped address */
|
|
addr_width = agaw_to_width(iommu->agaw);
|
|
end = DOMAIN_MAX_ADDR(addr_width);
|
|
end = end & VTD_PAGE_MASK;
|
|
if (end < dmar_domain->max_addr) {
|
|
printk(KERN_ERR "%s: iommu agaw (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, iommu->agaw, dmar_domain->max_addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = domain_context_mapping(dmar_domain, pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vm_domain_add_dev_info(dmar_domain, pdev);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_iommu_detach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
vm_domain_remove_one_dev_info(dmar_domain, pdev);
|
|
}
|
|
|
|
static int intel_iommu_map_range(struct iommu_domain *domain,
|
|
unsigned long iova, phys_addr_t hpa,
|
|
size_t size, int iommu_prot)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
u64 max_addr;
|
|
int addr_width;
|
|
int prot = 0;
|
|
int ret;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= DMA_PTE_READ;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= DMA_PTE_WRITE;
|
|
|
|
max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
|
|
if (dmar_domain->max_addr < max_addr) {
|
|
int min_agaw;
|
|
u64 end;
|
|
|
|
/* check if minimum agaw is sufficient for mapped address */
|
|
min_agaw = vm_domain_min_agaw(dmar_domain);
|
|
addr_width = agaw_to_width(min_agaw);
|
|
end = DOMAIN_MAX_ADDR(addr_width);
|
|
end = end & VTD_PAGE_MASK;
|
|
if (end < max_addr) {
|
|
printk(KERN_ERR "%s: iommu agaw (%d) is not "
|
|
"sufficient for the mapped address (%llx)\n",
|
|
__func__, min_agaw, max_addr);
|
|
return -EFAULT;
|
|
}
|
|
dmar_domain->max_addr = max_addr;
|
|
}
|
|
|
|
ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_iommu_unmap_range(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
dma_addr_t base;
|
|
|
|
/* The address might not be aligned */
|
|
base = iova & VTD_PAGE_MASK;
|
|
size = VTD_PAGE_ALIGN(size);
|
|
dma_pte_clear_range(dmar_domain, base, base + size);
|
|
|
|
if (dmar_domain->max_addr == base + size)
|
|
dmar_domain->max_addr = base;
|
|
}
|
|
|
|
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
|
|
unsigned long iova)
|
|
{
|
|
struct dmar_domain *dmar_domain = domain->priv;
|
|
struct dma_pte *pte;
|
|
u64 phys = 0;
|
|
|
|
pte = addr_to_dma_pte(dmar_domain, iova);
|
|
if (pte)
|
|
phys = dma_pte_addr(pte);
|
|
|
|
return phys;
|
|
}
|
|
|
|
static struct iommu_ops intel_iommu_ops = {
|
|
.domain_init = intel_iommu_domain_init,
|
|
.domain_destroy = intel_iommu_domain_destroy,
|
|
.attach_dev = intel_iommu_attach_device,
|
|
.detach_dev = intel_iommu_detach_device,
|
|
.map = intel_iommu_map_range,
|
|
.unmap = intel_iommu_unmap_range,
|
|
.iova_to_phys = intel_iommu_iova_to_phys,
|
|
};
|
|
|
|
static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
|
|
{
|
|
/*
|
|
* Mobile 4 Series Chipset neglects to set RWBF capability,
|
|
* but needs it:
|
|
*/
|
|
printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
|
|
rwbf_quirk = 1;
|
|
}
|
|
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
|