c6bb353815
With the exception of hsw, which has dedicated DP clocks which run at the fixed frequency already, and vlv, which doesn't have optmized pre-defined dp clock parameters (yet). v2: Ville asked me to elaborate a bit more on the longer-term goals wrt dpll settings computation: So ultimately my idea is that in the compute config stage first the crtc code puts the default platform pll limits into the pipe_config. Then encoders can either overwrite that limit structure with their own special stuff (mostly for lvds madness). Or they can pick some or all of the parameters (e.g. just the p2 switchover on hdmi, or all the clock parameters for dp/sdvo tv). Once that's done then the generic crtc code can fill out any missing bits (using the find_best_pll code) and then try to assign which pll to use (if it's a platform with shared plls). In the end the modeset could should simply write the computed stuff into registers and never be able to fail. Of course there's still a lot of data to be moved into pipe_config to make this all happen, hence some of the temporary ugliness. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v1) Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> |
||
---|---|---|
.. | ||
ast | ||
cirrus | ||
exynos | ||
gma500 | ||
i2c | ||
i810 | ||
i915 | ||
mga | ||
mgag200 | ||
nouveau | ||
omapdrm | ||
r128 | ||
radeon | ||
savage | ||
shmobile | ||
sis | ||
tdfx | ||
tegra | ||
tilcdc | ||
ttm | ||
udl | ||
via | ||
vmwgfx | ||
Kconfig | ||
Makefile | ||
README.drm | ||
ati_pcigart.c | ||
drm_agpsupport.c | ||
drm_auth.c | ||
drm_buffer.c | ||
drm_bufs.c | ||
drm_cache.c | ||
drm_context.c | ||
drm_crtc.c | ||
drm_crtc_helper.c | ||
drm_debugfs.c | ||
drm_dma.c | ||
drm_dp_helper.c | ||
drm_drv.c | ||
drm_edid.c | ||
drm_edid_load.c | ||
drm_encoder_slave.c | ||
drm_fb_cma_helper.c | ||
drm_fb_helper.c | ||
drm_fops.c | ||
drm_gem.c | ||
drm_gem_cma_helper.c | ||
drm_global.c | ||
drm_hashtab.c | ||
drm_info.c | ||
drm_ioc32.c | ||
drm_ioctl.c | ||
drm_irq.c | ||
drm_lock.c | ||
drm_memory.c | ||
drm_mm.c | ||
drm_modes.c | ||
drm_pci.c | ||
drm_platform.c | ||
drm_prime.c | ||
drm_proc.c | ||
drm_scatter.c | ||
drm_stub.c | ||
drm_sysfs.c | ||
drm_trace.h | ||
drm_trace_points.c | ||
drm_usb.c | ||
drm_vm.c |
README.drm
************************************************************ * For the very latest on DRI development, please see: * * http://dri.freedesktop.org/ * ************************************************************ The Direct Rendering Manager (drm) is a device-independent kernel-level device driver that provides support for the XFree86 Direct Rendering Infrastructure (DRI). The DRM supports the Direct Rendering Infrastructure (DRI) in four major ways: 1. The DRM provides synchronized access to the graphics hardware via the use of an optimized two-tiered lock. 2. The DRM enforces the DRI security policy for access to the graphics hardware by only allowing authenticated X11 clients access to restricted regions of memory. 3. The DRM provides a generic DMA engine, complete with multiple queues and the ability to detect the need for an OpenGL context switch. 4. The DRM is extensible via the use of small device-specific modules that rely extensively on the API exported by the DRM module. Documentation on the DRI is available from: http://dri.freedesktop.org/wiki/Documentation http://sourceforge.net/project/showfiles.php?group_id=387 http://dri.sourceforge.net/doc/ For specific information about kernel-level support, see: The Direct Rendering Manager, Kernel Support for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/drm_low_level.html Hardware Locking for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/hardware_locking_low_level.html A Security Analysis of the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/security_low_level.html