OpenCloudOS-Kernel/net/wireless/scan.c

2621 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 scan result handling
*
* Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2016 Intel Deutschland GmbH
* Copyright (C) 2018-2019 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/nl80211.h>
#include <linux/etherdevice.h>
#include <net/arp.h>
#include <net/cfg80211.h>
#include <net/cfg80211-wext.h>
#include <net/iw_handler.h>
#include "core.h"
#include "nl80211.h"
#include "wext-compat.h"
#include "rdev-ops.h"
/**
* DOC: BSS tree/list structure
*
* At the top level, the BSS list is kept in both a list in each
* registered device (@bss_list) as well as an RB-tree for faster
* lookup. In the RB-tree, entries can be looked up using their
* channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
* for other BSSes.
*
* Due to the possibility of hidden SSIDs, there's a second level
* structure, the "hidden_list" and "hidden_beacon_bss" pointer.
* The hidden_list connects all BSSes belonging to a single AP
* that has a hidden SSID, and connects beacon and probe response
* entries. For a probe response entry for a hidden SSID, the
* hidden_beacon_bss pointer points to the BSS struct holding the
* beacon's information.
*
* Reference counting is done for all these references except for
* the hidden_list, so that a beacon BSS struct that is otherwise
* not referenced has one reference for being on the bss_list and
* one for each probe response entry that points to it using the
* hidden_beacon_bss pointer. When a BSS struct that has such a
* pointer is get/put, the refcount update is also propagated to
* the referenced struct, this ensure that it cannot get removed
* while somebody is using the probe response version.
*
* Note that the hidden_beacon_bss pointer never changes, due to
* the reference counting. Therefore, no locking is needed for
* it.
*
* Also note that the hidden_beacon_bss pointer is only relevant
* if the driver uses something other than the IEs, e.g. private
* data stored stored in the BSS struct, since the beacon IEs are
* also linked into the probe response struct.
*/
/*
* Limit the number of BSS entries stored in mac80211. Each one is
* a bit over 4k at most, so this limits to roughly 4-5M of memory.
* If somebody wants to really attack this though, they'd likely
* use small beacons, and only one type of frame, limiting each of
* the entries to a much smaller size (in order to generate more
* entries in total, so overhead is bigger.)
*/
static int bss_entries_limit = 1000;
module_param(bss_entries_limit, int, 0644);
MODULE_PARM_DESC(bss_entries_limit,
"limit to number of scan BSS entries (per wiphy, default 1000)");
#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
static void bss_free(struct cfg80211_internal_bss *bss)
{
struct cfg80211_bss_ies *ies;
if (WARN_ON(atomic_read(&bss->hold)))
return;
ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
if (ies && !bss->pub.hidden_beacon_bss)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
/*
* This happens when the module is removed, it doesn't
* really matter any more save for completeness
*/
if (!list_empty(&bss->hidden_list))
list_del(&bss->hidden_list);
kfree(bss);
}
static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
bss->refcount++;
if (bss->pub.hidden_beacon_bss) {
bss = container_of(bss->pub.hidden_beacon_bss,
struct cfg80211_internal_bss,
pub);
bss->refcount++;
}
if (bss->pub.transmitted_bss) {
bss = container_of(bss->pub.transmitted_bss,
struct cfg80211_internal_bss,
pub);
bss->refcount++;
}
}
static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (bss->pub.hidden_beacon_bss) {
struct cfg80211_internal_bss *hbss;
hbss = container_of(bss->pub.hidden_beacon_bss,
struct cfg80211_internal_bss,
pub);
hbss->refcount--;
if (hbss->refcount == 0)
bss_free(hbss);
}
if (bss->pub.transmitted_bss) {
struct cfg80211_internal_bss *tbss;
tbss = container_of(bss->pub.transmitted_bss,
struct cfg80211_internal_bss,
pub);
tbss->refcount--;
if (tbss->refcount == 0)
bss_free(tbss);
}
bss->refcount--;
if (bss->refcount == 0)
bss_free(bss);
}
static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (!list_empty(&bss->hidden_list)) {
/*
* don't remove the beacon entry if it has
* probe responses associated with it
*/
if (!bss->pub.hidden_beacon_bss)
return false;
/*
* if it's a probe response entry break its
* link to the other entries in the group
*/
list_del_init(&bss->hidden_list);
}
list_del_init(&bss->list);
list_del_init(&bss->pub.nontrans_list);
rb_erase(&bss->rbn, &rdev->bss_tree);
rdev->bss_entries--;
WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
"rdev bss entries[%d]/list[empty:%d] corruption\n",
rdev->bss_entries, list_empty(&rdev->bss_list));
bss_ref_put(rdev, bss);
return true;
}
bool cfg80211_is_element_inherited(const struct element *elem,
const struct element *non_inherit_elem)
{
u8 id_len, ext_id_len, i, loop_len, id;
const u8 *list;
if (elem->id == WLAN_EID_MULTIPLE_BSSID)
return false;
if (!non_inherit_elem || non_inherit_elem->datalen < 2)
return true;
/*
* non inheritance element format is:
* ext ID (56) | IDs list len | list | extension IDs list len | list
* Both lists are optional. Both lengths are mandatory.
* This means valid length is:
* elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
*/
id_len = non_inherit_elem->data[1];
if (non_inherit_elem->datalen < 3 + id_len)
return true;
ext_id_len = non_inherit_elem->data[2 + id_len];
if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
return true;
if (elem->id == WLAN_EID_EXTENSION) {
if (!ext_id_len)
return true;
loop_len = ext_id_len;
list = &non_inherit_elem->data[3 + id_len];
id = elem->data[0];
} else {
if (!id_len)
return true;
loop_len = id_len;
list = &non_inherit_elem->data[2];
id = elem->id;
}
for (i = 0; i < loop_len; i++) {
if (list[i] == id)
return false;
}
return true;
}
EXPORT_SYMBOL(cfg80211_is_element_inherited);
static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
const u8 *subelement, size_t subie_len,
u8 *new_ie, gfp_t gfp)
{
u8 *pos, *tmp;
const u8 *tmp_old, *tmp_new;
const struct element *non_inherit_elem;
u8 *sub_copy;
/* copy subelement as we need to change its content to
* mark an ie after it is processed.
*/
sub_copy = kmemdup(subelement, subie_len, gfp);
if (!sub_copy)
return 0;
pos = &new_ie[0];
/* set new ssid */
tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
if (tmp_new) {
memcpy(pos, tmp_new, tmp_new[1] + 2);
pos += (tmp_new[1] + 2);
}
/* get non inheritance list if exists */
non_inherit_elem =
cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
sub_copy, subie_len);
/* go through IEs in ie (skip SSID) and subelement,
* merge them into new_ie
*/
tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
if (tmp_old[0] == 0) {
tmp_old++;
continue;
}
if (tmp_old[0] == WLAN_EID_EXTENSION)
tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
subie_len);
else
tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
subie_len);
if (!tmp) {
const struct element *old_elem = (void *)tmp_old;
/* ie in old ie but not in subelement */
if (cfg80211_is_element_inherited(old_elem,
non_inherit_elem)) {
memcpy(pos, tmp_old, tmp_old[1] + 2);
pos += tmp_old[1] + 2;
}
} else {
/* ie in transmitting ie also in subelement,
* copy from subelement and flag the ie in subelement
* as copied (by setting eid field to WLAN_EID_SSID,
* which is skipped anyway).
* For vendor ie, compare OUI + type + subType to
* determine if they are the same ie.
*/
if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
/* same vendor ie, copy from
* subelement
*/
memcpy(pos, tmp, tmp[1] + 2);
pos += tmp[1] + 2;
tmp[0] = WLAN_EID_SSID;
} else {
memcpy(pos, tmp_old, tmp_old[1] + 2);
pos += tmp_old[1] + 2;
}
} else {
/* copy ie from subelement into new ie */
memcpy(pos, tmp, tmp[1] + 2);
pos += tmp[1] + 2;
tmp[0] = WLAN_EID_SSID;
}
}
if (tmp_old + tmp_old[1] + 2 - ie == ielen)
break;
tmp_old += tmp_old[1] + 2;
}
/* go through subelement again to check if there is any ie not
* copied to new ie, skip ssid, capability, bssid-index ie
*/
tmp_new = sub_copy;
while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
tmp_new[0] == WLAN_EID_SSID)) {
memcpy(pos, tmp_new, tmp_new[1] + 2);
pos += tmp_new[1] + 2;
}
if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
break;
tmp_new += tmp_new[1] + 2;
}
kfree(sub_copy);
return pos - new_ie;
}
static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
const u8 *ssid, size_t ssid_len)
{
const struct cfg80211_bss_ies *ies;
const u8 *ssidie;
if (bssid && !ether_addr_equal(a->bssid, bssid))
return false;
if (!ssid)
return true;
ies = rcu_access_pointer(a->ies);
if (!ies)
return false;
ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ssidie)
return false;
if (ssidie[1] != ssid_len)
return false;
return memcmp(ssidie + 2, ssid, ssid_len) == 0;
}
static int
cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
struct cfg80211_bss *nontrans_bss)
{
const u8 *ssid;
size_t ssid_len;
struct cfg80211_bss *bss = NULL;
rcu_read_lock();
ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
if (!ssid) {
rcu_read_unlock();
return -EINVAL;
}
ssid_len = ssid[1];
ssid = ssid + 2;
rcu_read_unlock();
/* check if nontrans_bss is in the list */
list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
return 0;
}
/* add to the list */
list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
return 0;
}
static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
unsigned long expire_time)
{
struct cfg80211_internal_bss *bss, *tmp;
bool expired = false;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!time_after(expire_time, bss->ts))
continue;
if (__cfg80211_unlink_bss(rdev, bss))
expired = true;
}
if (expired)
rdev->bss_generation++;
}
static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
{
struct cfg80211_internal_bss *bss, *oldest = NULL;
bool ret;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!list_empty(&bss->hidden_list) &&
!bss->pub.hidden_beacon_bss)
continue;
if (oldest && time_before(oldest->ts, bss->ts))
continue;
oldest = bss;
}
if (WARN_ON(!oldest))
return false;
/*
* The callers make sure to increase rdev->bss_generation if anything
* gets removed (and a new entry added), so there's no need to also do
* it here.
*/
ret = __cfg80211_unlink_bss(rdev, oldest);
WARN_ON(!ret);
return ret;
}
void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
bool send_message)
{
struct cfg80211_scan_request *request;
struct wireless_dev *wdev;
struct sk_buff *msg;
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
#endif
ASSERT_RTNL();
if (rdev->scan_msg) {
nl80211_send_scan_msg(rdev, rdev->scan_msg);
rdev->scan_msg = NULL;
return;
}
request = rdev->scan_req;
if (!request)
return;
wdev = request->wdev;
/*
* This must be before sending the other events!
* Otherwise, wpa_supplicant gets completely confused with
* wext events.
*/
if (wdev->netdev)
cfg80211_sme_scan_done(wdev->netdev);
if (!request->info.aborted &&
request->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, request->scan_start);
spin_unlock_bh(&rdev->bss_lock);
}
msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
#ifdef CONFIG_CFG80211_WEXT
if (wdev->netdev && !request->info.aborted) {
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
}
#endif
if (wdev->netdev)
dev_put(wdev->netdev);
rdev->scan_req = NULL;
kfree(request);
if (!send_message)
rdev->scan_msg = msg;
else
nl80211_send_scan_msg(rdev, msg);
}
void __cfg80211_scan_done(struct work_struct *wk)
{
struct cfg80211_registered_device *rdev;
rdev = container_of(wk, struct cfg80211_registered_device,
scan_done_wk);
rtnl_lock();
___cfg80211_scan_done(rdev, true);
rtnl_unlock();
}
void cfg80211_scan_done(struct cfg80211_scan_request *request,
struct cfg80211_scan_info *info)
{
trace_cfg80211_scan_done(request, info);
WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
request->info = *info;
request->notified = true;
queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
}
EXPORT_SYMBOL(cfg80211_scan_done);
void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
ASSERT_RTNL();
list_add_rcu(&req->list, &rdev->sched_scan_req_list);
}
static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
ASSERT_RTNL();
list_del_rcu(&req->list);
kfree_rcu(req, rcu_head);
}
static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
{
struct cfg80211_sched_scan_request *pos;
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
if (pos->reqid == reqid)
return pos;
}
return NULL;
}
/*
* Determines if a scheduled scan request can be handled. When a legacy
* scheduled scan is running no other scheduled scan is allowed regardless
* whether the request is for legacy or multi-support scan. When a multi-support
* scheduled scan is running a request for legacy scan is not allowed. In this
* case a request for multi-support scan can be handled if resources are
* available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
*/
int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
bool want_multi)
{
struct cfg80211_sched_scan_request *pos;
int i = 0;
list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
/* request id zero means legacy in progress */
if (!i && !pos->reqid)
return -EINPROGRESS;
i++;
}
if (i) {
/* no legacy allowed when multi request(s) are active */
if (!want_multi)
return -EINPROGRESS;
/* resource limit reached */
if (i == rdev->wiphy.max_sched_scan_reqs)
return -ENOSPC;
}
return 0;
}
void cfg80211_sched_scan_results_wk(struct work_struct *work)
{
struct cfg80211_registered_device *rdev;
struct cfg80211_sched_scan_request *req, *tmp;
rdev = container_of(work, struct cfg80211_registered_device,
sched_scan_res_wk);
rtnl_lock();
list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
if (req->report_results) {
req->report_results = false;
if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, req->scan_start);
spin_unlock_bh(&rdev->bss_lock);
req->scan_start = jiffies;
}
nl80211_send_sched_scan(req,
NL80211_CMD_SCHED_SCAN_RESULTS);
}
}
rtnl_unlock();
}
void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_sched_scan_request *request;
trace_cfg80211_sched_scan_results(wiphy, reqid);
/* ignore if we're not scanning */
rcu_read_lock();
request = cfg80211_find_sched_scan_req(rdev, reqid);
if (request) {
request->report_results = true;
queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(cfg80211_sched_scan_results);
void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
ASSERT_RTNL();
trace_cfg80211_sched_scan_stopped(wiphy, reqid);
__cfg80211_stop_sched_scan(rdev, reqid, true);
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
{
rtnl_lock();
cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
rtnl_unlock();
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req,
bool driver_initiated)
{
ASSERT_RTNL();
if (!driver_initiated) {
int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
if (err)
return err;
}
nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
cfg80211_del_sched_scan_req(rdev, req);
return 0;
}
int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
u64 reqid, bool driver_initiated)
{
struct cfg80211_sched_scan_request *sched_scan_req;
ASSERT_RTNL();
sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
if (!sched_scan_req)
return -ENOENT;
return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
driver_initiated);
}
void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
unsigned long age_secs)
{
struct cfg80211_internal_bss *bss;
unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list)
bss->ts -= age_jiffies;
spin_unlock_bh(&rdev->bss_lock);
}
void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
{
__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
}
const struct element *
cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
const u8 *match, unsigned int match_len,
unsigned int match_offset)
{
const struct element *elem;
for_each_element_id(elem, eid, ies, len) {
if (elem->datalen >= match_offset + match_len &&
!memcmp(elem->data + match_offset, match, match_len))
return elem;
}
return NULL;
}
EXPORT_SYMBOL(cfg80211_find_elem_match);
const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
const u8 *ies,
unsigned int len)
{
const struct element *elem;
u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
int match_len = (oui_type < 0) ? 3 : sizeof(match);
if (WARN_ON(oui_type > 0xff))
return NULL;
elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
match, match_len, 0);
if (!elem || elem->datalen < 4)
return NULL;
return elem;
}
EXPORT_SYMBOL(cfg80211_find_vendor_elem);
/**
* enum bss_compare_mode - BSS compare mode
* @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
* @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
* @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
*/
enum bss_compare_mode {
BSS_CMP_REGULAR,
BSS_CMP_HIDE_ZLEN,
BSS_CMP_HIDE_NUL,
};
static int cmp_bss(struct cfg80211_bss *a,
struct cfg80211_bss *b,
enum bss_compare_mode mode)
{
const struct cfg80211_bss_ies *a_ies, *b_ies;
const u8 *ie1 = NULL;
const u8 *ie2 = NULL;
int i, r;
if (a->channel != b->channel)
return b->channel->center_freq - a->channel->center_freq;
a_ies = rcu_access_pointer(a->ies);
if (!a_ies)
return -1;
b_ies = rcu_access_pointer(b->ies);
if (!b_ies)
return 1;
if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
a_ies->data, a_ies->len);
if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
int mesh_id_cmp;
if (ie1[1] == ie2[1])
mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
else
mesh_id_cmp = ie2[1] - ie1[1];
ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
if (mesh_id_cmp)
return mesh_id_cmp;
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
}
}
r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
if (r)
return r;
ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
if (!ie1 && !ie2)
return 0;
/*
* Note that with "hide_ssid", the function returns a match if
* the already-present BSS ("b") is a hidden SSID beacon for
* the new BSS ("a").
*/
/* sort missing IE before (left of) present IE */
if (!ie1)
return -1;
if (!ie2)
return 1;
switch (mode) {
case BSS_CMP_HIDE_ZLEN:
/*
* In ZLEN mode we assume the BSS entry we're
* looking for has a zero-length SSID. So if
* the one we're looking at right now has that,
* return 0. Otherwise, return the difference
* in length, but since we're looking for the
* 0-length it's really equivalent to returning
* the length of the one we're looking at.
*
* No content comparison is needed as we assume
* the content length is zero.
*/
return ie2[1];
case BSS_CMP_REGULAR:
default:
/* sort by length first, then by contents */
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
case BSS_CMP_HIDE_NUL:
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
for (i = 0; i < ie2[1]; i++)
if (ie2[i + 2])
return -1;
return 0;
}
}
static bool cfg80211_bss_type_match(u16 capability,
enum nl80211_band band,
enum ieee80211_bss_type bss_type)
{
bool ret = true;
u16 mask, val;
if (bss_type == IEEE80211_BSS_TYPE_ANY)
return ret;
if (band == NL80211_BAND_60GHZ) {
mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_DMG_TYPE_AP;
break;
case IEEE80211_BSS_TYPE_PBSS:
val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
break;
default:
return false;
}
} else {
mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_ESS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_IBSS;
break;
case IEEE80211_BSS_TYPE_MBSS:
val = 0;
break;
default:
return false;
}
}
ret = ((capability & mask) == val);
return ret;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
const u8 *ssid, size_t ssid_len,
enum ieee80211_bss_type bss_type,
enum ieee80211_privacy privacy)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *res = NULL;
unsigned long now = jiffies;
int bss_privacy;
trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
privacy);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band, bss_type))
continue;
bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
(privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
continue;
if (channel && bss->pub.channel != channel)
continue;
if (!is_valid_ether_addr(bss->pub.bssid))
continue;
/* Don't get expired BSS structs */
if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
!atomic_read(&bss->hold))
continue;
if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
res = bss;
bss_ref_get(rdev, res);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (!res)
return NULL;
trace_cfg80211_return_bss(&res->pub);
return &res->pub;
}
EXPORT_SYMBOL(cfg80211_get_bss);
static void rb_insert_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
struct rb_node **p = &rdev->bss_tree.rb_node;
struct rb_node *parent = NULL;
struct cfg80211_internal_bss *tbss;
int cmp;
while (*p) {
parent = *p;
tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
if (WARN_ON(!cmp)) {
/* will sort of leak this BSS */
return;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&bss->rbn, parent, p);
rb_insert_color(&bss->rbn, &rdev->bss_tree);
}
static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *res,
enum bss_compare_mode mode)
{
struct rb_node *n = rdev->bss_tree.rb_node;
struct cfg80211_internal_bss *bss;
int r;
while (n) {
bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
r = cmp_bss(&res->pub, &bss->pub, mode);
if (r == 0)
return bss;
else if (r < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return NULL;
}
static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *new)
{
const struct cfg80211_bss_ies *ies;
struct cfg80211_internal_bss *bss;
const u8 *ie;
int i, ssidlen;
u8 fold = 0;
u32 n_entries = 0;
ies = rcu_access_pointer(new->pub.beacon_ies);
if (WARN_ON(!ies))
return false;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie) {
/* nothing to do */
return true;
}
ssidlen = ie[1];
for (i = 0; i < ssidlen; i++)
fold |= ie[2 + i];
if (fold) {
/* not a hidden SSID */
return true;
}
/* This is the bad part ... */
list_for_each_entry(bss, &rdev->bss_list, list) {
/*
* we're iterating all the entries anyway, so take the
* opportunity to validate the list length accounting
*/
n_entries++;
if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
continue;
if (bss->pub.channel != new->pub.channel)
continue;
if (bss->pub.scan_width != new->pub.scan_width)
continue;
if (rcu_access_pointer(bss->pub.beacon_ies))
continue;
ies = rcu_access_pointer(bss->pub.ies);
if (!ies)
continue;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie)
continue;
if (ssidlen && ie[1] != ssidlen)
continue;
if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
continue;
if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
list_del(&bss->hidden_list);
/* combine them */
list_add(&bss->hidden_list, &new->hidden_list);
bss->pub.hidden_beacon_bss = &new->pub;
new->refcount += bss->refcount;
rcu_assign_pointer(bss->pub.beacon_ies,
new->pub.beacon_ies);
}
WARN_ONCE(n_entries != rdev->bss_entries,
"rdev bss entries[%d]/list[len:%d] corruption\n",
rdev->bss_entries, n_entries);
return true;
}
struct cfg80211_non_tx_bss {
struct cfg80211_bss *tx_bss;
u8 max_bssid_indicator;
u8 bssid_index;
};
static bool
cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *known,
struct cfg80211_internal_bss *new,
bool signal_valid)
{
lockdep_assert_held(&rdev->bss_lock);
/* Update IEs */
if (rcu_access_pointer(new->pub.proberesp_ies)) {
const struct cfg80211_bss_ies *old;
old = rcu_access_pointer(known->pub.proberesp_ies);
rcu_assign_pointer(known->pub.proberesp_ies,
new->pub.proberesp_ies);
/* Override possible earlier Beacon frame IEs */
rcu_assign_pointer(known->pub.ies,
new->pub.proberesp_ies);
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
} else if (rcu_access_pointer(new->pub.beacon_ies)) {
const struct cfg80211_bss_ies *old;
struct cfg80211_internal_bss *bss;
if (known->pub.hidden_beacon_bss &&
!list_empty(&known->hidden_list)) {
const struct cfg80211_bss_ies *f;
/* The known BSS struct is one of the probe
* response members of a group, but we're
* receiving a beacon (beacon_ies in the new
* bss is used). This can only mean that the
* AP changed its beacon from not having an
* SSID to showing it, which is confusing so
* drop this information.
*/
f = rcu_access_pointer(new->pub.beacon_ies);
kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
return false;
}
old = rcu_access_pointer(known->pub.beacon_ies);
rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
/* Override IEs if they were from a beacon before */
if (old == rcu_access_pointer(known->pub.ies))
rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
/* Assign beacon IEs to all sub entries */
list_for_each_entry(bss, &known->hidden_list, hidden_list) {
const struct cfg80211_bss_ies *ies;
ies = rcu_access_pointer(bss->pub.beacon_ies);
WARN_ON(ies != old);
rcu_assign_pointer(bss->pub.beacon_ies,
new->pub.beacon_ies);
}
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
known->pub.beacon_interval = new->pub.beacon_interval;
/* don't update the signal if beacon was heard on
* adjacent channel.
*/
if (signal_valid)
known->pub.signal = new->pub.signal;
known->pub.capability = new->pub.capability;
known->ts = new->ts;
known->ts_boottime = new->ts_boottime;
known->parent_tsf = new->parent_tsf;
known->pub.chains = new->pub.chains;
memcpy(known->pub.chain_signal, new->pub.chain_signal,
IEEE80211_MAX_CHAINS);
ether_addr_copy(known->parent_bssid, new->parent_bssid);
known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
known->pub.bssid_index = new->pub.bssid_index;
return true;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *tmp,
bool signal_valid, unsigned long ts)
{
struct cfg80211_internal_bss *found = NULL;
if (WARN_ON(!tmp->pub.channel))
return NULL;
tmp->ts = ts;
spin_lock_bh(&rdev->bss_lock);
if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
spin_unlock_bh(&rdev->bss_lock);
return NULL;
}
found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
if (found) {
if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
goto drop;
} else {
struct cfg80211_internal_bss *new;
struct cfg80211_internal_bss *hidden;
struct cfg80211_bss_ies *ies;
/*
* create a copy -- the "res" variable that is passed in
* is allocated on the stack since it's not needed in the
* more common case of an update
*/
new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
GFP_ATOMIC);
if (!new) {
ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
if (ies)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
goto drop;
}
memcpy(new, tmp, sizeof(*new));
new->refcount = 1;
INIT_LIST_HEAD(&new->hidden_list);
INIT_LIST_HEAD(&new->pub.nontrans_list);
if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
if (!hidden)
hidden = rb_find_bss(rdev, tmp,
BSS_CMP_HIDE_NUL);
if (hidden) {
new->pub.hidden_beacon_bss = &hidden->pub;
list_add(&new->hidden_list,
&hidden->hidden_list);
hidden->refcount++;
rcu_assign_pointer(new->pub.beacon_ies,
hidden->pub.beacon_ies);
}
} else {
/*
* Ok so we found a beacon, and don't have an entry. If
* it's a beacon with hidden SSID, we might be in for an
* expensive search for any probe responses that should
* be grouped with this beacon for updates ...
*/
if (!cfg80211_combine_bsses(rdev, new)) {
kfree(new);
goto drop;
}
}
if (rdev->bss_entries >= bss_entries_limit &&
!cfg80211_bss_expire_oldest(rdev)) {
if (!list_empty(&new->hidden_list))
list_del(&new->hidden_list);
kfree(new);
goto drop;
}
/* This must be before the call to bss_ref_get */
if (tmp->pub.transmitted_bss) {
struct cfg80211_internal_bss *pbss =
container_of(tmp->pub.transmitted_bss,
struct cfg80211_internal_bss,
pub);
new->pub.transmitted_bss = tmp->pub.transmitted_bss;
bss_ref_get(rdev, pbss);
}
list_add_tail(&new->list, &rdev->bss_list);
rdev->bss_entries++;
rb_insert_bss(rdev, new);
found = new;
}
rdev->bss_generation++;
bss_ref_get(rdev, found);
spin_unlock_bh(&rdev->bss_lock);
return found;
drop:
spin_unlock_bh(&rdev->bss_lock);
return NULL;
}
/*
* Update RX channel information based on the available frame payload
* information. This is mainly for the 2.4 GHz band where frames can be received
* from neighboring channels and the Beacon frames use the DSSS Parameter Set
* element to indicate the current (transmitting) channel, but this might also
* be needed on other bands if RX frequency does not match with the actual
* operating channel of a BSS.
*/
static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
struct ieee80211_channel *channel,
enum nl80211_bss_scan_width scan_width)
{
const u8 *tmp;
u32 freq;
int channel_number = -1;
struct ieee80211_channel *alt_channel;
tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
if (tmp && tmp[1] == 1) {
channel_number = tmp[2];
} else {
tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
channel_number = htop->primary_chan;
}
}
if (channel_number < 0) {
/* No channel information in frame payload */
return channel;
}
freq = ieee80211_channel_to_frequency(channel_number, channel->band);
alt_channel = ieee80211_get_channel(wiphy, freq);
if (!alt_channel) {
if (channel->band == NL80211_BAND_2GHZ) {
/*
* Better not allow unexpected channels when that could
* be going beyond the 1-11 range (e.g., discovering
* BSS on channel 12 when radio is configured for
* channel 11.
*/
return NULL;
}
/* No match for the payload channel number - ignore it */
return channel;
}
if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
scan_width == NL80211_BSS_CHAN_WIDTH_5) {
/*
* Ignore channel number in 5 and 10 MHz channels where there
* may not be an n:1 or 1:n mapping between frequencies and
* channel numbers.
*/
return channel;
}
/*
* Use the channel determined through the payload channel number
* instead of the RX channel reported by the driver.
*/
if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
return NULL;
return alt_channel;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
struct cfg80211_non_tx_bss *non_tx_data,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_bss_ies *ies;
struct ieee80211_channel *channel;
struct cfg80211_internal_bss tmp = {}, *res;
int bss_type;
bool signal_valid;
unsigned long ts;
if (WARN_ON(!wiphy))
return NULL;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(data->signal < 0 || data->signal > 100)))
return NULL;
channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
data->scan_width);
if (!channel)
return NULL;
memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
tmp.pub.channel = channel;
tmp.pub.scan_width = data->scan_width;
tmp.pub.signal = data->signal;
tmp.pub.beacon_interval = beacon_interval;
tmp.pub.capability = capability;
tmp.ts_boottime = data->boottime_ns;
if (non_tx_data) {
tmp.pub.transmitted_bss = non_tx_data->tx_bss;
ts = bss_from_pub(non_tx_data->tx_bss)->ts;
tmp.pub.bssid_index = non_tx_data->bssid_index;
tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
} else {
ts = jiffies;
}
/*
* If we do not know here whether the IEs are from a Beacon or Probe
* Response frame, we need to pick one of the options and only use it
* with the driver that does not provide the full Beacon/Probe Response
* frame. Use Beacon frame pointer to avoid indicating that this should
* override the IEs pointer should we have received an earlier
* indication of Probe Response data.
*/
ies = kzalloc(sizeof(*ies) + ielen, gfp);
if (!ies)
return NULL;
ies->len = ielen;
ies->tsf = tsf;
ies->from_beacon = false;
memcpy(ies->data, ie, ielen);
switch (ftype) {
case CFG80211_BSS_FTYPE_BEACON:
ies->from_beacon = true;
/* fall through */
case CFG80211_BSS_FTYPE_UNKNOWN:
rcu_assign_pointer(tmp.pub.beacon_ies, ies);
break;
case CFG80211_BSS_FTYPE_PRESP:
rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
break;
}
rcu_assign_pointer(tmp.pub.ies, ies);
signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
wiphy->max_adj_channel_rssi_comp;
res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
if (!res)
return NULL;
if (channel->band == NL80211_BAND_60GHZ) {
bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
} else {
if (res->pub.capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
}
if (non_tx_data) {
/* this is a nontransmitting bss, we need to add it to
* transmitting bss' list if it is not there
*/
if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
&res->pub)) {
if (__cfg80211_unlink_bss(rdev, res))
rdev->bss_generation++;
}
}
trace_cfg80211_return_bss(&res->pub);
/* cfg80211_bss_update gives us a referenced result */
return &res->pub;
}
static const struct element
*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem)
{
const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
const struct element *next_mbssid;
const struct element *next_sub;
next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
mbssid_end,
ielen - (mbssid_end - ie));
/*
* If is is not the last subelement in current MBSSID IE or there isn't
* a next MBSSID IE - profile is complete.
*/
if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
!next_mbssid)
return NULL;
/* For any length error, just return NULL */
if (next_mbssid->datalen < 4)
return NULL;
next_sub = (void *)&next_mbssid->data[1];
if (next_mbssid->data + next_mbssid->datalen <
next_sub->data + next_sub->datalen)
return NULL;
if (next_sub->id != 0 || next_sub->datalen < 2)
return NULL;
/*
* Check if the first element in the next sub element is a start
* of a new profile
*/
return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
NULL : next_mbssid;
}
size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem,
u8 *merged_ie, size_t max_copy_len)
{
size_t copied_len = sub_elem->datalen;
const struct element *next_mbssid;
if (sub_elem->datalen > max_copy_len)
return 0;
memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
mbssid_elem,
sub_elem))) {
const struct element *next_sub = (void *)&next_mbssid->data[1];
if (copied_len + next_sub->datalen > max_copy_len)
break;
memcpy(merged_ie + copied_len, next_sub->data,
next_sub->datalen);
copied_len += next_sub->datalen;
}
return copied_len;
}
EXPORT_SYMBOL(cfg80211_merge_profile);
static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf,
u16 beacon_interval, const u8 *ie,
size_t ielen,
struct cfg80211_non_tx_bss *non_tx_data,
gfp_t gfp)
{
const u8 *mbssid_index_ie;
const struct element *elem, *sub;
size_t new_ie_len;
u8 new_bssid[ETH_ALEN];
u8 *new_ie, *profile;
u64 seen_indices = 0;
u16 capability;
struct cfg80211_bss *bss;
if (!non_tx_data)
return;
if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
return;
if (!wiphy->support_mbssid)
return;
if (wiphy->support_only_he_mbssid &&
!cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
return;
new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
if (!new_ie)
return;
profile = kmalloc(ielen, gfp);
if (!profile)
goto out;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
if (elem->datalen < 4)
continue;
for_each_element(sub, elem->data + 1, elem->datalen - 1) {
u8 profile_len;
if (sub->id != 0 || sub->datalen < 4) {
/* not a valid BSS profile */
continue;
}
if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
sub->data[1] != 2) {
/* The first element within the Nontransmitted
* BSSID Profile is not the Nontransmitted
* BSSID Capability element.
*/
continue;
}
memset(profile, 0, ielen);
profile_len = cfg80211_merge_profile(ie, ielen,
elem,
sub,
profile,
ielen);
/* found a Nontransmitted BSSID Profile */
mbssid_index_ie = cfg80211_find_ie
(WLAN_EID_MULTI_BSSID_IDX,
profile, profile_len);
if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
mbssid_index_ie[2] == 0 ||
mbssid_index_ie[2] > 46) {
/* No valid Multiple BSSID-Index element */
continue;
}
if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
/* We don't support legacy split of a profile */
net_dbg_ratelimited("Partial info for BSSID index %d\n",
mbssid_index_ie[2]);
seen_indices |= BIT_ULL(mbssid_index_ie[2]);
non_tx_data->bssid_index = mbssid_index_ie[2];
non_tx_data->max_bssid_indicator = elem->data[0];
cfg80211_gen_new_bssid(bssid,
non_tx_data->max_bssid_indicator,
non_tx_data->bssid_index,
new_bssid);
memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
new_ie_len = cfg80211_gen_new_ie(ie, ielen,
profile,
profile_len, new_ie,
gfp);
if (!new_ie_len)
continue;
capability = get_unaligned_le16(profile + 2);
bss = cfg80211_inform_single_bss_data(wiphy, data,
ftype,
new_bssid, tsf,
capability,
beacon_interval,
new_ie,
new_ie_len,
non_tx_data,
gfp);
if (!bss)
break;
cfg80211_put_bss(wiphy, bss);
}
}
out:
kfree(new_ie);
kfree(profile);
}
struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
gfp_t gfp)
{
struct cfg80211_bss *res;
struct cfg80211_non_tx_bss non_tx_data;
res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
capability, beacon_interval, ie,
ielen, NULL, gfp);
if (!res)
return NULL;
non_tx_data.tx_bss = res;
cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
beacon_interval, ie, ielen, &non_tx_data,
gfp);
return res;
}
EXPORT_SYMBOL(cfg80211_inform_bss_data);
static void
cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
struct cfg80211_non_tx_bss *non_tx_data,
gfp_t gfp)
{
enum cfg80211_bss_frame_type ftype;
const u8 *ie = mgmt->u.probe_resp.variable;
size_t ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
ftype = ieee80211_is_beacon(mgmt->frame_control) ?
CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
le64_to_cpu(mgmt->u.probe_resp.timestamp),
le16_to_cpu(mgmt->u.probe_resp.beacon_int),
ie, ielen, non_tx_data, gfp);
}
static void
cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
struct cfg80211_bss *nontrans_bss,
struct ieee80211_mgmt *mgmt, size_t len)
{
u8 *ie, *new_ie, *pos;
const u8 *nontrans_ssid, *trans_ssid, *mbssid;
size_t ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
size_t new_ie_len;
struct cfg80211_bss_ies *new_ies;
const struct cfg80211_bss_ies *old;
u8 cpy_len;
lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
ie = mgmt->u.probe_resp.variable;
new_ie_len = ielen;
trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
if (!trans_ssid)
return;
new_ie_len -= trans_ssid[1];
mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
/*
* It's not valid to have the MBSSID element before SSID
* ignore if that happens - the code below assumes it is
* after (while copying things inbetween).
*/
if (!mbssid || mbssid < trans_ssid)
return;
new_ie_len -= mbssid[1];
nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
if (!nontrans_ssid)
return;
new_ie_len += nontrans_ssid[1];
/* generate new ie for nontrans BSS
* 1. replace SSID with nontrans BSS' SSID
* 2. skip MBSSID IE
*/
new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
if (!new_ie)
return;
new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
if (!new_ies)
goto out_free;
pos = new_ie;
/* copy the nontransmitted SSID */
cpy_len = nontrans_ssid[1] + 2;
memcpy(pos, nontrans_ssid, cpy_len);
pos += cpy_len;
/* copy the IEs between SSID and MBSSID */
cpy_len = trans_ssid[1] + 2;
memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
pos += (mbssid - (trans_ssid + cpy_len));
/* copy the IEs after MBSSID */
cpy_len = mbssid[1] + 2;
memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
/* update ie */
new_ies->len = new_ie_len;
new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
memcpy(new_ies->data, new_ie, new_ie_len);
if (ieee80211_is_probe_resp(mgmt->frame_control)) {
old = rcu_access_pointer(nontrans_bss->proberesp_ies);
rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
rcu_assign_pointer(nontrans_bss->ies, new_ies);
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
} else {
old = rcu_access_pointer(nontrans_bss->beacon_ies);
rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
rcu_assign_pointer(nontrans_bss->ies, new_ies);
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
out_free:
kfree(new_ie);
}
/* cfg80211_inform_bss_width_frame helper */
static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp)
{
struct cfg80211_internal_bss tmp = {}, *res;
struct cfg80211_bss_ies *ies;
struct ieee80211_channel *channel;
bool signal_valid;
size_t ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
int bss_type;
BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
offsetof(struct ieee80211_mgmt, u.beacon.variable));
trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
if (WARN_ON(!mgmt))
return NULL;
if (WARN_ON(!wiphy))
return NULL;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(data->signal < 0 || data->signal > 100)))
return NULL;
if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
return NULL;
channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
ielen, data->chan, data->scan_width);
if (!channel)
return NULL;
ies = kzalloc(sizeof(*ies) + ielen, gfp);
if (!ies)
return NULL;
ies->len = ielen;
ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
if (ieee80211_is_probe_resp(mgmt->frame_control))
rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
else
rcu_assign_pointer(tmp.pub.beacon_ies, ies);
rcu_assign_pointer(tmp.pub.ies, ies);
memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
tmp.pub.channel = channel;
tmp.pub.scan_width = data->scan_width;
tmp.pub.signal = data->signal;
tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
tmp.ts_boottime = data->boottime_ns;
tmp.parent_tsf = data->parent_tsf;
tmp.pub.chains = data->chains;
memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
wiphy->max_adj_channel_rssi_comp;
res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
jiffies);
if (!res)
return NULL;
if (channel->band == NL80211_BAND_60GHZ) {
bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
} else {
if (res->pub.capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
}
trace_cfg80211_return_bss(&res->pub);
/* cfg80211_bss_update gives us a referenced result */
return &res->pub;
}
struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp)
{
struct cfg80211_bss *res, *tmp_bss;
const u8 *ie = mgmt->u.probe_resp.variable;
const struct cfg80211_bss_ies *ies1, *ies2;
size_t ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
struct cfg80211_non_tx_bss non_tx_data;
res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
len, gfp);
if (!res || !wiphy->support_mbssid ||
!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
return res;
if (wiphy->support_only_he_mbssid &&
!cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
return res;
non_tx_data.tx_bss = res;
/* process each non-transmitting bss */
cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
&non_tx_data, gfp);
spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
/* check if the res has other nontransmitting bss which is not
* in MBSSID IE
*/
ies1 = rcu_access_pointer(res->ies);
/* go through nontrans_list, if the timestamp of the BSS is
* earlier than the timestamp of the transmitting BSS then
* update it
*/
list_for_each_entry(tmp_bss, &res->nontrans_list,
nontrans_list) {
ies2 = rcu_access_pointer(tmp_bss->ies);
if (ies2->tsf < ies1->tsf)
cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
mgmt, len);
}
spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
return res;
}
EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss;
if (!pub)
return;
bss = container_of(pub, struct cfg80211_internal_bss, pub);
spin_lock_bh(&rdev->bss_lock);
bss_ref_get(rdev, bss);
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_ref_bss);
void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss;
if (!pub)
return;
bss = container_of(pub, struct cfg80211_internal_bss, pub);
spin_lock_bh(&rdev->bss_lock);
bss_ref_put(rdev, bss);
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_put_bss);
void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *tmp1;
struct cfg80211_bss *nontrans_bss, *tmp;
if (WARN_ON(!pub))
return;
bss = container_of(pub, struct cfg80211_internal_bss, pub);
spin_lock_bh(&rdev->bss_lock);
if (list_empty(&bss->list))
goto out;
list_for_each_entry_safe(nontrans_bss, tmp,
&pub->nontrans_list,
nontrans_list) {
tmp1 = container_of(nontrans_bss,
struct cfg80211_internal_bss, pub);
if (__cfg80211_unlink_bss(rdev, tmp1))
rdev->bss_generation++;
}
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
out:
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_unlink_bss);
void cfg80211_bss_iter(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
void (*iter)(struct wiphy *wiphy,
struct cfg80211_bss *bss,
void *data),
void *iter_data)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss;
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
iter(wiphy, &bss->pub, iter_data);
}
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_bss_iter);
void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
struct ieee80211_channel *chan)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *cbss = wdev->current_bss;
struct cfg80211_internal_bss *new = NULL;
struct cfg80211_internal_bss *bss;
struct cfg80211_bss *nontrans_bss;
struct cfg80211_bss *tmp;
spin_lock_bh(&rdev->bss_lock);
/*
* Some APs use CSA also for bandwidth changes, i.e., without actually
* changing the control channel, so no need to update in such a case.
*/
if (cbss->pub.channel == chan)
goto done;
/* use transmitting bss */
if (cbss->pub.transmitted_bss)
cbss = container_of(cbss->pub.transmitted_bss,
struct cfg80211_internal_bss,
pub);
cbss->pub.channel = chan;
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band,
wdev->conn_bss_type))
continue;
if (bss == cbss)
continue;
if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
new = bss;
break;
}
}
if (new) {
/* to save time, update IEs for transmitting bss only */
if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
new->pub.proberesp_ies = NULL;
new->pub.beacon_ies = NULL;
}
list_for_each_entry_safe(nontrans_bss, tmp,
&new->pub.nontrans_list,
nontrans_list) {
bss = container_of(nontrans_bss,
struct cfg80211_internal_bss, pub);
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
}
WARN_ON(atomic_read(&new->hold));
if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
rdev->bss_generation++;
}
rb_erase(&cbss->rbn, &rdev->bss_tree);
rb_insert_bss(rdev, cbss);
rdev->bss_generation++;
list_for_each_entry_safe(nontrans_bss, tmp,
&cbss->pub.nontrans_list,
nontrans_list) {
bss = container_of(nontrans_bss,
struct cfg80211_internal_bss, pub);
bss->pub.channel = chan;
rb_erase(&bss->rbn, &rdev->bss_tree);
rb_insert_bss(rdev, bss);
rdev->bss_generation++;
}
done:
spin_unlock_bh(&rdev->bss_lock);
}
#ifdef CONFIG_CFG80211_WEXT
static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
{
struct cfg80211_registered_device *rdev;
struct net_device *dev;
ASSERT_RTNL();
dev = dev_get_by_index(net, ifindex);
if (!dev)
return ERR_PTR(-ENODEV);
if (dev->ieee80211_ptr)
rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
else
rdev = ERR_PTR(-ENODEV);
dev_put(dev);
return rdev;
}
int cfg80211_wext_siwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
struct iw_scan_req *wreq = NULL;
struct cfg80211_scan_request *creq = NULL;
int i, err, n_channels = 0;
enum nl80211_band band;
if (!netif_running(dev))
return -ENETDOWN;
if (wrqu->data.length == sizeof(struct iw_scan_req))
wreq = (struct iw_scan_req *)extra;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg) {
err = -EBUSY;
goto out;
}
wiphy = &rdev->wiphy;
/* Determine number of channels, needed to allocate creq */
if (wreq && wreq->num_channels)
n_channels = wreq->num_channels;
else
n_channels = ieee80211_get_num_supported_channels(wiphy);
creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
n_channels * sizeof(void *),
GFP_ATOMIC);
if (!creq) {
err = -ENOMEM;
goto out;
}
creq->wiphy = wiphy;
creq->wdev = dev->ieee80211_ptr;
/* SSIDs come after channels */
creq->ssids = (void *)&creq->channels[n_channels];
creq->n_channels = n_channels;
creq->n_ssids = 1;
creq->scan_start = jiffies;
/* translate "Scan on frequencies" request */
i = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
/* ignore disabled channels */
if (wiphy->bands[band]->channels[j].flags &
IEEE80211_CHAN_DISABLED)
continue;
/* If we have a wireless request structure and the
* wireless request specifies frequencies, then search
* for the matching hardware channel.
*/
if (wreq && wreq->num_channels) {
int k;
int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
for (k = 0; k < wreq->num_channels; k++) {
struct iw_freq *freq =
&wreq->channel_list[k];
int wext_freq =
cfg80211_wext_freq(freq);
if (wext_freq == wiphy_freq)
goto wext_freq_found;
}
goto wext_freq_not_found;
}
wext_freq_found:
creq->channels[i] = &wiphy->bands[band]->channels[j];
i++;
wext_freq_not_found: ;
}
}
/* No channels found? */
if (!i) {
err = -EINVAL;
goto out;
}
/* Set real number of channels specified in creq->channels[] */
creq->n_channels = i;
/* translate "Scan for SSID" request */
if (wreq) {
if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
err = -EINVAL;
goto out;
}
memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
creq->ssids[0].ssid_len = wreq->essid_len;
}
if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
creq->n_ssids = 0;
}
for (i = 0; i < NUM_NL80211_BANDS; i++)
if (wiphy->bands[i])
creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
eth_broadcast_addr(creq->bssid);
rdev->scan_req = creq;
err = rdev_scan(rdev, creq);
if (err) {
rdev->scan_req = NULL;
/* creq will be freed below */
} else {
nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
/* creq now owned by driver */
creq = NULL;
dev_hold(dev);
}
out:
kfree(creq);
return err;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
static char *ieee80211_scan_add_ies(struct iw_request_info *info,
const struct cfg80211_bss_ies *ies,
char *current_ev, char *end_buf)
{
const u8 *pos, *end, *next;
struct iw_event iwe;
if (!ies)
return current_ev;
/*
* If needed, fragment the IEs buffer (at IE boundaries) into short
* enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
*/
pos = ies->data;
end = pos + ies->len;
while (end - pos > IW_GENERIC_IE_MAX) {
next = pos + 2 + pos[1];
while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
next = next + 2 + next[1];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = next - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
pos = next;
}
if (end > pos) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = end - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
}
return current_ev;
}
static char *
ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
struct cfg80211_internal_bss *bss, char *current_ev,
char *end_buf)
{
const struct cfg80211_bss_ies *ies;
struct iw_event iwe;
const u8 *ie;
u8 buf[50];
u8 *cfg, *p, *tmp;
int rem, i, sig;
bool ismesh = false;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->pub.channel->center_freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
IW_QUAL_NOISE_INVALID |
IW_QUAL_QUAL_UPDATED;
switch (wiphy->signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
sig = bss->pub.signal / 100;
iwe.u.qual.level = sig;
iwe.u.qual.updated |= IW_QUAL_DBM;
if (sig < -110) /* rather bad */
sig = -110;
else if (sig > -40) /* perfect */
sig = -40;
/* will give a range of 0 .. 70 */
iwe.u.qual.qual = sig + 110;
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
iwe.u.qual.level = bss->pub.signal;
/* will give range 0 .. 100 */
iwe.u.qual.qual = bss->pub.signal;
break;
default:
/* not reached */
break;
}
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_QUAL_LEN);
if (IS_ERR(current_ev))
return current_ev;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, "");
if (IS_ERR(current_ev))
return current_ev;
rcu_read_lock();
ies = rcu_dereference(bss->pub.ies);
rem = ies->len;
ie = ies->data;
while (rem >= 2) {
/* invalid data */
if (ie[1] > rem - 2)
break;
switch (ie[0]) {
case WLAN_EID_SSID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_ID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_CONFIG:
ismesh = true;
if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
break;
cfg = (u8 *)ie + 2;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "Mesh Network Path Selection Protocol ID: "
"0x%02X", cfg[0]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Path Selection Metric ID: 0x%02X",
cfg[1]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Congestion Control Mode ID: 0x%02X",
cfg[2]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_SUPP_RATES:
case WLAN_EID_EXT_SUPP_RATES:
/* display all supported rates in readable format */
p = current_ev + iwe_stream_lcp_len(info);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < ie[1]; i++) {
iwe.u.bitrate.value =
((ie[i + 2] & 0x7f) * 500000);
tmp = p;
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe,
IW_EV_PARAM_LEN);
if (p == tmp) {
current_ev = ERR_PTR(-E2BIG);
goto unlock;
}
}
current_ev = p;
break;
}
rem -= ie[1] + 2;
ie += ie[1] + 2;
}
if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
ismesh) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (ismesh)
iwe.u.mode = IW_MODE_MESH;
else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_UINT_LEN);
if (IS_ERR(current_ev))
goto unlock;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, " Last beacon: %ums ago",
elapsed_jiffies_msecs(bss->ts));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
unlock:
rcu_read_unlock();
return current_ev;
}
static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
struct iw_request_info *info,
char *buf, size_t len)
{
char *current_ev = buf;
char *end_buf = buf + len;
struct cfg80211_internal_bss *bss;
int err = 0;
spin_lock_bh(&rdev->bss_lock);
cfg80211_bss_expire(rdev);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
err = -E2BIG;
break;
}
current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
current_ev, end_buf);
if (IS_ERR(current_ev)) {
err = PTR_ERR(current_ev);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (err)
return err;
return current_ev - buf;
}
int cfg80211_wext_giwscan(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct cfg80211_registered_device *rdev;
int res;
if (!netif_running(dev))
return -ENETDOWN;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg)
return -EAGAIN;
res = ieee80211_scan_results(rdev, info, extra, data->length);
data->length = 0;
if (res >= 0) {
data->length = res;
res = 0;
}
return res;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
#endif