OpenCloudOS-Kernel/drivers/scsi/mpt3sas/mpt3sas_base.c

10311 lines
296 KiB
C
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This is the Fusion MPT base driver providing common API layer interface
* for access to MPT (Message Passing Technology) firmware.
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
* Copyright (C) 2013-2018 LSI Corporation
* Copyright (C) 2013-2018 Avago Technologies
* Copyright (C) 2013-2018 Broadcom Inc.
* (mailto:MPT-FusionLinux.pdl@broadcom.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
#include <asm/page.h> /* To get host page size per arch */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19))
#include <linux/aer.h>
#endif
#include "mpt3sas_base.h"
static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
#if defined(TARGET_MODE)
static struct STM_CALLBACK stm_callbacks;
EXPORT_SYMBOL(mpt3sas_ioc_list);
#endif
#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
#define HBA_HOTUNPLUG_POLLING_INTERVAL 1000 /* in milliseconds */
#define SATA_SMART_POLLING_INTERVAL 300 /* in seconds */
/* maximum controller queue depth */
#define MAX_HBA_QUEUE_DEPTH 30000
#define MAX_CHAIN_DEPTH 100000
static int max_queue_depth = -1;
module_param(max_queue_depth, int, 0444);
MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
static int max_sgl_entries = -1;
module_param(max_sgl_entries, int, 0444);
MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
static int msix_disable = -1;
module_param(msix_disable, int, 0444);
MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
#if ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 6)) || LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
static int smp_affinity_enable = 1;
module_param(smp_affinity_enable, int, 0444);
MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
#endif
static int max_msix_vectors = -1;
module_param(max_msix_vectors, int, 0444);
MODULE_PARM_DESC(max_msix_vectors, " max msix vectors");
static int irqpoll_weight = -1;
module_param(irqpoll_weight, int, 0444);
MODULE_PARM_DESC(irqpoll_weight,
"irq poll weight (default= one fourth of HBA queue depth)");
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20))
/* diag_buffer_enable is bitwise
* bit 0 set = TRACE
* bit 1 set = SNAPSHOT
* bit 2 set = EXTENDED
*
* Either bit can be set, or both
*/
static int diag_buffer_enable = -1;
module_param(diag_buffer_enable, int, 0444);
MODULE_PARM_DESC(diag_buffer_enable, " post diag buffers "
"(TRACE=1/SNAPSHOT=2/EXTENDED=4/default=0)");
int disable_discovery = -1;
module_param(disable_discovery, int, 0444);
MODULE_PARM_DESC(disable_discovery, " disable discovery ");
#endif
static int mpt3sas_fwfault_debug;
MODULE_PARM_DESC(mpt3sas_fwfault_debug, " enable detection of firmware fault "
"and halt firmware - (default=0)");
static int perf_mode = -1;
module_param(perf_mode, int, 0444);
MODULE_PARM_DESC(perf_mode,
"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
"0 - balanced: high iops mode is enabled &"
" interrupt coalescing is enabled only on high iops queues,\n\t\t"
"1 - iops: high iops mode is disabled &"
" interrupt coalescing is enabled on all queues,\n\t\t"
"2 - latency: high iops mode is disabled &"
" interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
"\t\tdefault - default perf_mode is 'balanced'.");
enum mpt3sas_perf_mode {
MPT_PERF_MODE_DEFAULT = -1,
MPT_PERF_MODE_BALANCED = 0,
MPT_PERF_MODE_IOPS = 1,
MPT_PERF_MODE_LATENCY = 2,
};
static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc);
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
u32 ioc_state, int timeout);
void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc);
/**
* _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
*
*/
static int
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,15,0))
_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
#else
_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
#endif
{
int ret = param_set_int(val, kp);
struct MPT3SAS_ADAPTER *ioc;
if (ret)
return ret;
printk(KERN_INFO "setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
/* global ioc spinlock to protect controller list on list operations */
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
ioc->fwfault_debug = mpt3sas_fwfault_debug;
spin_unlock(&gioc_lock);
return 0;
}
module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
param_get_int, &mpt3sas_fwfault_debug, 0644);
/**
* _base_readl_aero - retry the readl for max three times
* @addr - MPT Fusion system interface register address
*
* Retry the readl() for max three times it gets zero value
* while reading the system interface registers.
*/
static inline u32
_base_readl_aero(const volatile void __iomem *addr)
{
u32 i = 0, ret_val;
do {
ret_val = readl(addr);
i++;
} while (ret_val == 0 && i < 3);
return ret_val;
}
static inline u32
_base_readl(const volatile void __iomem *addr)
{
return readl(addr);
}
/**
* mpt3sas_base_check_cmd_timeout - Function
* to check timeout and command termination due
* to Host reset.
*
* @ioc: per adapter object.
* @status: Status of issued command.
* @mpi_request:mf request pointer.
* @sz: size of buffer.
*
* @Returns - 1/0 Reset to be done or Not
*/
u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
U8 status, void *mpi_request, int sz)
{
u8 issue_reset = 0;
if (!(status & MPT3_CMD_RESET))
issue_reset = 1;
printk(MPT3SAS_ERR_FMT "Command %s\n", ioc->name,
((issue_reset == 0) ? "terminated due to Host Reset" : "Timeout"));
_debug_dump_mf(mpi_request, sz);
return issue_reset;
}
/**
* _base_clone_reply_to_sys_mem - copies reply to reply free iomem
* in BAR0 space.
*
* @ioc: per adapter object
* @reply: reply message frame(lower 32bit addr)
* @index: System request message index.
*
* @Returns - Nothing
*/
static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
u32 index)
{
/*256 is offset within sys register.
256 offset MPI frame starts. Max MPI frame supported is 32.
32 * 128 = 4K. From here, Clone of reply free for mcpu starts*/
u16 cmd_credit = ioc->facts.RequestCredit + 1;
void *reply_free_iomem = (void*)ioc->chip + MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
writel(reply, reply_free_iomem);
}
/**
* _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
* to system/BAR0 region.
*
* @dst_iomem: Pointer to the destinaltion location in BAR0 space.
* @src: Pointer to the Source data.
* @size: Size of data to be copied.
*/
static void
_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
{
int i;
u32 *src_virt_mem = (u32 *)src;
for (i = 0; i < size/4; i++)
writel((u32)src_virt_mem[i], dst_iomem + (i * 4));
}
/**
* _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
*
* @dst_iomem: Pointer to the destinaltion location in BAR0 space.
* @src: Pointer to the Source data.
* @size: Size of data to be copied.
*/
static void
_base_clone_to_sys_mem( void *dst_iomem, void *src, u32 size)
{
int i;
u32 *src_virt_mem = (u32 *)(src);
for ( i = 0; i < size/4; i++ )
writel((u32)src_virt_mem[i], dst_iomem + (i * 4));
}
/**
* _base_get_chain - Calculates and Returns virtual chain address
* for the provided smid in BAR0 space.
*
* @ioc: per adapter object
* @smid: system request message index
* @sge_chain_count: Scatter gather chain count.
*
* @Return: chain address.
*/
static inline void *
_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u8 sge_chain_count)
{
void *base_chain, *chain_virt;
u16 cmd_credit = ioc->facts.RequestCredit + 1;
base_chain = (void *)ioc->chip + MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) +
(cmd_credit * 4 * sizeof(U32));
chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
ioc->request_sz) + (sge_chain_count * ioc->request_sz);
return chain_virt;
}
/**
* _base_get_chain_phys - Calculates and Returns physical address in BAR0 for
* scatter gather chains, for the provided smid.
*
* @ioc: per adapter object
* @smid: system request message index
* @sge_chain_count: Scatter gather chain count.
*
* @Return - Physical chain address.
*/
static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u8 sge_chain_count)
{
phys_addr_t base_chain_phys, chain_phys;
u16 cmd_credit = ioc->facts.RequestCredit + 1;
base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) +
REPLY_FREE_POOL_SIZE;
chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
ioc->request_sz) + (sge_chain_count * ioc->request_sz);
return chain_phys;
}
/**
* _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host buffer address
* for the provided smid.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @smid: system request message index
*
* @Returns - Pointer to buffer location in BAR0.
*/
static void *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
u16 cmd_credit = ioc->facts.RequestCredit + 1;
// Added extra 1 to reach end of chain.
void *chain_end = _base_get_chain(ioc,
cmd_credit + 1,
ioc->facts.MaxChainDepth);
return chain_end + (smid * 64 * 1024);
}
/**
* _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped Host buffer
* Physical address for the provided smid.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @smid: system request message index
*
* @Returns - Pointer to buffer location in BAR0.
*/
static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
u16 cmd_credit = ioc->facts.RequestCredit + 1;
phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
cmd_credit + 1,
ioc->facts.MaxChainDepth);
return chain_end_phys + (smid * 64 * 1024);
}
/**
* _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain lookup list and Provides
* chain_buffer address for the matching dma address.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @chain_buffer_dma: Chain buffer dma address.
*
* @Returns - Pointer to chain buffer. Or Null on Failure.
*/
static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
dma_addr_t chain_buffer_dma)
{
u16 index, j;
struct chain_tracker *ct;
for (index = 0; index < ioc->scsiio_depth; index++) {
for (j = 0; j < ioc->chains_needed_per_io; j++) {
ct = &ioc->chain_lookup[index].chains_per_smid[j];
if (ct && ct->chain_buffer_dma == chain_buffer_dma)
return ct->chain_buffer;
else
continue;
}
}
printk(MPT3SAS_ERR_FMT "Provided chain_buffer_dma"
" address is not in the lookup list \n", ioc->name);
return NULL;
}
/**
* _clone_sg_entries - MPI EP's scsiio and config requests
* are handled here. Base function for
* double buffering, before submitting
* the requests.
*
* @ioc: per adapter object.
* @mpi_request: mf request pointer.
* @smid: system request message index.
*
* @Returns: Nothing.
*/
static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
void *mpi_request, u16 smid)
{
Mpi2SGESimple32_t *sgel, *sgel_next;
u32 sgl_flags, sge_chain_count = 0;
bool is_write = 0;
u16 i = 0;
void __iomem *buffer_iomem;
phys_addr_t buffer_iomem_phys;
void __iomem *buff_ptr;
phys_addr_t buff_ptr_phys;
void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
phys_addr_t dst_addr_phys;
MPI2RequestHeader_t *request_hdr;
struct scsi_cmnd *scmd;
struct scatterlist *sg_scmd = NULL;
int is_scsiio_req = 0;
request_hdr = (MPI2RequestHeader_t *) mpi_request;
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
Mpi25SCSIIORequest_t *scsiio_request =
(Mpi25SCSIIORequest_t *)mpi_request;
sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
is_scsiio_req = 1;
} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
Mpi2ConfigRequest_t *config_req =
(Mpi2ConfigRequest_t *)mpi_request;
sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
} else
return;
/* From smid we can get scsi_cmd, once we have sg_scmd,
* we just need to get sg_virt and sg_next to get virual
* address associated with sgel->Address.
*/
if (is_scsiio_req)
{
/* Get scsi_cmd using smid */
scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if(scmd == NULL) {
printk(MPT3SAS_ERR_FMT "scmd is NULL\n", ioc->name);
return;
}
/* Get sg_scmd from scmd provided */
sg_scmd = scsi_sglist(scmd);
}
/*
* 0 - 255 System register
* 256 - 4352 MPI Frame. (This is based on maxCredit 32)
* 4352 - 4864 Reply_free pool (512 byte is reserved considering
* maxCredit 32. Reply need extra room, for mCPU case kept
* four times of maxCredit).
* 4864 - 17152 SGE chain element. (32cmd * 3 chain of 128 byte size = 12288)
* 17152 - x Host buffer mapped with smid.
* (Each smid can have 64K Max IO.)
* BAR0+Last 1K MSIX Addr and Data
* Total size in use 2113664 bytes of 4MB BAR0
*/
buffer_iomem = _base_get_buffer_bar0(ioc, smid);
buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
buff_ptr = buffer_iomem;
buff_ptr_phys = buffer_iomem_phys;
WARN_ON(buff_ptr_phys > U32_MAX);
if (le32_to_cpu(sgel->FlagsLength) &
(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
is_write = 1;
for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
sgl_flags =
(le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
/*
* Helper function which on passing
* chain_buffer_dma returns chain_buffer. Get
* the virtual address for sgel->Address
*/
sgel_next =
_base_get_chain_buffer_dma_to_chain_buffer(ioc,
le32_to_cpu(sgel->Address));
if (sgel_next == NULL)
return;
/*
* This is coping 128 byte chain
* frame (not a host buffer)
*/
dst_chain_addr[sge_chain_count] =
_base_get_chain(ioc,
smid, sge_chain_count);
src_chain_addr[sge_chain_count] =
(void *) sgel_next;
dst_addr_phys = _base_get_chain_phys(ioc,
smid, sge_chain_count);
WARN_ON(dst_addr_phys > U32_MAX);
sgel->Address =
cpu_to_le32(lower_32_bits(dst_addr_phys));
sgel = sgel_next;
sge_chain_count++;
break;
case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
if (is_write) {
if (is_scsiio_req) {
_base_clone_to_sys_mem(buff_ptr,
sg_virt(sg_scmd),
(le32_to_cpu(sgel->FlagsLength) &
0x00ffffff));
/*
* FIXME: this relies on a a zero
* PCI mem_offset.
*/
sgel->Address =
cpu_to_le32((u32)buff_ptr_phys);
} else {
_base_clone_to_sys_mem(buff_ptr,
ioc->config_vaddr,
(le32_to_cpu(sgel->FlagsLength) &
0x00ffffff));
sgel->Address =
cpu_to_le32((u32)buff_ptr_phys);
}
}
buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
0x00ffffff);
buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
0x00ffffff);
if ((le32_to_cpu(sgel->FlagsLength) &
(MPI2_SGE_FLAGS_END_OF_BUFFER
<< MPI2_SGE_FLAGS_SHIFT)))
goto eob_clone_chain;
else {
/*
* Every single element in MPT will have
* associated sg_next. Better to sanity that
* sg_next is not NULL, but it will be a bug
* if it is null.
*/
if (is_scsiio_req) {
sg_scmd = sg_next(sg_scmd);
if (sg_scmd)
sgel++;
else
goto eob_clone_chain;
}
}
break;
}
}
eob_clone_chain:
for (i = 0; i < sge_chain_count; i++) {
if (is_scsiio_req)
_base_clone_to_sys_mem(dst_chain_addr[i],
src_chain_addr[i], ioc->request_sz);
}
}
/**
* mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
* @arg: input argument, used to derive ioc
*
* Return 0 if controller is removed from pci subsystem.
* Return -1 for other case.
*/
static int mpt3sas_remove_dead_ioc_func(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
struct pci_dev *pdev;
if ((ioc == NULL))
return -1;
pdev = ioc->pdev;
if ((pdev == NULL))
return -1;
#if defined(DISABLE_RESET_SUPPORT)
ssleep(2);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,4,3))
pci_stop_and_remove_bus_device(pdev);
#else
pci_remove_bus_device(pdev);
#endif
return 0;
}
/**
* mpt3sas_base_pci_device_is_unplugged - Check whether HBA device is
* hot unplugged or not
* @ioc: per adapter object
*
* Return 1 if the HBA device is hot unplugged else return 0.
*/
u8
mpt3sas_base_pci_device_is_unplugged(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
struct pci_bus *bus = pdev->bus;
int devfn = pdev->devfn;
u32 vendor_id;
if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendor_id))
return 1;
/* some broken boards return 0 or ~0 if a slot is empty: */
if (vendor_id == 0xffffffff || vendor_id == 0x00000000 ||
vendor_id == 0x0000ffff || vendor_id == 0xffff0000)
return 1;
/*
* Configuration Request Retry Status. Some root ports return the
* actual device ID instead of the synthetic ID (0xFFFF) required
* by the PCIe spec. Ignore the device ID and only check for
* (vendor id == 1).
*/
if ((vendor_id & 0xffff) == 0x0001)
return 1;
return 0;
}
/**
* mpt3sas_base_pci_device_is_available - check whether pci device is
* available for any transactions with FW
*
* @ioc: per adapter object
*
* Return 1 if pci device state is up and running else return 0.
*/
u8
mpt3sas_base_pci_device_is_available(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->pci_error_recovery || mpt3sas_base_pci_device_is_unplugged(ioc))
return 0;
return 1;
}
/**
* _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
*
* @ioc: Per Adapter Object
*
* Return nothing.
*/
static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26IoUnitControlRequest_t *mpi_request;
Mpi26IoUnitControlReply_t *mpi_reply;
u16 smid;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
ktime_t current_time;
#else
struct timeval current_time;
#endif
u64 TimeStamp = 0;
u8 issue_reset = 0;
mutex_lock(&ioc->scsih_cmds.mutex);
if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
pr_err("%s: scsih_cmd in use %s\n", ioc->name, __func__);
goto out;
}
ioc->scsih_cmds.status = MPT3_CMD_PENDING;
smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
if (!smid) {
pr_err("%s: failed obtaining a smid %s\n", ioc->name,
__func__);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
goto out;
}
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->scsih_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
current_time = ktime_get_real();
TimeStamp = ktime_to_ms(current_time);
#else
do_gettimeofday(&current_time);
TimeStamp = (u64) (current_time.tv_sec * 1000) +
(current_time.tv_usec / 1000);
#endif
mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
init_completion(&ioc->scsih_cmds.done);
ioc->put_smid_default(ioc, smid);
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT
"Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
ioc->name, TimeStamp));
wait_for_completion_timeout(&ioc->scsih_cmds.done,
MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->scsih_cmds.status, mpi_request,
sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
goto issue_host_reset;
}
if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
mpi_reply = ioc->scsih_cmds.reply;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT
"Io Unit Control sync timestamp (complete): "
"ioc_status(0x%04x), loginfo(0x%08x)\n",
ioc->name, le16_to_cpu(mpi_reply->IOCStatus),
le32_to_cpu(mpi_reply->IOCLogInfo)));
}
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
out:
mutex_unlock(&ioc->scsih_cmds.mutex);
return;
}
/**
* _base_fault_reset_work - workq handling ioc fault conditions
* @work: input argument, used to derive ioc
* Context: sleep.
*
* Return nothing.
*/
static void
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
_base_fault_reset_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
#else
_base_fault_reset_work(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
#endif
unsigned long flags;
u32 doorbell;
int rc;
struct task_struct *p;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
ioc->pci_error_recovery || ioc->remove_host)
goto rearm_timer;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
printk(MPT3SAS_ERR_FMT "SAS host is non-operational !!!!\n",
ioc->name);
/* It may be possible that EEH recovery can resolve some of
* pci bus failure issues rather removing the dead ioc function
* by considering controller is in a non-operational state. So
* here priority is given to the EEH recovery. If it doesn't
* not resolve this issue, mpt3sas driver will consider this
* controller to non-operational state and remove the dead ioc
* function.
*/
if (ioc->non_operational_loop++ < 5) {
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
flags);
goto rearm_timer;
}
/*
* Set remove_host flag early since kernel thread will
* take some time to execute.
*/
ioc->remove_host = 1;
/*
* Call _scsih_flush_pending_cmds callback so that we flush all
* pending commands back to OS. This call is required to aovid
* deadlock at block layer. Dead IOC will fail to do diag reset,
* and this call is safe since dead ioc will never return any
* command back from HW.
*/
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
/*Remove the Dead Host */
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"%s_dead_ioc_%d", ioc->driver_name, ioc->id);
if (IS_ERR(p))
printk(MPT3SAS_ERR_FMT "%s: Running mpt3sas_dead_ioc "
"thread failed !!!!\n", ioc->name, __func__);
else
printk(MPT3SAS_ERR_FMT "%s: Running mpt3sas_dead_ioc "
"thread success !!!!\n", ioc->name, __func__);
return; /* don't rearm timer */
}
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
u8 timeout = (ioc->manu_pg11.CoreDumpTOSec)?
ioc->manu_pg11.CoreDumpTOSec:
MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
timeout /= (FAULT_POLLING_INTERVAL/1000);
if (ioc->ioc_coredump_loop == 0) {
mpt3sas_base_coredump_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
/* do not accept any IOs and disable the interrupts */
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
mpt3sas_base_mask_interrupts(ioc);
_base_clear_outstanding_mpt_commands(ioc);
mpt3sas_ctl_clear_outstanding_ioctls(ioc);
}
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: CoreDump loop %d.", ioc->name,
__func__, ioc->ioc_coredump_loop));
/* Wait until CoreDump completes or times out */
if (ioc->ioc_coredump_loop++ < timeout) {
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
flags);
goto rearm_timer;
}
}
if (ioc->ioc_coredump_loop) {
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
printk(MPT3SAS_ERR_FMT "%s: CoreDump completed. LoopCount: %d", ioc->name,
__func__, ioc->ioc_coredump_loop);
else
printk(MPT3SAS_ERR_FMT "%s: CoreDump Timed out. LoopCount: %d", ioc->name,
__func__, ioc->ioc_coredump_loop);
ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
}
ioc->non_operational_loop = 0;
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
printk(MPT3SAS_WARN_FMT "%s: hard reset: %s\n", ioc->name,
__func__, (rc == 0) ? "success" : "failed");
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
} else if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP)
mpt3sas_base_coredump_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL)
return; /* don't rearm timer */
#if defined(TARGET_MODE)
} else {
if (stm_callbacks.watchdog)
/* target mode drivers watchdog */
stm_callbacks.watchdog(ioc);
#endif
}
ioc->ioc_coredump_loop = 0;
if (ioc->time_sync_interval &&
++ioc->timestamp_update_count >= ioc->time_sync_interval) {
ioc->timestamp_update_count = 0;
_base_sync_drv_fw_timestamp(ioc);
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
rearm_timer:
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
static void
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
_base_hba_hot_unplug_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, hba_hot_unplug_work.work);
#else
_base_hba_hot_unplug_work(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
#endif
unsigned long flags;
spin_lock_irqsave(&ioc->hba_hot_unplug_lock, flags);
if (ioc->shost_recovery || ioc->pci_error_recovery)
goto rearm_timer;
if (mpt3sas_base_pci_device_is_unplugged(ioc)) {
if (ioc->remove_host) {
printk(MPT3SAS_ERR_FMT
"The IOC seems hot unplugged and the driver is "
"waiting for pciehp module to remove the PCIe "
"device instance associated with IOC!!!\n",
ioc->name);
goto rearm_timer;
}
/* Set remove_host flag here, since kernel will invoke driver's
* .remove() callback function one after the other for all hot
* un-plugged devices, so it may take some time to call
* .remove() function for subsequent hot un-plugged
* PCI devices.
*/
ioc->remove_host = 1;
_base_clear_outstanding_mpt_commands(ioc);
mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
mpt3sas_ctl_clear_outstanding_ioctls(ioc);
}
rearm_timer:
if (ioc->hba_hot_unplug_work_q)
queue_delayed_work(ioc->hba_hot_unplug_work_q,
&ioc->hba_hot_unplug_work,
msecs_to_jiffies(HBA_HOTUNPLUG_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->hba_hot_unplug_lock, flags);
}
/**
* _base_sata_smart_poll_work - worker thread which will poll for SMART error
* SATA drives for every 5 mints
* @work: input argument, used to derive ioc
* Context: sleep.
*
* Returns nothing.
*/
static void
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
_base_sata_smart_poll_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, smart_poll_work.work);
#else
_base_sata_smart_poll_work(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
#endif
if (ioc->shost_recovery || !mpt3sas_base_pci_device_is_available(ioc))
goto rearm_timer;
mpt3sas_scsih_sata_smart_polling(ioc);
rearm_timer:
if (ioc->smart_poll_work_q)
queue_delayed_work(ioc->smart_poll_work_q,
&ioc->smart_poll_work,
SATA_SMART_POLLING_INTERVAL * HZ);
}
/**
* mpt3sas_base_start_watchdog - start the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->fault_reset_work_q)
return;
ioc->timestamp_update_count = 0;
/* initialize fault polling */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
#else
INIT_WORK(&ioc->fault_reset_work, _base_fault_reset_work, (void *)ioc);
#endif
snprintf(ioc->fault_reset_work_q_name,
sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
ioc->driver_name, ioc->id);
ioc->fault_reset_work_q =
create_singlethread_workqueue(ioc->fault_reset_work_q_name);
if (!ioc->fault_reset_work_q) {
printk(MPT3SAS_ERR_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
wq = ioc->fault_reset_work_q;
ioc->fault_reset_work_q = NULL;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (wq) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23))
if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
#else
if (!cancel_delayed_work(&ioc->fault_reset_work))
#endif
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
void
mpt3sas_base_start_hba_unplug_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->hba_hot_unplug_work_q)
return;
/* initialize fault polling */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
INIT_DELAYED_WORK(&ioc->hba_hot_unplug_work,
_base_hba_hot_unplug_work);
#else
INIT_WORK(&ioc->hba_hot_unplug_work,
_base_hba_hot_unplug_work, (void *)ioc);
#endif
snprintf(ioc->hba_hot_unplug_work_q_name,
sizeof(ioc->hba_hot_unplug_work_q_name), "poll_%s%d_hba_unplug",
ioc->driver_name, ioc->id);
ioc->hba_hot_unplug_work_q =
create_singlethread_workqueue(ioc->hba_hot_unplug_work_q_name);
if (!ioc->hba_hot_unplug_work_q) {
printk(MPT3SAS_ERR_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->hba_hot_unplug_lock, flags);
if (ioc->hba_hot_unplug_work_q)
queue_delayed_work(ioc->hba_hot_unplug_work_q,
&ioc->hba_hot_unplug_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->hba_hot_unplug_lock, flags);
}
void
mpt3sas_base_stop_hba_unplug_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->hba_hot_unplug_lock, flags);
wq = ioc->hba_hot_unplug_work_q;
ioc->hba_hot_unplug_work_q = NULL;
spin_unlock_irqrestore(&ioc->hba_hot_unplug_lock, flags);
if (wq) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23))
if (!cancel_delayed_work_sync(&ioc->hba_hot_unplug_work))
#else
if (!cancel_delayed_work(&ioc->hba_hot_unplug_work))
#endif
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_start_smart_polling - Create and start the smart polling
* thread for SMART SATA drive
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_start_smart_polling(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->smart_poll_work_q)
return;
/* initialize SMART SATA drive polling */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19))
INIT_DELAYED_WORK(&ioc->smart_poll_work, _base_sata_smart_poll_work);
#else
INIT_WORK(&ioc->smart_poll_work, _base_sata_smart_poll_work, (void *)ioc);
#endif
snprintf(ioc->smart_poll_work_q_name,
sizeof(ioc->smart_poll_work_q_name), "smart_poll_%d", ioc->id);
ioc->smart_poll_work_q =
create_singlethread_workqueue(ioc->smart_poll_work_q_name);
if (!ioc->smart_poll_work_q) {
printk(MPT3SAS_ERR_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
if (ioc->smart_poll_work_q)
queue_delayed_work(ioc->smart_poll_work_q,
&ioc->smart_poll_work,
SATA_SMART_POLLING_INTERVAL * HZ);
}
/**
* mpt3sas_base_stop_smart_polling - stop the smart polling thread
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_stop_smart_polling(struct MPT3SAS_ADAPTER *ioc)
{
struct workqueue_struct *wq;
wq = ioc->smart_poll_work_q;
ioc->smart_poll_work_q = NULL;
if (wq) {
if (!cancel_delayed_work(&ioc->smart_poll_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_fault_info - verbose translation of firmware FAULT code
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
printk(MPT3SAS_ERR_FMT "fault_state(0x%04x)!\n",
ioc->name, fault_code);
}
/**
* mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
printk(MPT3SAS_ERR_FMT "coredump_state(0x%04x)!\n",
ioc->name, fault_code);
}
/**
* mpt3sas_base_wait_for_coredump_completion - Wait until coredump
* completes or times out
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
const char *caller)
{
u8 timeout = (ioc->manu_pg11.CoreDumpTOSec)?ioc->manu_pg11.CoreDumpTOSec:
MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
timeout);
if (ioc_state)
printk(MPT3SAS_ERR_FMT "%s: CoreDump timed out. "
" (ioc_state=0x%x)\n", ioc->name, caller, ioc_state);
else
printk(MPT3SAS_INFO_FMT "%s: CoreDump completed. "
" (ioc_state=0x%x)\n", ioc->name, caller, ioc_state);
return ioc_state;
}
/**
* mpt3sas_halt_firmware - halt's mpt controller firmware
* @ioc: per adapter object
* @set_fault: set fw fault
*
* For debugging timeout related issues. Writing 0xCOFFEE00
* to the doorbell register will halt controller firmware. With
* the purpose to stop both driver and firmware, the enduser can
* obtain a ring buffer from controller UART.
*/
void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc, u8 set_fault)
{
u32 doorbell;
if ((!ioc->fwfault_debug) && (!set_fault))
return;
if (!set_fault)
dump_stack();
doorbell = ioc->base_readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc , doorbell);
}
else if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP)
mpt3sas_base_coredump_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
else {
writel(0xC0FFEE00, &ioc->chip->Doorbell);
if (!set_fault)
printk(MPT3SAS_ERR_FMT "Firmware is halted due to"
" command timeout\n", ioc->name);
}
if (set_fault)
return;
if (ioc->fwfault_debug == 2)
for (;;);
else
panic("panic in %s\n", __func__);
}
#if ((LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0)) || \
(LINUX_VERSION_CODE < KERNEL_VERSION(2,6,36) && \
(defined(RHEL_MAJOR) && (RHEL_MAJOR != 6))))
/**
* _base_group_cpus_on_irq - when there are more cpus than available
* msix vectors, then group cpus
* together on same irq
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_group_cpus_on_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
unsigned int i, cpu, group, nr_cpus, nr_msix, index = 0;
cpu = cpumask_first(cpu_online_mask);
nr_msix = ioc->reply_queue_count - ioc->high_iops_queues;
nr_cpus = num_online_cpus();
group = nr_cpus / nr_msix;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (reply_q->msix_index < ioc->high_iops_queues)
continue;
if (cpu >= nr_cpus)
break;
if (index < nr_cpus % nr_msix)
group++;
for (i = 0 ; i < group ; i++) {
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
cpu = cpumask_next(cpu, cpu_online_mask);
}
index++;
}
}
#endif
/**
* _base_sas_ioc_info - verbose translation of the ioc status
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
* @request_hdr: request mf
*
* Return nothing.
*/
static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
MPI2RequestHeader_t *request_hdr)
{
u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
char *desc = NULL;
u16 frame_sz;
char *func_str = NULL;
/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
return;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
return;
/*
* Older Firmware version doesn't support driver trigger pages.
* So, skip displaying 'config invalid type' type
* of error message.
*/
if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
if ((rqst->ExtPageType ==
MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
!(ioc->logging_level & MPT_DEBUG_CONFIG)) {
return;
}
}
switch (ioc_status) {
/****************************************************************************
* Common IOCStatus values for all replies
****************************************************************************/
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc = "invalid function";
break;
case MPI2_IOCSTATUS_BUSY:
desc = "busy";
break;
case MPI2_IOCSTATUS_INVALID_SGL:
desc = "invalid sgl";
break;
case MPI2_IOCSTATUS_INTERNAL_ERROR:
desc = "internal error";
break;
case MPI2_IOCSTATUS_INVALID_VPID:
desc = "invalid vpid";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
desc = "insufficient resources";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
desc = "insufficient power";
break;
case MPI2_IOCSTATUS_INVALID_FIELD:
desc = "invalid field";
break;
case MPI2_IOCSTATUS_INVALID_STATE:
desc = "invalid state";
break;
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
desc = "op state not supported";
break;
/****************************************************************************
* Config IOCStatus values
****************************************************************************/
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
desc = "config invalid action";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
desc = "config invalid type";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
desc = "config invalid data";
break;
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
desc = "config no defaults";
break;
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
desc = "config cant commit";
break;
/****************************************************************************
* SCSI IO Reply
****************************************************************************/
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
break;
/****************************************************************************
* For use by SCSI Initiator and SCSI Target end-to-end data protection
****************************************************************************/
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
if (!ioc->disable_eedp_support)
desc = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
if (!ioc->disable_eedp_support)
desc = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
if (!ioc->disable_eedp_support)
desc = "eedp app tag error";
break;
/****************************************************************************
* SCSI Target values
****************************************************************************/
case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
desc = "target invalid io index";
break;
case MPI2_IOCSTATUS_TARGET_ABORTED:
desc = "target aborted";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
desc = "target no conn retryable";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
desc = "target no connection";
break;
case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
desc = "target xfer count mismatch";
break;
case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
desc = "target data offset error";
break;
case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
desc = "target too much write data";
break;
case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
desc = "target iu too short";
break;
case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
desc = "target ack nak timeout";
break;
case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
desc = "target nak received";
break;
/****************************************************************************
* Serial Attached SCSI values
****************************************************************************/
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
desc = "smp request failed";
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
desc = "smp data overrun";
break;
/****************************************************************************
* Diagnostic Buffer Post / Diagnostic Release values
****************************************************************************/
case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
desc = "diagnostic released";
break;
default:
break;
}
if (!desc)
return;
switch (request_hdr->Function) {
case MPI2_FUNCTION_CONFIG:
frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
func_str = "config_page";
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
func_str = "task_mgmt";
break;
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
func_str = "sas_iounit_ctl";
break;
case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
frame_sz = sizeof(Mpi2SepRequest_t);
func_str = "enclosure";
break;
case MPI2_FUNCTION_IOC_INIT:
frame_sz = sizeof(Mpi2IOCInitRequest_t);
func_str = "ioc_init";
break;
case MPI2_FUNCTION_PORT_ENABLE:
frame_sz = sizeof(Mpi2PortEnableRequest_t);
func_str = "port_enable";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
case MPI2_FUNCTION_NVME_ENCAPSULATED:
frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
ioc->sge_size;
func_str = "nvme_encapsulated";
break;
default:
frame_sz = 32;
func_str = "unknown";
break;
}
printk(MPT3SAS_WARN_FMT "ioc_status: %s(0x%04x), request(0x%p),"
" (%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str);
_debug_dump_mf(request_hdr, frame_sz/4);
}
/**
* _base_display_event_data - verbose translation of firmware asyn events
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
*
* Return nothing.
*/
static void
_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
char *desc = NULL;
u16 event;
if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
return;
event = le16_to_cpu(mpi_reply->Event);
if (ioc->warpdrive_msg) {
switch (event) {
case MPI2_EVENT_IR_OPERATION_STATUS:
case MPI2_EVENT_IR_VOLUME:
case MPI2_EVENT_IR_PHYSICAL_DISK:
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
case MPI2_EVENT_LOG_ENTRY_ADDED:
return;
}
}
switch (event) {
case MPI2_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI2_EVENT_STATE_CHANGE:
desc = "Status Change";
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI2_EVENT_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
desc = "Device Status Change";
break;
case MPI2_EVENT_IR_OPERATION_STATUS:
desc = "IR Operation Status";
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
Mpi2EventDataSasDiscovery_t *event_data =
(Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
printk(MPT3SAS_INFO_FMT "SAS Discovery: (%s)", ioc->name,
(event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
"start" : "stop");
if (event_data->DiscoveryStatus)
printk("discovery_status(0x%08x)",
le32_to_cpu(event_data->DiscoveryStatus));
printk("\n");
return;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
desc = "SAS Enclosure Device Status Change";
break;
case MPI2_EVENT_IR_VOLUME:
desc = "IR Volume";
break;
case MPI2_EVENT_IR_PHYSICAL_DISK:
desc = "IR Physical Disk";
break;
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
desc = "IR Configuration Change List";
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
desc = "Log Entry Added";
break;
case MPI2_EVENT_TEMP_THRESHOLD:
desc = "Temperature Threshold";
break;
case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
desc = "Cable Event";
break;
case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
desc = "SAS Device Discovery Error";
break;
case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
desc = "PCIE Device Status Change";
break;
case MPI2_EVENT_PCIE_ENUMERATION:
{
Mpi26EventDataPCIeEnumeration_t *event_data =
(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
printk(MPT3SAS_INFO_FMT "PCIE Enumeration: (%s)", ioc->name,
(event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
"start" : "stop");
if (event_data->EnumerationStatus)
printk("enumeration_status(0x%08x)",
le32_to_cpu(event_data->EnumerationStatus));
printk("\n");
return;
}
case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
desc = "PCIE Topology Change List";
break;
}
if (!desc)
return;
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name, desc);
}
/**
* _base_sas_log_info - verbose translation of firmware log info
* @ioc: per adapter object
* @log_info: log info
*
* Return nothing.
*/
static void
_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
0x31140000 || log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
if (ioc->warpdrive_msg)
originator_str = "WarpDrive";
else
originator_str = "IR";
break;
}
printk(MPT3SAS_WARN_FMT "log_info(0x%08x): originator(%s), "
"code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info,
originator_str, sas_loginfo.dw.code,
sas_loginfo.dw.subcode);
}
/**
* _base_display_reply_info -
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return nothing.
*/
static void
_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
u32 loginfo = 0;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
printk(MPT3SAS_ERR_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return;
}
ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
(ioc->logging_level & MPT_DEBUG_REPLY)) {
_base_sas_ioc_info(ioc , mpi_reply,
mpt3sas_base_get_msg_frame(ioc, smid));
}
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
_base_sas_log_info(ioc, loginfo);
}
if (ioc_status || loginfo) {
ioc_status &= MPI2_IOCSTATUS_MASK;
mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
}
}
/**
* mpt3sas_base_done - base internal command completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
return 1;
ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
}
ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->base_cmds.done);
return 1;
}
/**
* _base_async_event - main callback handler for firmware asyn events
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
static u8
_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
Mpi2EventAckRequest_t *ack_request;
u16 smid;
struct _event_ack_list *delayed_event_ack;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
return 1;
_base_display_event_data(ioc, mpi_reply);
if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), GFP_ATOMIC);
if (!delayed_event_ack)
goto out;
INIT_LIST_HEAD(&delayed_event_ack->list);
delayed_event_ack->Event = mpi_reply->Event;
delayed_event_ack->EventContext = mpi_reply->EventContext;
list_add_tail(&delayed_event_ack->list,
&ioc->delayed_event_ack_list);
dewtprintk(ioc, printk(MPT3SAS_INFO_FMT
"DELAYED: EVENT ACK: event (0x%04x)\n",
ioc->name, le16_to_cpu(mpi_reply->Event)));
goto out;
}
ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
ack_request->Event = mpi_reply->Event;
ack_request->EventContext = mpi_reply->EventContext;
ack_request->VF_ID = 0; /* TODO */
ack_request->VP_ID = 0;
ioc->put_smid_default(ioc, smid);
out:
/* scsih callback handler */
mpt3sas_scsih_event_callback(ioc, msix_index, reply);
/* ctl callback handler */
mpt3sas_ctl_event_callback(ioc, msix_index, reply);
return 1;
}
inline struct scsiio_tracker *
mpt3sas_base_scsi_cmd_priv(struct scsi_cmnd *scmd)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0)
return (struct scsiio_tracker *)scmd->host_scribble;
#else
return scsi_cmd_priv(scmd);
#endif
}
struct scsiio_tracker *
mpt3sas_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct scsi_cmnd *cmd;
if (WARN_ON(!smid) ||
WARN_ON(smid >= ioc->hi_priority_smid))
return NULL;
cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (cmd)
return mpt3sas_base_scsi_cmd_priv(cmd);
return NULL;
}
/**
* _base_get_cb_idx - obtain the callback index
* @ioc: per adapter object
* @smid: system request message index
*
* Return callback index.
*/
static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
int i;
u16 ctl_smid = ioc->shost->can_queue + INTERNAL_SCSIIO_FOR_IOCTL;
u16 discovery_smid =
ioc->shost->can_queue + INTERNAL_SCSIIO_FOR_DISCOVERY;
u8 cb_idx = 0xFF;
if (smid < ioc->hi_priority_smid) {
struct scsiio_tracker *st;
if (smid < ctl_smid) {
st = mpt3sas_get_st_from_smid(ioc, smid);
if (st)
cb_idx = st->cb_idx;
} else if (smid < discovery_smid)
cb_idx = ioc->ctl_cb_idx;
else
cb_idx = ioc->scsih_cb_idx;
} else if (smid < ioc->internal_smid) {
i = smid - ioc->hi_priority_smid;
cb_idx = ioc->hpr_lookup[i].cb_idx;
} else if (smid <= ioc->hba_queue_depth) {
i = smid - ioc->internal_smid;
cb_idx = ioc->internal_lookup[i].cb_idx;
}
return cb_idx;
}
/**
* mpt3sas_base_mask_interrupts - disable interrupts
* @ioc: per adapter object
*
* Disabling ResetIRQ, Reply and Doorbell Interrupts
*
* Return nothing.
*/
void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
ioc->mask_interrupts = 1;
him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->base_readl(&ioc->chip->HostInterruptMask);
}
/**
* mpt3sas_base_unmask_interrupts - enable interrupts
* @ioc: per adapter object
*
* Enabling only Reply Interrupts
*
* Return nothing.
*/
void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
him_register &= ~MPI2_HIM_RIM;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->mask_interrupts = 0;
}
union reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
/**
* _base_process_reply_queue - process the reply descriptors from reply queue
* @reply_q : per IRQ's reply queue object
*
* returns number of reply descriptors processed from a reply queue.
*/
int
_base_process_reply_queue(struct adapter_reply_queue *reply_q)
{
union reply_descriptor rd;
u64 completed_cmds;
u8 request_descript_type;
u16 smid;
u8 cb_idx;
u32 reply;
u8 msix_index = reply_q->msix_index;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
Mpi2ReplyDescriptorsUnion_t *rpf;
u8 rc;
completed_cmds = 0;
if (!atomic_add_unless(&reply_q->busy, 1, 1))
return completed_cmds;
rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
request_descript_type = rpf->Default.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
atomic_dec(&reply_q->busy);
return completed_cmds;
}
cb_idx = 0xFF;
do {
rd.word = le64_to_cpu(rpf->Words);
if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
goto out;
reply = 0;
smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
if (request_descript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
request_descript_type ==
MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, 0);
if (rc)
mpt3sas_base_free_smid(ioc, smid);
}
} else if (request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
reply = le32_to_cpu(
rpf->AddressReply.ReplyFrameAddress);
if (reply > ioc->reply_dma_max_address ||
reply < ioc->reply_dma_min_address)
reply = 0;
if (smid) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, reply);
if (reply)
_base_display_reply_info(ioc,
smid, msix_index, reply);
if (rc)
mpt3sas_base_free_smid(ioc,
smid);
}
} else {
#if defined(TARGET_MODE)
if (stm_callbacks.smid_handler)
stm_callbacks.smid_handler(ioc,
msix_index, reply);
#endif
_base_async_event(ioc, msix_index, reply);
}
/* reply free queue handling */
if (reply) {
ioc->reply_free_host_index =
(ioc->reply_free_host_index ==
(ioc->reply_free_queue_depth - 1)) ?
0 : ioc->reply_free_host_index + 1;
ioc->reply_free[ioc->reply_free_host_index] =
cpu_to_le32(reply);
if (ioc->is_mcpu_endpoint)
_base_clone_reply_to_sys_mem(ioc, reply,
ioc->reply_free_host_index);
wmb();
writel(ioc->reply_free_host_index,
&ioc->chip->ReplyFreeHostIndex);
}
#if defined(TARGET_MODE)
} else if (request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER) {
if (stm_callbacks.target_command)
stm_callbacks.target_command(ioc,
&rpf->TargetCommandBuffer, msix_index);
} else if (request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS) {
if (stm_callbacks.target_assist)
stm_callbacks.target_assist(ioc,
&rpf->TargetAssistSuccess);
mpt3sas_base_free_smid(ioc, smid);
}
#else
}
#endif
rpf->Words = cpu_to_le64(ULLONG_MAX);
reply_q->reply_post_host_index =
(reply_q->reply_post_host_index ==
(ioc->reply_post_queue_depth - 1)) ? 0 :
reply_q->reply_post_host_index + 1;
request_descript_type =
reply_q->reply_post_free[reply_q->reply_post_host_index].
Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
completed_cmds++;
/* Update the reply post host index after continuously
* processing the threshold number of Reply Descriptors.
* So that FW can find enough entries to post the Reply
* Descriptors in the reply descriptor post queue.
*/
if (completed_cmds >= ioc->thresh_hold) {
if (ioc->combined_reply_queue) {
writel(reply_q->reply_post_host_index |
((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
} else {
writel(reply_q->reply_post_host_index |
(msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
}
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
if (!reply_q->irq_poll_scheduled) {
reply_q->irq_poll_scheduled = true;
irq_poll_sched(&reply_q->irqpoll);
}
atomic_dec(&reply_q->busy);
return completed_cmds;
#endif
}
if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
goto out;
if (!reply_q->reply_post_host_index)
rpf = reply_q->reply_post_free;
else
rpf++;
} while (1);
out:
if (!completed_cmds) {
atomic_dec(&reply_q->busy);
return completed_cmds;
}
wmb();
if (ioc->is_warpdrive) {
writel(reply_q->reply_post_host_index,
ioc->reply_post_host_index[msix_index]);
atomic_dec(&reply_q->busy);
return completed_cmds;
}
if (ioc->combined_reply_queue) {
writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT), ioc->replyPostRegisterIndex[msix_index/8]);
} else {
writel(reply_q->reply_post_host_index | (msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
}
atomic_dec(&reply_q->busy);
return completed_cmds;
}
/**
* _base_interrupt - MPT adapter (IOC) specific interrupt handler.
* @irq: irq number (not used)
* @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
* @r: pt_regs pointer (not used)
*
* Return IRQ_HANDLE if processed, else IRQ_NONE.
*/
static irqreturn_t
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18))
_base_interrupt(int irq, void *bus_id)
#else
_base_interrupt(int irq, void *bus_id, struct pt_regs *r)
#endif
{
struct adapter_reply_queue *reply_q = bus_id;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
if (ioc->mask_interrupts)
return IRQ_NONE;
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
if (reply_q->irq_poll_scheduled)
return IRQ_HANDLED;
#endif
return ((_base_process_reply_queue(reply_q) > 0) ?
IRQ_HANDLED : IRQ_NONE);
}
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
/**
* _base_irqpoll - IRQ poll callback handler
* @irqpoll - irq_poll object
* @budget - irq poll weight
*
* returns number of reply descriptors processed
*/
int
_base_irqpoll(struct irq_poll *irqpoll, int budget) {
struct adapter_reply_queue *reply_q;
int num_entries = 0;
reply_q = container_of(irqpoll, struct adapter_reply_queue,
irqpoll);
if (reply_q->irq_line_enable) {
disable_irq_nosync(reply_q->os_irq);
reply_q->irq_line_enable = false;
}
num_entries = _base_process_reply_queue(reply_q);
if (num_entries < budget) {
irq_poll_complete(irqpoll);
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
enable_irq(reply_q->os_irq);
}
return num_entries;
}
/**
* _base_init_irqpolls - initliaze IRQ polls
* @ioc: per adapter object
*
* returns nothing
*/
void
_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
irq_poll_init(&reply_q->irqpoll, ioc->thresh_hold, _base_irqpoll);
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4,9,0))
if (ioc->msix_enable)
reply_q->os_irq = reply_q->vector;
else
reply_q->os_irq = ioc->pdev->irq;
#else
reply_q->os_irq = pci_irq_vector(ioc->pdev,
reply_q->msix_index);
#endif
}
}
#endif
/**
* _base_is_controller_msix_enabled - is controller support muli-reply queues
* @ioc: per adapter object
*
*/
static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
{
return (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
}
/**
** This routine was added because mpt3sas_base_flush_reply_queues()
** skips over reply queues that are currently busy (i.e. being handled
** by interrupt processing in another core). If a reply queue was busy,
** then we need to call synchronize_irq() to make sure the other core
** has finished flushing the queue and completed any calls to the
** mid-layer scsi_done() routine.
** It might be possible to just add the synchronize_irq() call to
** mpt3sas_base_flush_reply_queues(), but that means it would be called
** from an IRQ context, which may lead to deadlocks or other issues.
**
** mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
** @ioc: per adapter object
** @poll: poll over reply descriptor pools incase interrupt for
** timed-out SCSI command got delayed
** Context: non ISR conext
**
** Called when a Task Management request has completed.
**
** Return nothing.
**/
void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
{
struct adapter_reply_queue *reply_q;
/* If MSIX capability is turned off
* then multi-queues are not enabled
*/
if (!_base_is_controller_msix_enabled(ioc))
return;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->shost_recovery || ioc->remove_host ||
ioc->pci_error_recovery)
return;
/* TMs are on msix_index == 0 */
if (reply_q->msix_index == 0)
continue;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4,9,0))
synchronize_irq(reply_q->vector);
#else
synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
#endif
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
if (reply_q->irq_poll_scheduled) {
/* Calling irq_poll_disable will wait for any pending
* callbacks to have completed.
*/
irq_poll_disable(&reply_q->irqpoll);
irq_poll_enable(&reply_q->irqpoll);
/* check how the scheduled poll has ended,
* clean up only if necessary
*/
if (reply_q->irq_poll_scheduled) {
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
enable_irq(reply_q->os_irq);
}
}
#endif
if (poll)
_base_process_reply_queue(reply_q);
}
}
/**
* mpt3sas_base_release_callback_handler - clear interupt callback handler
* @cb_idx: callback index
*
* Return nothing.
*/
void
mpt3sas_base_release_callback_handler(u8 cb_idx)
{
mpt_callbacks[cb_idx] = NULL;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_release_callback_handler);
#endif
/**
* mpt3sas_base_register_callback_handler - obtain index for the ISR handler
* @cb_func: callback function
*
* Returns cb_func.
*/
u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
{
u8 cb_idx;
for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
if (mpt_callbacks[cb_idx] == NULL)
break;
mpt_callbacks[cb_idx] = cb_func;
return cb_idx;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_register_callback_handler);
#endif
/**
* mpt3sas_base_initialize_callback_handler - initialize the ISR handler
*
* Return nothing.
*/
void
mpt3sas_base_initialize_callback_handler(void)
{
u8 cb_idx;
for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
mpt3sas_base_release_callback_handler(cb_idx);
}
#if defined(TARGET_MODE)
/**
* mpt3sas_base_stm_release_callback_handler - clear STM callback handler
*
* Return nothing.
*/
void
mpt3sas_base_stm_release_callback_handler(void)
{
stm_callbacks.watchdog = NULL;
stm_callbacks.target_command = NULL;
stm_callbacks.target_assist = NULL;
stm_callbacks.smid_handler = NULL;
stm_callbacks.reset_handler = NULL;
}
EXPORT_SYMBOL(mpt3sas_base_stm_release_callback_handler);
/**
* mpt3sas_base_stm_register_callback_handler - Set the STM callbacks
* @stm_funcs: Structure containing the function pointers
*
*/
void
mpt3sas_base_stm_register_callback_handler(struct STM_CALLBACK stm_funcs)
{
stm_callbacks.watchdog = stm_funcs.watchdog;
stm_callbacks.target_command = stm_funcs.target_command;
stm_callbacks.target_assist = stm_funcs.target_assist;
stm_callbacks.smid_handler = stm_funcs.smid_handler;
stm_callbacks.reset_handler = stm_funcs.reset_handler;
}
EXPORT_SYMBOL(mpt3sas_base_stm_register_callback_handler);
/**
* mpt3sas_base_stm_initialize_callback_handler - initialize the stm handler
*
* Return nothing.
*/
void
mpt3sas_base_stm_initialize_callback_handler(void)
{
mpt3sas_base_stm_release_callback_handler();
}
#endif
/**
* _base_build_zero_len_sge - build zero length sg entry
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
ioc->base_add_sg_single(paddr, flags_length, -1);
}
/**
* _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple32_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le32(dma_addr);
}
/**
* _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple64_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_get_chain_buffer_tracker - obtain chain tracker
* @ioc: per adapter object
* @smid: smid associated to an IO request
*
* Returns chain tracker from chain_lookup table using key as
* smid and smid's chain_offset.
*/
static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
struct chain_tracker *chain_req;
struct scsiio_tracker *st = mpt3sas_base_scsi_cmd_priv(scmd);
u16 smid = st->smid;
u8 chain_offset =
atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
if (chain_offset == ioc->chains_needed_per_io)
return NULL;
chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
return chain_req;
}
/**
* _base_build_sg - build generic sg
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u32 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
}
/* IEEE format sgls */
/**
* _base_build_nvme_prp - This function is called for NVMe end devices to build
* a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
* entry of the NVMe message (PRP1). If the data buffer is small enough to be
* described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
* used to describe a larger data buffer. If the data buffer is too large to
* describe using the two PRP entriess inside the NVMe message, then PRP1
* describes the first data memory segment, and PRP2 contains a pointer to a PRP
* list located elsewhere in memory to describe the remaining data memory
* segments. The PRP list will be contiguous.
* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
* consists of a list of PRP entries to describe a number of noncontigous
* physical memory segments as a single memory buffer, just as a SGL does. Note
* however, that this function is only used by the IOCTL call, so the memory
* given will be guaranteed to be contiguous. There is no need to translate
* non-contiguous SGL into a PRP in this case. All PRPs will describe
* contiguous space that is one page size each.
*
* Each NVMe message contains two PRP entries. The first (PRP1) either contains
* a PRP list pointer or a PRP element, depending upon the command. PRP2
* contains the second PRP element if the memory being described fits within 2
* PRP entries, or a PRP list pointer if the PRP spans more than two entries.
*
* A PRP list pointer contains the address of a PRP list, structured as a linear
* array of PRP entries. Each PRP entry in this list describes a segment of
* physical memory.
*
* Each 64-bit PRP entry comprises an address and an offset field. The address
* always points at the beginning of a 4KB physical memory page, and the offset
* describes where within that 4KB page the memory segment begins. Only the
* first element in a PRP list may contain a non-zero offest, implying that all
* memory segments following the first begin at the start of a 4KB page.
*
* Each PRP element normally describes 4KB of physical memory, with exceptions
* for the first and last elements in the list. If the memory being described
* by the list begins at a non-zero offset within the first 4KB page, then the
* first PRP element will contain a non-zero offset indicating where the region
* begins within the 4KB page. The last memory segment may end before the end
* of the 4KB segment, depending upon the overall size of the memory being
* described by the PRP list.
*
* Since PRP entries lack any indication of size, the overall data buffer length
* is used to determine where the end of the data memory buffer is located, and
* how many PRP entries are required to describe it.
*
* @ioc: per adapter object
* @smid: system request message index for getting asscociated SGL
* @nvme_encap_request: the NVMe request msg frame pointer
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Returns nothing.
*/
static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
int prp_size = NVME_PRP_SIZE;
u64 *prp_entry, *prp1_entry, *prp2_entry;
u64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len;
u32 page_mask_result, page_mask;
size_t length;
struct mpt3sas_nvme_cmd *nvme_cmd =
(void *)nvme_encap_request->NVMe_Command;
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any PRP.
*/
if (!data_in_sz && !data_out_sz)
return;
/*
* Set pointers to PRP1 and PRP2, which are in the NVMe command.
* PRP1 is located at a 24 byte offset from the start of the NVMe
* command. Then set the current PRP entry pointer to PRP1.
*/
prp1_entry = &nvme_cmd->prp1;
prp2_entry = &nvme_cmd->prp2;
prp_entry = prp1_entry;
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory.
* We don't need any PRP list, if data lengh is <= page_size,
* Also we are reusing this buffer while framing native NVMe
* DSM command for SCSI UNMAP.
*/
if (data_in_sz > ioc->page_size || data_out_sz > ioc->page_size) {
prp_page = (u64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
} else {
prp_page = NULL;
prp_page_dma = 0;
}
/*
* Check if we are within 1 entry of a page boundary we don't
* want our first entry to be a PRP List entry.
*/
page_mask = ioc->page_size - 1;
page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
if (!page_mask_result)
{
/* Bump up to next page boundary. */
prp_page = (u64 *)((u8 *)prp_page + prp_size);
prp_page_dma = prp_page_dma + prp_size;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_dma = prp_page_dma;
/* Get physical address and length of the data buffer. */
if (data_in_sz)
{
dma_addr = data_in_dma;
length = data_in_sz;
}
else
{
dma_addr = data_out_dma;
length = data_out_sz;
}
/* Loop while the length is not zero. */
while (length)
{
/*
* Check if we need to put a list pointer here if we are at
* page boundary - prp_size (8 bytes).
*/
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result)
{
/*
* This is the last entry in a PRP List, so we need to
* put a PRP list pointer here. What this does is:
* - bump the current memory pointer to the next
* address, which will be the next full page.
* - set the PRP Entry to point to that page. This
* is now the PRP List pointer.
* - bump the PRP Entry pointer the start of the
* next page. Since all of this PRP memory is
* contiguous, no need to get a new page - it's
* just the next address.
*/
prp_entry_dma++;
*prp_entry = cpu_to_le64(prp_entry_dma);
prp_entry++;
}
/* Need to handle if entry will be part of a page. */
offset = dma_addr & page_mask;
entry_len = ioc->page_size - offset;
if (prp_entry == prp1_entry)
{
/*
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64(dma_addr);
/*
* Now point to the second PRP entry within the
* command (PRP2).
*/
prp_entry = prp2_entry;
}
else if (prp_entry == prp2_entry)
{
/*
* Should the PRP2 entry be a PRP List pointer or just
* a regular PRP pointer? If there is more than one
* more page of data, must use a PRP List pointer.
*/
if (length > ioc->page_size)
{
/*
* PRP2 will contain a PRP List pointer because
* more PRP's are needed with this command. The
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry = cpu_to_le64(prp_entry_dma);
/*
* The next PRP Entry will be the start of the
* first PRP List.
*/
prp_entry = prp_page;
}
else
{
/*
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64(dma_addr);
}
}
else
{
/*
* Put entry in list and bump the addresses.
*
* After PRP1 and PRP2 are filled in, this will fill in
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64(dma_addr);
prp_entry++;
prp_entry_dma++;
}
/*
* Bump the phys address of the command's data buffer by the
* entry_len.
*/
dma_addr += entry_len;
/* Decrement length accounting for last partial page. */
if (entry_len > length)
length = 0;
else
length -= entry_len;
}
}
/**
* base_make_prp_nvme -
* Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
*
* @ioc: per adapter object
* @scmd: SCSI command from the mid-layer
* @sg_scmd: SG list pointer
* @mpi_request: mpi request
* @smid: msg Index
* @sge_count: scatter gather element count.
*
* Returns: Nothing
*/
void
base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd,
struct scatterlist *sg_scmd,
Mpi25SCSIIORequest_t *mpi_request,
u16 smid, int sge_count)
{
int sge_len, num_prp_in_chain = 0;
Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
u64 *curr_buff;
dma_addr_t msg_dma, sge_addr, offset;
u32 page_mask, page_mask_result;
u32 first_prp_len;
int data_len;
u32 nvme_pg_size;
nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
/*
* Nvme has a very convoluted prp format. One prp is required
* for each page or partial page. Driver need to split up OS sg_list
* entries if it is longer than one page or cross a page
* boundary. Driver also have to insert a PRP list pointer entry as
* the last entry in each physical page of the PRP list.
*
* NOTE: The first PRP "entry" is actually placed in the first
* SGL entry in the main message as IEEE 64 format. The 2nd
* entry in the main message is the chain element, and the rest
* of the PRP entries are built in the contiguous pcie buffer.
*/
page_mask = nvme_pg_size - 1;
/*
* Native SGL is needed.
* Put a chain element in main message frame that points to the first
* chain buffer.
*
* NOTE: The ChainOffset field must be 0 when using a chain pointer to
* a native SGL.
*/
/* Set main message chain element pointer */
main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
/*
* For NVMe the chain element needs to be the 2nd SG entry in the main
* message.
*/
main_chain_element = (Mpi25IeeeSgeChain64_t *)
((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory. Normal chain buffers can't be used
* because each chain buffer would need to be the size of an OS
* page (4k).
*/
curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
main_chain_element->Address = cpu_to_le64(msg_dma);
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
/* Build first prp, sge need not to be page aligned*/
ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
data_len = scmd->request_bufflen;
#else
data_len = scsi_bufflen(scmd);
#endif
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
offset = sge_addr & page_mask;
first_prp_len = nvme_pg_size - offset;
ptr_first_sgl->Address = cpu_to_le64(sge_addr);
ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
data_len -= first_prp_len;
if (sge_len > first_prp_len) {
sge_addr += first_prp_len;
sge_len -= first_prp_len;
} else if (data_len && (sge_len == first_prp_len)) {
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
for (;;) {
offset = sge_addr & page_mask;
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
if (unlikely(!page_mask_result)) {
scmd_printk(KERN_NOTICE,
scmd, "page boundary curr_buff: 0x%p\n",
curr_buff);
msg_dma += 8;
*curr_buff = cpu_to_le64(msg_dma);
curr_buff++;
num_prp_in_chain++;
}
*curr_buff = cpu_to_le64(sge_addr);
curr_buff++;
msg_dma += 8;
num_prp_in_chain++;
sge_addr += nvme_pg_size;
sge_len -= nvme_pg_size;
data_len -= nvme_pg_size;
if (data_len <= 0)
break;
if (sge_len > 0)
continue;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
main_chain_element->Length =
cpu_to_le32(num_prp_in_chain * sizeof(u64));
return;
}
u32 base_mod64(u64 dividend, u32 divisor)
{
u32 remainder;
if (!divisor)
pr_err(KERN_ERR "mpt3sas : DIVISOR is zero, in div fn\n");
remainder = do_div(dividend, divisor);
return remainder;
}
/**
* base_is_prp_possible - This function is called for PCIe end devices to
* check if we need to build a native NVMe PRP.
* @ioc: per adapter object
* @pcie_device: points to the PCIe device's info
* @scmd: scsi command
* @sg_scmd: SG list pointer
* @sge_count: scatter gather element count.
*
* Returns 1 if native NVMe PRP to be built else 0 to build native SGL.
*/
static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
struct _pcie_device *pcie_device, struct scsi_cmnd *scmd,
struct scatterlist *sg_scmd, int sge_count)
{
u32 data_length = 0;
bool build_prp = true;
u32 i, nvme_pg_size;
nvme_pg_size = max_t(u32, ioc->page_size,
NVME_PRP_PAGE_SIZE);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
data_length = cpu_to_le32(scmd->request_bufflen);
#else
data_length = cpu_to_le32(scsi_bufflen(scmd));
#endif
if (pcie_device &&
(mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
build_prp = false;
return build_prp;
}
/* If Datalenth is <= 16K and number of SGEs entries are <= 2
* we built IEEE SGL
*/
if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) {
build_prp = false;
return build_prp;
}
/*
** Below code detects gaps/holes in IO data buffers.
** What does holes/gaps mean?
** Any SGE except first one in a SGL starts at non NVME page size
** aligned address OR Any SGE except last one in a SGL ends at
** non NVME page size boundary.
**
** Driver has already informed block layer by setting boundary rules
** for bio merging done at NVME page size boundary calling kernel API
** blk_queue_virt_boundary inside slave_config.
** Still there is possibility of IO coming with holes to driver because
** of IO merging done by IO scheduler.
**
** With SCSI BLK MQ enabled, there will be no IO with holes as there
** is no IO scheduling so no IO merging.
**
** With SCSI BLK MQ disabled, IO scheduler may attempt to merge IOs and
** then sending IOs with holes.
**
** Though driver can request block layer to disable IO merging by
** calling queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES,
** sdev->request_queue) but user may tune sysfs parameter- nomerges
** again to 0 or 1.
**
** If in future IO scheduling is enabled with SCSI BLK MQ,
** this algorithm to detect holes will be required in driver
** for SCSI BLK MQ enabled case as well.
**
**/
scsi_for_each_sg(scmd, sg_scmd, sge_count, i) {
if ((i != 0) && (i != (sge_count - 1))) {
if (base_mod64(sg_dma_len(sg_scmd), nvme_pg_size) ||
base_mod64(sg_dma_address(sg_scmd),
nvme_pg_size)) {
build_prp = false;
break;
}
}
if ((sge_count > 1) && (i == 0)) {
if ((base_mod64((sg_dma_address(sg_scmd) +
sg_dma_len(sg_scmd)), nvme_pg_size))) {
build_prp = false;
break;
}
}
if ((sge_count > 1) && (i == (sge_count - 1))) {
if (base_mod64(sg_dma_address(sg_scmd), nvme_pg_size)) {
build_prp = false;
break;
}
}
}
return build_prp;
}
/**
* _base_check_pcie_native_sgl - This function is called for PCIe end devices to
* determine if the driver needs to build a native SGL. If so, that native
* SGL is built in the special contiguous buffers allocated especially for
* PCIe SGL creation. If the driver will not build a native SGL, return
* TRUE and a normal IEEE SGL will be built. Currently this routine
* supports NVMe.
* @ioc: per adapter object
* @mpi_request: mf request pointer
* @smid: system request message index
* @scmd: scsi command
* @pcie_device: points to the PCIe device's info
*
* Returns 0 if native SGL was built, 1 if no SGL was built
*/
static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
struct _pcie_device *pcie_device)
{
struct scatterlist *sg_scmd;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
u32 sges_left;
#else
int sges_left;
#endif
/* Get the SG list pointer and info. */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
if (!scmd->use_sg) {
/* single buffer sge */
scmd->SCp.dma_handle = pci_map_single(ioc->pdev,
scmd->request_buffer, scmd->request_bufflen,
scmd->sc_data_direction);
if (pci_dma_mapping_error(scmd->SCp.dma_handle)) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_single"
" failed: request for %d bytes!\n",
scmd->request_bufflen);
return 1;
}
sg_scmd = (struct scatterlist *) scmd->request_buffer;
sges_left = 1;
} else {
/* sg list provided */
sg_scmd = (struct scatterlist *) scmd->request_buffer;
sges_left = pci_map_sg(ioc->pdev, sg_scmd, scmd->use_sg,
scmd->sc_data_direction);
if (!sges_left) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_sg"
" failed: request for %d bytes!\n",
scmd->request_bufflen);
return 1;
}
}
#else
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map"
" failed: request for %d bytes!\n", scsi_bufflen(scmd));
return 1;
}
#endif
/* Check if we need to build a native SG list. */
if (base_is_prp_possible(ioc, pcie_device,
scmd, sg_scmd, sges_left) == 0) {
/* We built a native SG list, just return. */
goto out;
}
/*
* Build native NVMe PRP.
*/
base_make_prp_nvme(ioc, scmd, sg_scmd, mpi_request,
smid, sges_left);
return 0;
out:
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
if (scmd->use_sg)
pci_unmap_sg(ioc->pdev, (struct scatterlist *)
scmd->request_buffer, scmd->use_sg,
scmd->sc_data_direction);
else if (scmd->request_bufflen)
pci_unmap_single(ioc->pdev, scmd->SCp.dma_handle,
scmd->request_bufflen, scmd->sc_data_direction);
#else
scsi_dma_unmap(scmd);
#endif
return 1;
}
/**
* _base_build_sg_scmd - mpt2sas main sg creation routine
* pcie_device is unused here!
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @unused: unused pcie_device pointer
*
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
{
Mpi25SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
u32 chain_flags;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
u32 sges_left;
#else
int sges_left;
#endif
u32 sges_in_segment;
u32 sgl_flags;
u32 sgl_flags_last_element;
u32 sgl_flags_end_buffer;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
if (scmd->sc_data_direction == DMA_TO_DEVICE)
sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
/* single buffer sge */
if (!scmd->use_sg) {
scmd->SCp.dma_handle = pci_map_single(ioc->pdev,
scmd->request_buffer, scmd->request_bufflen,
scmd->sc_data_direction);
if (pci_dma_mapping_error(scmd->SCp.dma_handle)) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_single"
" failed: request for %d bytes!\n",
scmd->request_bufflen);
return -ENOMEM;
}
ioc->base_add_sg_single(&mpi_request->SGL,
sgl_flags_end_buffer | scmd->request_bufflen,
scmd->SCp.dma_handle);
return 0;
}
/* sg list provided */
sg_scmd = (struct scatterlist *) scmd->request_buffer;
sges_left = pci_map_sg(ioc->pdev, sg_scmd, scmd->use_sg,
scmd->sc_data_direction);
#if defined(CRACK_MONKEY_EEDP)
if (!ioc->disable_eedp_support) {
if (scmd->cmnd[0] == INQUIRY) {
scmd->host_scribble =
page_address(((struct scatterlist *)
scmd->request_buffer)[0].page)+
((struct scatterlist *)
scmd->request_buffer)[0].offset;
}
}
#endif /* CRACK_MONKEY_EEDP */
if (!sges_left) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_sg"
" failed: request for %d bytes!\n", scmd->request_bufflen);
return -ENOMEM;
}
#else
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map"
" failed: request for %d bytes!\n", scsi_bufflen(scmd));
return -ENOMEM;
}
#if defined(CRACK_MONKEY_EEDP)
if (!ioc->disable_eedp_support) {
if (scmd->cmnd[0] == INQUIRY)
scmd->host_scribble = page_address(sg_page(sg_scmd)) +
sg_scmd[0].offset;
}
#endif /* CRACK_MONKEY_EEDP */
#endif
sg_local = &mpi_request->SGL;
sges_in_segment = ioc->max_sges_in_main_message;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
(sges_in_segment * ioc->sge_size))/4;
/* fill in main message segment when there is a chain following */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element | sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
/* initializing the chain flags and pointers */
chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : (sges_in_segment * ioc->sge_size)/4;
chain_length = sges_in_segment * ioc->sge_size;
if (chain_offset) {
chain_offset = chain_offset <<
MPI2_SGE_CHAIN_OFFSET_SHIFT;
chain_length += ioc->sge_size;
}
ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left) {
if (sges_left == 1)
ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size;
sges_left--;
}
return 0;
}
/* IEEE format sgls */
/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
* @chain_offset: number of 128 byte elements from start of segment
* @length: data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
dma_addr_t dma_addr)
{
Mpi25IeeeSgeChain64_t *sgel = paddr;
sgel->Flags = flags;
sgel->NextChainOffset = chain_offset;
sgel->Length = cpu_to_le32(length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
}
/**
* _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
* constructed on need.
*
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
{
Mpi25SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd; /* s/g data entry */
void *sg_local, *chain, *sgl_zero_addr;
u32 chain_offset;
u32 chain_length;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
u32 sges_left;
#else
int sges_left;
#endif
u32 sges_in_segment, sges_in_request_frame = 0;
u8 simple_sgl_flags;
u8 simple_sgl_flags_last;
u8 chain_sgl_flags;
struct chain_tracker *chain_req;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
struct scatterlist *sg_prot_scmd = NULL; /* s/g prot entry */
void *sg_prot_local;
int prot_sges_left;
u32 prot_sges_in_segment;
#endif
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
simple_sgl_flags_last = simple_sgl_flags |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
/* Check if we need to build a native SG list. */
if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
smid, scmd, pcie_device) == 0)) {
/* We built a native SG list, just return. */
return 0;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
/* single buffer sge */
if (!scmd->use_sg) {
scmd->SCp.dma_handle = pci_map_single(ioc->pdev,
scmd->request_buffer, scmd->request_bufflen,
scmd->sc_data_direction);
if (pci_dma_mapping_error(scmd->SCp.dma_handle)) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_single"
" failed: request for %d bytes!\n",
scmd->request_bufflen);
return -ENOMEM;
}
_base_add_sg_single_ieee(&mpi_request->SGL,
simple_sgl_flags_last, 0, scmd->request_bufflen,
scmd->SCp.dma_handle);
return 0;
}
/* sg list provided */
sg_scmd = (struct scatterlist *) scmd->request_buffer;
sges_left = pci_map_sg(ioc->pdev, sg_scmd, scmd->use_sg,
scmd->sc_data_direction);
#if defined(CRACK_MONKEY_EEDP)
if (!ioc->disable_eedp_support) {
if (scmd->cmnd[0] == INQUIRY) {
scmd->host_scribble =
page_address(((struct scatterlist *)
scmd->request_buffer)[0].page)+
((struct scatterlist *)
scmd->request_buffer)[0].offset;
}
}
#endif /* CRACK_MONKEY */
if (!sges_left) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_sg"
" failed: request for %d bytes!\n", scmd->request_bufflen);
return -ENOMEM;
}
#else
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map"
" failed: request for %d bytes!\n", scsi_bufflen(scmd));
return -ENOMEM;
}
#if defined(CRACK_MONKEY_EEDP)
if (!ioc->disable_eedp_support) {
if (scmd->cmnd[0] == INQUIRY)
scmd->host_scribble = page_address(sg_page(sg_scmd)) +
sg_scmd[0].offset;
}
#endif /* CRACK_MONKEY */
#endif
sgl_zero_addr = sg_local = &mpi_request->SGL;
if (mpi_request->DMAFlags == MPI25_TA_DMAFLAGS_OP_D_H_D_D) {
/* reserve last SGE for SGL1 */
sges_in_request_frame = sges_in_segment =
((ioc->request_sz - ioc->sge_size_ieee) -
offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
} else {
sges_in_segment = (ioc->request_sz -
offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
}
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
(offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
/* initializing the pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : sges_in_segment;
chain_length = sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left > 0) {
if (sges_left == 1)
_base_add_sg_single_ieee(sg_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24))
sg_scmd++;
#else
sg_scmd = sg_next(sg_scmd);
#endif
sg_local += ioc->sge_size_ieee;
sges_left--;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
if (mpi_request->DMAFlags == MPI25_TA_DMAFLAGS_OP_D_H_D_D)
{
mpi_request->SGLOffset1 = ((ioc->request_sz - ioc->sge_size_ieee)/4);
sg_prot_scmd = scsi_prot_sglist(scmd);
prot_sges_left = dma_map_sg(&ioc->pdev->dev, scsi_prot_sglist(scmd),
scsi_prot_sg_count(scmd), scmd->sc_data_direction);
if (!prot_sges_left) {
sdev_printk(KERN_ERR, scmd->device, "pci_map_sg"
" failed: request for %d bytes!\n", scsi_bufflen(scmd));
scsi_dma_unmap(scmd);
return -ENOMEM;
}
sg_prot_local = sgl_zero_addr +
(sges_in_request_frame * ioc->sge_size_ieee);
prot_sges_in_segment = 1;
if (prot_sges_left <= prot_sges_in_segment)
goto fill_in_last_prot_segment;
/* initializing the chain flags and pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
prot_sges_in_segment = (prot_sges_left <=
ioc->max_sges_in_chain_message) ? prot_sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (prot_sges_left == prot_sges_in_segment) ?
0 : prot_sges_in_segment;
chain_length = prot_sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_prot_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_prot_local = chain;
if (!chain_offset)
goto fill_in_last_prot_segment;
/* fill in chain segments */
while (prot_sges_in_segment) {
_base_add_sg_single_ieee(sg_prot_local, simple_sgl_flags, 0,
sg_dma_len(sg_prot_scmd), sg_dma_address(sg_prot_scmd));
sg_prot_scmd = sg_next(sg_prot_scmd);
sg_prot_local += ioc->sge_size_ieee;
prot_sges_left--;
prot_sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_prot_segment:
/* fill the last segment */
while (prot_sges_left) {
if (prot_sges_left == 1) {
_base_add_sg_single_ieee(sg_prot_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_prot_scmd),
sg_dma_address(sg_prot_scmd));
}
else {
_base_add_sg_single_ieee(sg_prot_local, simple_sgl_flags, 0,
sg_dma_len(sg_prot_scmd), sg_dma_address(sg_prot_scmd));
}
sg_prot_scmd = sg_next(sg_prot_scmd);
sg_prot_local += ioc->sge_size_ieee;
prot_sges_left--;
}
}
#endif
return 0;
}
/**
* _base_build_sg_ieee - build generic sg for IEEE format
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u8 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge_ieee(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
/* incr sgel */
psge += ioc->sge_size_ieee;
/* READ sgel last */
sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
}
}
#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30))
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
char *desc = "64";
u64 consistant_dma_mask = DMA_BIT_MASK(64);
if (ioc->is_mcpu_endpoint || ioc->use_32bit_dma)
goto try_32bit:
/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
consistant_dma_mask = DMA_BIT_MASK(63);
desc = "63";
ioc->dma_mask = 63;
}
if (sizeof(dma_addr_t) > 4) {
uint64_t required_mask;
/* have to first set mask to 64 to find max mask required */
if (pci_set_dma_mask(pdev, consistant_dma_mask) != 0)
goto try_32bit;
required_mask = dma_get_required_mask(&pdev->dev);
if (required_mask > DMA_32BIT_MASK &&
!pci_set_consistent_dma_mask(pdev, consistant_dma_mask)) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
goto out;
}
}
try_32bit:
if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK) &&
!pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
desc = "32";
ioc->dma_mask = 32;
} else
return -ENODEV;
out:
si_meminfo(&s);
printk(MPT3SAS_INFO_FMT "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, "
"total mem (%ld kB)\n", ioc->name, desc, convert_to_kb(s.totalram));
return 0;
}
#else
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
char *desc = "64";
u64 consistant_dma_mask = DMA_BIT_MASK(64);
if (ioc->is_mcpu_endpoint)
goto try_32bit;
/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
consistant_dma_mask = DMA_BIT_MASK(63);
desc = "63";
}
if (sizeof(dma_addr_t) > 4) {
const uint64_t required_mask =
dma_get_required_mask(&pdev->dev);
if ((required_mask > DMA_BIT_MASK(32)) &&
!pci_set_dma_mask(pdev, consistant_dma_mask) &&
!pci_set_consistent_dma_mask(pdev, consistant_dma_mask)) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
goto out;
}
}
try_32bit:
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
desc = "32";
} else
return -ENODEV;
out:
si_meminfo(&s);
printk(MPT3SAS_INFO_FMT "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, "
"total mem (%ld kB)\n", ioc->name, desc, convert_to_kb(s.totalram));
return 0;
}
#endif
/**
* _base_check_and_get_msix_vectors - checks MSIX capabable.
* @ioc: per adapter object
*
* Check to see if card is capable of MSIX, and return number
* of avaliable msix vectors
*/
int
_base_check_and_get_msix_vectors(struct pci_dev *pdev)
{
int base;
u16 message_control, msix_vector_count;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
u8 revision;
#endif
/* Check whether controller SAS2008 B0 controller,
if it is SAS2008 B0 controller use IO-APIC instead of MSIX */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23))
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
if (pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
revision == SAS2_PCI_DEVICE_B0_REVISION) {
#else
if (pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
#endif
return -EINVAL;
}
base = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (!base)
return -EINVAL;
/* NUMA_IO not supported for older controllers */
switch(pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2004:
case MPI2_MFGPAGE_DEVID_SAS2008:
case MPI2_MFGPAGE_DEVID_SAS2108_1:
case MPI2_MFGPAGE_DEVID_SAS2108_2:
case MPI2_MFGPAGE_DEVID_SAS2108_3:
case MPI2_MFGPAGE_DEVID_SAS2116_1:
case MPI2_MFGPAGE_DEVID_SAS2116_2:
return 1;
}
/* get msix vector count */
pci_read_config_word(pdev, base + 2, &message_control);
msix_vector_count = (message_control & 0x3FF) + 1;
return msix_vector_count;
}
enum mpt3sas_pci_bus_speed {
MPT_PCIE_SPEED_2_5GT = 0x14,
MPT_PCIE_SPEED_5_0GT = 0x15,
MPT_PCIE_SPEED_8_0GT = 0x16,
MPT_PCIE_SPEED_16_0GT = 0x17,
MPT_PCI_SPEED_UNKNOWN = 0xff,
};
const unsigned char mpt3sas_pcie_link_speed[] = {
MPT_PCI_SPEED_UNKNOWN, /* 0 */
MPT_PCIE_SPEED_2_5GT, /* 1 */
MPT_PCIE_SPEED_5_0GT, /* 2 */
MPT_PCIE_SPEED_8_0GT, /* 3 */
MPT_PCIE_SPEED_16_0GT, /* 4 */
MPT_PCI_SPEED_UNKNOWN, /* 5 */
MPT_PCI_SPEED_UNKNOWN, /* 6 */
MPT_PCI_SPEED_UNKNOWN, /* 7 */
MPT_PCI_SPEED_UNKNOWN, /* 8 */
MPT_PCI_SPEED_UNKNOWN, /* 9 */
MPT_PCI_SPEED_UNKNOWN, /* A */
MPT_PCI_SPEED_UNKNOWN, /* B */
MPT_PCI_SPEED_UNKNOWN, /* C */
MPT_PCI_SPEED_UNKNOWN, /* D */
MPT_PCI_SPEED_UNKNOWN, /* E */
MPT_PCI_SPEED_UNKNOWN /* F */
};
/**
* _base_check_and_enable_high_iops_queues - enable high iops mode
* @ ioc - per adapter object
* @ hba_msix_vector_count - msix vectors supported by HBA
*
* Enable high iops queues only if
* - HBA is a SEA/AERO controller and
* - MSI-Xs vector supported by the HBA is 128 and
* - total CPU count in the system >=16 and
* - loaded driver with default max_msix_vectors module parameter and
* - system booted in non kdump mode
*
* returns nothing.
*/
static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
int hba_msix_vector_count)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
u16 lnksta;
enum mpt3sas_pci_bus_speed speed;
if (perf_mode == MPT_PERF_MODE_IOPS ||
perf_mode == MPT_PERF_MODE_LATENCY) {
ioc->high_iops_queues = 0;
return;
}
if (perf_mode == MPT_PERF_MODE_DEFAULT) {
pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
speed = mpt3sas_pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
dev_info(&ioc->pdev->dev, "PCIe device speed is %s\n",
speed == MPT_PCIE_SPEED_2_5GT ? "2.5GHz" :
speed == MPT_PCIE_SPEED_5_0GT ? "5.0GHz" :
speed == MPT_PCIE_SPEED_8_0GT ? "8.0GHz" :
speed == MPT_PCIE_SPEED_16_0GT ? "16.0GHz" :
"Unknown");
if (speed < MPT_PCIE_SPEED_16_0GT) {
ioc->high_iops_queues = 0;
return;
}
}
if (!reset_devices &&
hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
max_msix_vectors == -1)
ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
else
#endif
ioc->high_iops_queues = 0;
}
/**
* mpt3sas_base_disable_msix - disables msix
* @ioc: per adapter object
*
*/
void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
{
if (!ioc->msix_enable)
return;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
pci_free_irq_vectors(ioc->pdev);
#else
pci_disable_msix(ioc->pdev);
#endif
ioc->msix_enable = 0;
}
/**
* mpt3sas_base_free_irq - free irq
* @ioc: per adapter object
*
* Freeing respective reply_queue from the list.
*/
void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
irq_poll_disable(&reply_q->irqpoll);
#endif
list_del(&reply_q->list);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
if (ioc->smp_affinity_enable)
irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
reply_q->msix_index), NULL);
free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
reply_q);
#elif ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 6)) || LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
if (ioc->smp_affinity_enable) {
irq_set_affinity_hint(reply_q->vector, NULL);
free_cpumask_var(reply_q->affinity_hint);
}
free_irq(reply_q->vector, reply_q);
#else
free_irq(reply_q->vector, reply_q);
#endif
kfree(reply_q);
}
}
/**
* _base_request_irq - request irq
* @ioc: per adapter object
* @index: msix index into vector table
* @vector: irq vector
*
* Inserting respective reply_queue into the list.
*/
static int
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
#else
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
#endif
{
struct adapter_reply_queue *reply_q;
int r;
reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
if (!reply_q) {
printk(MPT3SAS_ERR_FMT "unable to allocate memory %d!\n",
ioc->name, (int)sizeof(struct adapter_reply_queue));
return -ENOMEM;
}
reply_q->ioc = ioc;
reply_q->msix_index = index;
#if ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 6)) || \
(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) && \
LINUX_VERSION_CODE < KERNEL_VERSION(5,0,0)))
if (ioc->smp_affinity_enable) {
if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
kfree(reply_q);
return -ENOMEM;
}
cpumask_clear(reply_q->affinity_hint);
}
#endif
atomic_set(&reply_q->busy, 0);
if (ioc->msix_enable)
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
ioc->driver_name, ioc->id, index);
else
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
ioc->driver_name, ioc->id);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
r = request_irq(pci_irq_vector(ioc->pdev, index), _base_interrupt,
IRQF_SHARED, reply_q->name, reply_q);
if (r) {
printk(MPT3SAS_ERR_FMT "unable to allocate interrupt %d!\n",
reply_q->name, pci_irq_vector(ioc->pdev, index));
kfree(reply_q);
return -EBUSY;
}
#elif (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18))
reply_q->vector = vector;
r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
reply_q);
if (r) {
printk(MPT3SAS_ERR_FMT "unable to allocate interrupt %d!\n",
reply_q->name, vector);
kfree(reply_q);
return -EBUSY;
}
#else
reply_q->vector = vector;
r = request_irq(vector, _base_interrupt, SA_SHIRQ, reply_q->name,
reply_q);
if (r) {
printk(MPT3SAS_ERR_FMT "unable to allocate interrupt %d!\n",
reply_q->name, vector);
kfree(reply_q);
return -EBUSY;
}
#endif
INIT_LIST_HEAD(&reply_q->list);
list_add_tail(&reply_q->list, &ioc->reply_queue_list);
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
/**
* _base_alloc_irq_vectors - allocate msix vectors
* @ioc: per adapter object
*
*/
static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
{
int i, irq_flags = PCI_IRQ_MSIX;
struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
struct irq_affinity *descp = &desc;
if (ioc->smp_affinity_enable)
irq_flags |= PCI_IRQ_AFFINITY;
else
descp = NULL;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT
"high_iops_queues: %d, reply_queue_count: %d\n",
ioc->name, ioc->high_iops_queues,
ioc->reply_queue_count));
i = pci_alloc_irq_vectors_affinity(ioc->pdev,
ioc->high_iops_queues,
ioc->reply_queue_count, irq_flags, descp);
return i;
}
#endif
/**
* _base_enable_msix - enables msix, failback to io_apic
* @ioc: per adapter object
*
*/
static int
_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5,0,0))
struct msix_entry *entries, *a;
#endif
int r, i, msix_vector_count, local_max_msix_vectors;
u8 try_msix = 0;
ioc->msix_load_balance = false;
if (msix_disable == -1 || msix_disable == 0)
try_msix = 1;
if (!try_msix)
goto try_ioapic;
msix_vector_count = _base_check_and_get_msix_vectors(ioc->pdev);
if (msix_vector_count <= 0) {
dfailprintk(ioc, printk(MPT3SAS_INFO_FMT "msix not "
"supported\n", ioc->name));
goto try_ioapic;
}
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT
"MSI-X vectors supported: %d, no of cores: %d\n",
ioc->name, msix_vector_count, ioc->cpu_count));
if (ioc->is_aero_ioc)
_base_check_and_enable_high_iops_queues(ioc, msix_vector_count);
ioc->reply_queue_count = min_t(int,
ioc->cpu_count + ioc->high_iops_queues,
msix_vector_count);
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
{
if(reset_devices)
local_max_msix_vectors = 1;
else
local_max_msix_vectors = 8;
}else
local_max_msix_vectors = max_msix_vectors;
if (local_max_msix_vectors > 0) {
ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
ioc->reply_queue_count);
} else if (local_max_msix_vectors == 0)
goto try_ioapic;
/*
* Enable msix_load_balance only if combined reply queue mode is
* disabled on SAS3 & above generation HBA devices.
*/
if (!ioc->combined_reply_queue &&
ioc->hba_mpi_version_belonged != MPI2_VERSION) {
printk(MPT3SAS_INFO_FMT
"combined reply queue is off, so enabling msix load balance\n",
ioc->name);
ioc->msix_load_balance = true;
}
/*
* smp affinity setting is not need when msix load balance
* is enabled.
*/
if (ioc->msix_load_balance)
ioc->smp_affinity_enable = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
r = _base_alloc_irq_vectors(ioc);
if (r < 0) {
printk(MPT3SAS_WARN_FMT
"pci_alloc_irq_vectors failed (r=%d) !!!\n",
ioc->name, r);
goto try_ioapic;
}
ioc->msix_enable = 1;
for (i = 0; i < ioc->reply_queue_count; i++) {
r = _base_request_irq(ioc, i);
if (r) {
mpt3sas_base_free_irq(ioc);
mpt3sas_base_disable_msix(ioc);
goto try_ioapic;
}
}
#else
entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
GFP_KERNEL);
if (!entries) {
printk(MPT3SAS_WARN_FMT "kcalloc "
"failed @ at %s:%d/%s() !!!\n", ioc->name, __FILE__,
__LINE__, __func__);
goto try_ioapic;
}
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
a->entry = i;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,16,0))
r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
#else
r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
#endif
if (r) {
dfailprintk(ioc, printk(MPT3SAS_INFO_FMT
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,16,0))
"pci_enable_msix_exact "
#else
"pci_enable_msix "
#endif
"failed (r=%d) !!!\n", ioc->name, r));
kfree(entries);
goto try_ioapic;
}
ioc->msix_enable = 1;
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
r = _base_request_irq(ioc, i, a->vector);
if (r) {
mpt3sas_base_free_irq(ioc);
mpt3sas_base_disable_msix(ioc);
kfree(entries);
goto try_ioapic;
}
}
kfree(entries);
#endif
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "High IOPs queues : %s \n",
ioc->name, ioc->high_iops_queues ? "enabled" : "disabled"));
return 0;
/* failback to io_apic interrupt routing */
try_ioapic:
ioc->high_iops_queues = 0;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT
"High IOPs queues : disabled \n", ioc->name));
ioc->reply_queue_count = 1;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
r = _base_request_irq(ioc, 0);
#else
r = _base_request_irq(ioc, 0, ioc->pdev->irq);
#endif
return r;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
/**
* _base_import_managed_irqs_affinity - import msix affinity of managed IRQs
* into local cpu mapping table.
* @ioc - per adapter object
*
* Return nothing.
*/
static void
_base_import_managed_irqs_affinity(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
unsigned int cpu, nr_msix;
int local_numa_node;
unsigned int index = 0;
nr_msix = ioc->reply_queue_count;
if (!nr_msix)
return;
if (ioc->smp_affinity_enable) {
/*
* set irq affinity to local numa node for those irqs
* corresponding to high iops queues.
*/
if (ioc->high_iops_queues) {
local_numa_node = dev_to_node(&ioc->pdev->dev);
for (index = 0; index < ioc->high_iops_queues;
index++) {
irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
index), cpumask_of_node(local_numa_node));
}
}
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
const cpumask_t *mask;
if (reply_q->msix_index < ioc->high_iops_queues)
continue;
mask = pci_irq_get_affinity(ioc->pdev,
reply_q->msix_index);
if (!mask) {
dinitprintk(ioc, printk(MPT3SAS_WARN_FMT
"no affinity for msi %x\n", ioc->name,
reply_q->msix_index));
goto fall_back;
}
for_each_cpu_and(cpu, mask, cpu_online_mask) {
if (cpu >= ioc->cpu_msix_table_sz)
break;
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
}
}
return;
}
fall_back:
_base_group_cpus_on_irq(ioc);
}
#endif
#if ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 6)) || \
((LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36)) && \
(LINUX_VERSION_CODE < KERNEL_VERSION(5,0,0))))
/**
* _base_distribute_msix_vectors_explicity - distribute allocated msix vectors
* among the numa node and then distribute the per node allocated vectors
* among the CPUs exist in that node.
* @ioc - per adapter object
*
* Return nothing.
*/
static void
_base_distribute_msix_vectors_explicity(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
unsigned int cpu, nr_msix;
unsigned long nr_nodes;
int node_index=0;
/* First distribute the msix vectors among the numa nodes,
* then distribute the per node allocated vectors among the
* CPUs exist in that node. So that same MSIX vector is not
* assigned to the CPUs across the numa nodes.
*
* Only general reply queues are used for determine the affinity hint,
* high iops queues are excluded, so these high iops msix vectors are
* affinity to local numa node.
*/
nr_nodes = num_online_nodes();
nr_msix = ioc->reply_queue_count - ioc->high_iops_queues;
reply_q = list_entry(ioc->reply_queue_list.next,
struct adapter_reply_queue, list);
while (reply_q && reply_q->msix_index < ioc->high_iops_queues)
reply_q = list_entry(reply_q->list.next,
struct adapter_reply_queue, list);
for (node_index=0; node_index < nr_nodes; node_index++) {
unsigned int group, nr_msix_group;
int cpu_count = 0, cpu_group_count = 0;
int nr_cpus_per_node = cpumask_weight(cpumask_of_node(node_index));
nr_msix_group = nr_msix / nr_nodes;
if (node_index < nr_msix % nr_nodes)
nr_msix_group++;
if (!nr_msix_group)
continue;
for_each_cpu(cpu, cpumask_of_node(node_index)) {
if(!reply_q)
return;
group = nr_cpus_per_node / nr_msix_group;
if (cpu_count < ((nr_cpus_per_node % nr_msix_group) * (group + 1)))
group++;
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
if (ioc->smp_affinity_enable)
cpumask_or(reply_q->affinity_hint,
reply_q->affinity_hint, get_cpu_mask(cpu));
cpu_count++;
cpu_group_count++;
if (cpu_group_count < group)
continue;
if (ioc->smp_affinity_enable) {
if (irq_set_affinity_hint(reply_q->vector,
reply_q->affinity_hint))
dinitprintk(ioc, printk(MPT3SAS_FMT
"error setting affinity hint for irq "
" vector %d\n", ioc->name, reply_q->vector));
}
reply_q = list_entry(reply_q->list.next,
struct adapter_reply_queue, list);
while (reply_q &&
reply_q->msix_index < ioc->high_iops_queues)
reply_q = list_entry(reply_q->list.next,
struct adapter_reply_queue, list);
cpu_group_count = 0;
}
}
}
#endif
/**
* _base_assign_reply_queues - assigning msix index for each cpu
* @ioc: per adapter object
*
* The enduser would need to set the affinity via /proc/irq/#/smp_affinity
*
* It would nice if we could call irq_set_affinity, however it is not
* an exported symbol
*/
static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
int reply_queue;
if (!_base_is_controller_msix_enabled(ioc))
return;
if (ioc->msix_load_balance)
return;
memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
/* NUMA Hardware bug workaround - drop to less reply queues */
if (ioc->reply_queue_count > ioc->facts.MaxMSIxVectors) {
ioc->reply_queue_count = ioc->facts.MaxMSIxVectors;
reply_queue = 0;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
reply_q->msix_index = reply_queue;
if (++reply_queue == ioc->reply_queue_count)
reply_queue = 0;
}
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0))
_base_import_managed_irqs_affinity(ioc);
#elif ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 6)) || ((LINUX_VERSION_CODE >= \
KERNEL_VERSION(2,6,36))))
_base_distribute_msix_vectors_explicity(ioc);
#else
/* when there are more cpus than available msix vectors,
* then group cpus togeather on same irq
*/
_base_group_cpus_on_irq(ioc);
#endif
}
/**
* _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
* a write to the doorbell)
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
*/
static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 1000*timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"successfull count(%d), timeout(%d)\n", ioc->name,
__func__, count, timeout));
return 0;
}
msleep(1);
count++;
} while (--cntdn);
printk(MPT3SAS_ERR_FMT "%s: failed due to timeout count(%d), "
"int_status(%x)!\n", ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_spin_on_doorbell_int - waiting for controller interrupt(generated by
* a write to the doorbell)
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
*/
static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 2000 * timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
udelay(500);
count++;
} while (--cntdn);
printk(MPT3SAS_ERR_FMT "%s: failed due to timeout count(%d), "
"int_status(%x)!\n", ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
* doorbell.
*/
static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
u32 doorbell;
count = 0;
cntdn = 1000*timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"successfull count(%d), timeout(%d)\n", ioc->name,
__func__, count, timeout));
return 0;
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
doorbell = ioc->base_readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc , doorbell);
return -EFAULT;
}
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP) {
mpt3sas_base_coredump_info(ioc , doorbell);
return -EFAULT;
}
} else if (int_status == 0xFFFFFFFF)
goto out;
msleep(1);
count++;
} while (--cntdn);
out:
printk(MPT3SAS_ERR_FMT "%s: failed due to timeout count(%d), "
"int_status(%x)!\n", ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
*/
static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 doorbell_reg;
count = 0;
cntdn = 1000*timeout;
do {
doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"successfull count(%d), timeout(%d)\n", ioc->name,
__func__, count, timeout));
return 0;
}
msleep(1);
count++;
} while (--cntdn);
printk(MPT3SAS_ERR_FMT "%s: failed due to timeout count(%d), "
"doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg);
return -EFAULT;
}
/**
* _base_handshake_req_reply_wait - send request thru doorbell interface
* @ioc: per adapter object
* @request_bytes: request length
* @request: pointer having request payload
* @reply_bytes: reply length
* @reply: pointer to reply payload
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
u32 *request, int reply_bytes, u16 *reply, int timeout)
{
MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
int i;
u8 failed;
__le32 *mfp;
/* make sure doorbell is not in use */
if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
printk(MPT3SAS_ERR_FMT "doorbell is in use "
" (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
/* clear pending doorbell interrupts from previous state changes */
if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
MPI2_HIS_IOC2SYS_DB_STATUS)
writel(0, &ioc->chip->HostInterruptStatus);
/* send message to ioc */
writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
&ioc->chip->Doorbell);
if ((_base_spin_on_doorbell_int(ioc, 5))) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"int failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_ack(ioc, 5))) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"ack failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
/* send message 32-bits at a time */
for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
writel((u32)(request[i]), &ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 5)))
failed = 1;
}
if (failed) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"sending request failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
/* now wait for the reply */
if ((_base_wait_for_doorbell_int(ioc, timeout))) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"int failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
/* read the first two 16-bits, it gives the total length of the reply */
reply[0] = (u16)(ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_int(ioc, 5))) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"int failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
reply[1] = (u16)(ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
for (i = 2; i < default_reply->MsgLength * 2; i++) {
if ((_base_wait_for_doorbell_int(ioc, 5))) {
printk(MPT3SAS_ERR_FMT "doorbell "
"handshake int failed (line=%d)\n", ioc->name,
__LINE__);
return -EFAULT;
}
if (i >= reply_bytes/2) /* overflow case */
ioc->base_readl(&ioc->chip->Doorbell);
else
reply[i] = (u16)(ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
}
if (_base_wait_for_doorbell_int(ioc, 5)) {
printk(MPT3SAS_ERR_FMT "doorbell handshake "
"int failed (line=%d)\n", ioc->name, __LINE__);
return -EFAULT;
}
if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "doorbell is in use "
" (line=%d)\n", ioc->name, __LINE__));
}
writel(0, &ioc->chip->HostInterruptStatus);
if (ioc->logging_level & MPT_DEBUG_INIT) {
mfp = (__le32 *)reply;
printk(MPT3SAS_INFO_FMT "\toffset:data\n", ioc->name);
for (i = 0; i < reply_bytes/4; i++)
printk(MPT3SAS_INFO_FMT "\t[0x%02x]:%08x\n", ioc->name,
i*4, le32_to_cpu(mfp[i]));
}
return 0;
}
/**
* _base_wait_on_iocstate - waiting on a particular ioc state
* @ioc_state: controller state { READY, OPERATIONAL, or RESET }
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
{
u32 count, cntdn;
u32 current_state;
count = 0;
cntdn = 1000*timeout;
do {
current_state = mpt3sas_base_get_iocstate(ioc, 1);
if (current_state == ioc_state)
return 0;
if (count && current_state == MPI2_IOC_STATE_FAULT)
break;
msleep(1);
count++;
} while (--cntdn);
return current_state;
}
/**
* _base_dump_reg_set - This function will print hexdump of register set
* @ioc: per adapter object
*
* Returns nothing.
*/
static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int i, sz = 256;
u32 __iomem *reg = (u32 __iomem *)ioc->chip;
printk(MPT3SAS_FMT "System Register set:\n", ioc->name);
for (i = 0; i < (sz / sizeof(u32)); i++)
printk("%08x: %08x\n", (i * 4), readl(&reg[i]));
}
/**
* _base_diag_reset - the "big hammer" start of day reset
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
{
u32 host_diagnostic;
u32 ioc_state;
u32 count;
u32 hcb_size;
printk(MPT3SAS_INFO_FMT "sending diag reset !!\n", ioc->name);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,3,0))
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "Locking pci cfg space access\n",
ioc->name));
pci_cfg_access_lock(ioc->pdev);
#endif
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "clear interrupts\n",
ioc->name));
count = 0;
do {
/* Write magic sequence to WriteSequence register
* Loop until in diagnostic mode
*/
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "write magic "
"sequence\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
/* wait 100 msec */
msleep(100);
if (count++ > 20) {
printk(MPT3SAS_ERR_FMT
"Giving up writing magic sequence after 20 retries\n",
ioc->name);
_base_dump_reg_set(ioc);
goto out;
}
host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "wrote magic "
"sequence: count(%d), host_diagnostic(0x%08x)\n",
ioc->name, count, host_diagnostic));
} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "diag reset: issued\n",
ioc->name));
writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
&ioc->chip->HostDiagnostic);
#if defined(DISABLE_RESET_SUPPORT)
count = 0;
do {
/* wait 50 msec per loop */
msleep(50);
host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
if (host_diagnostic == 0xFFFFFFFF)
goto out;
else if (count++ >= 300) /* wait for upto 15 seconds */
goto out;
if (!(count % 20))
printk(KERN_INFO "waiting on diag reset bit to clear, "
"count = %d\n", (count / 20));
} while (host_diagnostic & MPI2_DIAG_RESET_ADAPTER);
#else
/* This delay allows the chip PCIe hardware time to finish reset tasks */
msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
/* Approximately 300 second max wait */
for (count = 0; count < (300000000 /
MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
if (host_diagnostic == 0xFFFFFFFF) {
printk(MPT3SAS_ERR_FMT
"Invalid host diagnostic register value\n",
ioc->name);
_base_dump_reg_set(ioc);
goto out;
}
if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
break;
/* Wait to pass the second read delay window */
msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
}
#endif
if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "restart the adapter "
"assuming the HCB Address points to good F/W\n",
ioc->name));
host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
writel(host_diagnostic, &ioc->chip->HostDiagnostic);
drsprintk(ioc, printk(MPT3SAS_INFO_FMT
"re-enable the HCDW\n", ioc->name));
writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
&ioc->chip->HCBSize);
}
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "restart the adapter\n",
ioc->name));
writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
&ioc->chip->HostDiagnostic);
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "disable writes to the "
"diagnostic register\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
drsprintk(ioc, printk(MPT3SAS_INFO_FMT "Wait for FW to go to the "
"READY state\n", ioc->name));
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
if (ioc_state) {
printk(MPT3SAS_ERR_FMT "%s: failed going to ready state "
" (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
_base_dump_reg_set(ioc);
goto out;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,3,0))
drsprintk(ioc, printk(MPT3SAS_INFO_FMT
"Unlocking pci cfg space access\n", ioc->name));
pci_cfg_access_unlock(ioc->pdev);
#endif
printk(MPT3SAS_INFO_FMT "diag reset: SUCCESS\n", ioc->name);
return 0;
out:
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,3,0))
drsprintk(ioc, printk(MPT3SAS_INFO_FMT
"Unlocking pci cfg space access\n", ioc->name));
pci_cfg_access_unlock(ioc->pdev);
#endif
printk(MPT3SAS_ERR_FMT "diag reset: FAILED\n", ioc->name);
return -EFAULT;
}
/**
* _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
* @ioc: per adapter object
* @timeout:
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 ioc_state;
int rc;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (!mpt3sas_base_pci_device_is_available(ioc))
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
(ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "unexpected doorbell "
"active!\n", ioc->name));
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
else if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
printk(MPT3SAS_ERR_FMT "%s: Skipping the diag reset here. "
" (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
return -EFAULT;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
timeout);
if (ioc_state) {
printk(MPT3SAS_ERR_FMT "%s: failed going to ready state "
" (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
return -EFAULT;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_check_for_fault_and_issue_reset - check if IOC is in fault state
* and if it is in fault state then issue diag reset.
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
{
u32 ioc_state;
int rc = -EFAULT;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (!mpt3sas_base_pci_device_is_available(ioc))
return rc;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
rc = _base_diag_reset(ioc);
}
else if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
mpt3sas_base_coredump_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
rc = _base_diag_reset(ioc);
}
return rc;
}
/**
* _base_get_ioc_facts - obtain ioc facts reply and save in ioc
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCFactsRequest_t mpi_request;
Mpi2IOCFactsReply_t mpi_reply;
struct mpt3sas_facts *facts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
r = _base_wait_for_iocstate(ioc, 10);
if (r) {
printk(MPT3SAS_ERR_FMT "%s: failed getting to correct state\n",
ioc->name, __func__);
return r;
}
mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
printk(MPT3SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
facts = &ioc->facts;
memset(facts, 0, sizeof(struct mpt3sas_facts));
facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
facts->IOCNumber = mpi_reply.IOCNumber;
printk(MPT3SAS_INFO_FMT
"IOC Number : %d\n", ioc->name, facts->IOCNumber);
ioc->IOCNumber = facts->IOCNumber;
facts->VP_ID = mpi_reply.VP_ID;
facts->VF_ID = mpi_reply.VF_ID;
facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
facts->MaxChainDepth = mpi_reply.MaxChainDepth;
facts->WhoInit = mpi_reply.WhoInit;
facts->NumberOfPorts = mpi_reply.NumberOfPorts;
facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
if (ioc->msix_enable && (facts->MaxMSIxVectors <=
MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
ioc->combined_reply_queue = 0;
facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
facts->MaxReplyDescriptorPostQueueDepth =
le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
ioc->ir_firmware = 1;
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE)
&& (!reset_devices))
ioc->rdpq_array_capable = 1;
else
ioc->rdpq_array_capable = 0;
if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
&& ioc->is_aero_ioc)
ioc->atomic_desc_capable = 1;
else
ioc->atomic_desc_capable = 0;
facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
facts->IOCRequestFrameSize =
le16_to_cpu(mpi_reply.IOCRequestFrameSize);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
facts->IOCMaxChainSegmentSize =
le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
}
facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
ioc->shost->max_id = -1;
facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
facts->HighPriorityCredit =
le16_to_cpu(mpi_reply.HighPriorityCredit);
facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
/*
* Get the Page Size from IOC Facts. If it's 0, default to 4k.
*/
ioc->page_size = 1 << facts->CurrentHostPageSize;
if (ioc->page_size == 1) {
printk(MPT3SAS_INFO_FMT "CurrentHostPageSize is 0: Setting "
"default host page size to 4k\n", ioc->name);
ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
}
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "CurrentHostPageSize(%d)\n",
ioc->name, facts->CurrentHostPageSize));
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "hba queue depth(%d), "
"max chains per io(%d)\n", ioc->name, facts->RequestCredit,
facts->MaxChainDepth));
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "request frame size(%d), "
"reply frame size(%d)\n", ioc->name,
facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
return 0;
}
/**
* _base_unmap_resources - free controller resources
* @ioc: per adapter object
*/
static void
_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
printk(MPT3SAS_INFO_FMT "%s\n",
ioc->name, __func__);
mpt3sas_base_free_irq(ioc);
mpt3sas_base_disable_msix(ioc);
kfree(ioc->replyPostRegisterIndex);
/* synchronizing freeing resource with pci_access_mutex lock */
mutex_lock(&ioc->pci_access_mutex);
if (ioc->chip_phys) {
iounmap(ioc->chip);
ioc->chip_phys = 0;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25))
pci_release_regions(pdev);
#else
pci_release_selected_regions(ioc->pdev, ioc->bars);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19))
pci_disable_pcie_error_reporting(pdev);
#endif
pci_disable_device(pdev);
mutex_unlock(&ioc->pci_access_mutex);
return;
}
/**
* mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
u32 memap_sz;
u32 pio_sz;
int i, r = 0, rc;
#ifndef CPQ_CIM
u64 pio_chip = 0;
#endif
phys_addr_t chip_phys = 0;
struct adapter_reply_queue *reply_q;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n",
ioc->name, __func__));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25))
if (pci_enable_device(pdev)) {
printk(MPT3SAS_WARN_FMT "pci_enable_device: failed\n",
ioc->name);
return -ENODEV;
}
if (pci_request_regions(pdev, ioc->driver_name)) {
printk(MPT3SAS_WARN_FMT "pci_request_regions: failed\n",
ioc->name);
r = -ENODEV;
goto out_fail;
}
#else
ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_enable_device_mem(pdev)) {
printk(MPT3SAS_WARN_FMT "pci_enable_device_mem: "
"failed\n", ioc->name);
return -ENODEV;
}
if (pci_request_selected_regions(pdev, ioc->bars,
ioc->driver_name)) {
printk(MPT3SAS_WARN_FMT "pci_request_selected_regions: "
"failed\n", ioc->name);
r = -ENODEV;
goto out_fail;
}
#endif
/* AER (Advanced Error Reporting) hooks */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19))
pci_enable_pcie_error_reporting(pdev);
#endif
pci_set_master(pdev);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
/* for SLES10 ~ PCI EEH support */
pci_save_state(pdev);
#endif
if (_base_config_dma_addressing(ioc, pdev) != 0) {
printk(MPT3SAS_WARN_FMT "no suitable DMA mask for %s\n",
ioc->name, pci_name(pdev));
r = -ENODEV;
goto out_fail;
}
for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
if (pio_sz)
continue;
#if defined(CPQ_CIM)
ioc->pio_chip = (u64)pci_resource_start(pdev, i);
#else
pio_chip = (u64)pci_resource_start(pdev, i);
#endif
pio_sz = pci_resource_len(pdev, i);
} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
if (memap_sz)
continue;
ioc->chip_phys = pci_resource_start(pdev, i);
chip_phys = ioc->chip_phys;
memap_sz = pci_resource_len(pdev, i);
ioc->chip = ioremap(ioc->chip_phys, memap_sz);
if (ioc->chip == NULL) {
printk(MPT3SAS_ERR_FMT "unable to map adapter "
"memory!\n", ioc->name);
r = -EINVAL;
goto out_fail;
}
}
}
mpt3sas_base_mask_interrupts(ioc);
r = _base_get_ioc_facts(ioc);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (r = _base_get_ioc_facts(ioc)))
goto out_fail;
}
if (!ioc->rdpq_array_enable_assigned) {
ioc->rdpq_array_enable = ioc->rdpq_array_capable;
ioc->rdpq_array_enable_assigned = 1;
}
r = _base_enable_msix(ioc);
if (r)
goto out_fail;
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
if (!ioc->is_driver_loading)
_base_init_irqpolls(ioc);
#endif
if (ioc->combined_reply_queue) {
/* If this is an 96 vector supported device, set up ReplyPostIndex addresses */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
ioc->replyPostRegisterIndex = kcalloc(ioc->nc_reply_index_count,
sizeof(resource_size_t *), GFP_KERNEL);
#else
ioc->replyPostRegisterIndex = kcalloc(ioc->nc_reply_index_count,
sizeof(u64 *), GFP_KERNEL);
#endif
if (!ioc->replyPostRegisterIndex) {
printk(MPT3SAS_ERR_FMT
"allocation for reply Post Register Index failed!!!\n",
ioc->name);
r = -ENOMEM;
goto out_fail;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
for ( i = 0; i < ioc->nc_reply_index_count; i++ ) {
ioc->replyPostRegisterIndex[i] =(resource_size_t *)
((u8 *)&ioc->chip->Doorbell +
MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + (i * 0x10));
}
#else
for ( i = 0; i < ioc->nc_reply_index_count; i++ ) {
ioc->replyPostRegisterIndex[i] = (u64 *)
((u8 *)&ioc->chip->Doorbell +
MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + (i * 0x10));
}
#endif
}
list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4,9,0))
printk(MPT3SAS_INFO_FMT "%s: IRQ %d\n",
reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
"IO-APIC enabled"),reply_q->vector);
#else
printk(MPT3SAS_INFO_FMT "%s: IRQ %d\n",
reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
"IO-APIC enabled"),
pci_irq_vector(ioc->pdev, reply_q->msix_index));
#endif
printk(MPT3SAS_INFO_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
ioc->name, &chip_phys, ioc->chip, memap_sz);
#if defined(CPQ_CIM)
printk(MPT3SAS_INFO_FMT "ioport(0x%016llx), size(%d)\n",
ioc->name, (unsigned long long)ioc->pio_chip, pio_sz);
#else
printk(MPT3SAS_INFO_FMT "ioport(0x%016llx), size(%d)\n",
ioc->name, (unsigned long long)pio_chip, pio_sz);
#endif
/* This is causing SLES10 to fail when loading */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19))
/* Save PCI configuration state for recovery from PCI AER/EEH errors */
pci_save_state(pdev);
#endif
return 0;
out_fail:
_base_unmap_resources(ioc);
return r;
}
/**
* mpt3sas_base_get_msg_frame - obtain request mf pointer
* @ioc: per adapter object
* @smid: system request message index(smid zero is invalid)
*
* Returns virt pointer to message frame.
*/
void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->request + (smid * ioc->request_sz));
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_get_msg_frame);
#endif
/**
* mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to sense buffer.
*/
void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the low 32bit address of the sense buffer.
*/
__le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma_64 - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the 64bit address of the sense buffer.
*/
__le64
mpt3sas_base_get_sense_buffer_dma_64(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le64(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to a PCIe SGL.
*/
void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
}
/**
* mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the address of the PCIe buffer.
*/
dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
}
/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
*
* Converts 32bit lower physical addr into a virt address.
*/
void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
{
if (!phys_addr)
return NULL;
return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_get_reply_virt_addr);
#endif
/**
* _base_get_msix_index - get the msix index
* @ioc: per adapter object
* @scmd: scsi_cmnd object
*
* returns msix index of general reply queues,
* i.e. reply queue on which IO request's reply
* should be posted by the HBA firmware.
*/
static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
/* Enables reply_queue load balancing */
if (ioc->msix_load_balance)
return ioc->reply_queue_count ? base_mod64(atomic64_add_return(1,
&ioc->total_io_cnt), ioc->reply_queue_count) : 0;
return ioc->cpu_msix_table[raw_smp_processor_id()];
}
/**
* _base_sdev_nr_inflight_request -get number of inflight requests
* of a request queue.
* @ioc: per adapter object
* @scmd: scsi_cmnd object
*
* returns number of inflight request of a request queue.
*/
inline unsigned long
_base_sdev_nr_inflight_request(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_BITMAP_BLK_MQ) {
struct blk_mq_hw_ctx *hctx =
scmd->device->request_queue->queue_hw_ctx[0];
return atomic_read(&hctx->nr_active);
}
else
return atomic_read(&scmd->device->device_busy);
}
/**
* _base_get_high_iops_msix_index - get the msix index of high iops queues
* @ioc: per adapter object
* @scmd: scsi_cmnd object
*
* returns msix index of high iops reply queues,
* i.e. high iops reply queue on which IO request's
* reply should be posted by the HBA firmware.
*/
static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
/**
* Round robin the IO interrupts among the high iops
* reply queues in terms of batch count 4 when outstanding
* IOs on the target device is >=8.
*/
#if ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 7 && RHEL_MINOR >= 2)) || \
(LINUX_VERSION_CODE >= KERNEL_VERSION(3,17,0)))
if (_base_sdev_nr_inflight_request(ioc, scmd) >
MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
#else
if (scmd->device->device_busy >
MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
#endif
return base_mod64((
atomic64_add_return(1, &ioc->high_iops_outstanding) /
MPT3SAS_HIGH_IOPS_BATCH_COUNT),
MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
return _base_get_msix_index(ioc, scmd);
}
/**
* mpt3sas_base_get_smid - obtain a free smid from internal queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->internal_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
printk(MPT3SAS_ERR_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->internal_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_get_smid);
#endif
/**
* mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
* @ioc: per adapter object
* @cb_idx: callback index
* @scmd: pointer to scsi command object
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
struct scsi_cmnd *scmd)
{
struct scsiio_tracker *request;
unsigned int tag = scmd->request->tag;
u16 smid;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0))
scmd->host_scribble = (unsigned char *)(&ioc->scsi_lookup[tag]);
#endif
request = mpt3sas_base_scsi_cmd_priv(scmd);
smid = tag + 1;
request->cb_idx = cb_idx;
request->smid = smid;
request->scmd = scmd;
return smid;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_get_smid_scsiio);
#endif
/**
* mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return 0;
}
request = list_entry(ioc->hpr_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
static void
_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
{
/*
* See mpt3sas_wait_for_commands_to_complete() call with
* regards to this code.
*/
if (ioc->shost_recovery && ioc->pending_io_count) {
if (ioc->pending_io_count == 1)
wake_up(&ioc->reset_wq);
ioc->pending_io_count--;
}
}
void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
struct scsiio_tracker *st)
{
if (!st)
return;
if (WARN_ON(st->smid == 0))
return;
st->cb_idx = 0xFF;
st->direct_io = 0;
st->scmd = NULL;
atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
}
/**
* mpt3sas_base_free_smid - put smid back on free_list
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
unsigned long flags;
int i;
struct scsiio_tracker *st;
void *request;
if (smid < ioc->hi_priority_smid) {
/* scsiio queue */
st = mpt3sas_get_st_from_smid(ioc, smid);
if (!st) {
_base_recovery_check(ioc);
return;
}
/* Clear MPI request frame */
request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(request, 0, ioc->request_sz);
mpt3sas_base_clear_st(ioc, st);
_base_recovery_check(ioc);
return;
}
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (smid < ioc->internal_smid) {
/* hi-priority */
i = smid - ioc->hi_priority_smid;
ioc->hpr_lookup[i].cb_idx = 0xFF;
list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
} else if (smid <= ioc->hba_queue_depth) {
/* internal queue */
i = smid - ioc->internal_smid;
ioc->internal_lookup[i].cb_idx = 0xFF;
list_add(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_free_smid);
#endif
/**
* _base_mpi_ep_writeq - 32 bit write to MMIO
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* This special handling for MPI EP to take care of 32 bit
* environment where its not quarenteed to send the entire word
* in one transfer.
*/
static inline void
_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
unsigned long flags;
__u64 data_out = b;
spin_lock_irqsave(writeq_lock, flags);
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
#if (((LINUX_VERSION_CODE < KERNEL_VERSION(5,2,0)) && (!defined(RHEL_MAJOR))) || \
(defined(RHEL_MAJOR) && ((RHEL_MAJOR == 8 && RHEL_MINOR < 2) || (RHEL_MAJOR < 8))))
mmiowb();
#endif
spin_unlock_irqrestore(writeq_lock, flags);
}
/**
* _base_writeq - 64 bit write to MMIO
* @ioc: per adapter object
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* Glue for handling an atomic 64 bit word to MMIO. This special handling takes
* care of 32 bit environment where its not quarenteed to send the entire word
* in one transfer.
*/
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
writeq(b, addr);
}
#else
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
unsigned long flags;
__u64 data_out = b;
spin_lock_irqsave(writeq_lock, flags);
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
spin_unlock_irqrestore(writeq_lock, flags);
}
#endif
/**
* _base_set_and_get_msix_index - get the msix index and assign to msix_io
* variable of scsi tracker
* @ioc: per adapter object
* @smid: system request message index
*
* returns msix index.
*/
static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct scsiio_tracker *st;
st = (smid < ioc->hi_priority_smid) ? (mpt3sas_get_st_from_smid(ioc, smid)) : (NULL);
if (st == NULL)
return _base_get_msix_index(ioc, NULL);
st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
return st->msix_io;
}
/**
* _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
void *mpi_req_iomem;
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
_clone_sg_entries(ioc, (void*) mfp, smid);
mpi_req_iomem = (void*)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem( mpi_req_iomem, (void*)mfp, ioc->request_sz);
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_fast_path - send fast path request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
*
* Return nothing.
*/
static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_hi_priority - send Task Managment request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else
* 0. Return nothing.
*/
static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 msix_task)
{
Mpi2RequestDescriptorUnion_t descriptor;
void *mpi_req_iomem;
u64 *request;
if (ioc->is_mcpu_endpoint) {
MPI2RequestHeader_t *request_hdr;
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
request_hdr = (MPI2RequestHeader_t*) mfp;
/*TBD 256 is offset within sys register. */
mpi_req_iomem = (void*)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem( mpi_req_iomem, (void*)mfp, ioc->request_sz);
}
request = (u64 *)&descriptor;
descriptor.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.HighPriority.MSIxIndex = msix_task;
descriptor.HighPriority.SMID = cpu_to_le16(smid);
descriptor.HighPriority.LMID = 0;
descriptor.HighPriority.Reserved1 = 0;
if (ioc->is_mcpu_endpoint)
_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
else
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_nvme_encap - send NVMe encapsulated request to
* firmware
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags =
MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
void *mpi_req_iomem;
u64 *request;
MPI2RequestHeader_t *request_hdr;
if (ioc->is_mcpu_endpoint) {
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
request_hdr = (MPI2RequestHeader_t*) mfp;
_clone_sg_entries(ioc, (void*) mfp, smid);
/* TBD 256 is offset within sys register */
mpi_req_iomem = (void*)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem( mpi_req_iomem, (void*)mfp, ioc->request_sz);
}
request = (u64 *)&descriptor;
descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
if (ioc->is_mcpu_endpoint)
_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
else
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
#if defined(TARGET_MODE)
/**
* _base_put_smid_target_assist - send Target Assist/Status to firmware
* @ioc: per adapter object
* @smid: system request message index
* @io_index: value used to track the IO
*
* Return nothing.
*/
void
_base_put_smid_target_assist(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 io_index)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSITarget.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET;
descriptor.SCSITarget.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSITarget.SMID = cpu_to_le16(smid);
descriptor.SCSITarget.LMID = 0;
descriptor.SCSITarget.IoIndex = cpu_to_le16(io_index);
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
#endif
/**
* _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
* Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
*
* Return nothing.
*/
static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_fast_path_atomic - send fast path request to firmware
* using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
* Return nothing.
*/
static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_hi_priority_atomic - send Task Managment request to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0
*
* Return nothing.
*/
static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.MSIxIndex = msix_task;
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* use Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
#if defined(TARGET_MODE)
/**
* _base_put_smid_target_assist_atomic - send Target Assist/Status to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @io_index: value used to track the IO, unused, for function type match
*
* Return nothing.
*/
static void
_base_put_smid_target_assist_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 io_index)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
#endif
/**
* _base_display_OEMs_branding - Display branding string
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
{
switch(ioc->pdev->subsystem_vendor) {
case PCI_VENDOR_ID_INTEL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RMS2LL080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL080_BRANDING);
break;
case MPT2SAS_INTEL_RMS2LL040_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL040_BRANDING);
break;
case MPT2SAS_INTEL_SSD910_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_SSD910_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Intel(R) Controller:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RS25GB008_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RS25GB008_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB040_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB040_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB040_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB080_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Intel(R) Controller:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_INTEL_RMS3JC080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RMS3JC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3GC008_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3GC008_BRANDING);
break;
case MPT3SAS_INTEL_RS3FC044_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3FC044_BRANDING);
break;
case MPT3SAS_INTEL_RS3UC080_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3UC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3PC_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3PC_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Intel(R) Controller:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
default:
printk(MPT3SAS_INFO_FMT "Intel(R) Controller:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_DELL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_BRANDING);
break;
case MPT2SAS_DELL_6GBPS_SAS_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Dell 6Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_DELL_12G_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_DELL_12G_HBA_BRANDING);
break;
case MPT3SAS_DELL_HBA330_ADP_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_DELL_HBA330_ADP_BRANDING);
break;
case MPT3SAS_DELL_HBA330_MINI_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_DELL_HBA330_MINI_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Dell 12Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
default:
printk(MPT3SAS_INFO_FMT "Dell SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
#if ((defined(RHEL_MAJOR) && (RHEL_MAJOR == 5 && RHEL_MINOR >= 7)) || LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,39))
case PCI_VENDOR_ID_CISCO:
switch (ioc->pdev->device) {
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Cisco 12Gbps SAS HBA:"
" Device ID:0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3108_1:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "Cisco 12Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
default:
printk(MPT3SAS_INFO_FMT "Cisco SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
#endif
case MPT2SAS_HP_3PAR_SSVID:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2004:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "HP 6Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_2_4_INTERNAL_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_INTERNAL_BRANDING);
break;
case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
break;
default:
printk(MPT3SAS_INFO_FMT "HP 12Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
break;
default:
printk(MPT3SAS_INFO_FMT "HP 12Gbps SAS HBA:"
" Device ID: 0x%X Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->device, ioc->pdev->subsystem_device);
break;
}
}
}
/**
* _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
* version from FW Image Header.
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2FWImageHeader_t *fw_img_hdr;
Mpi26ComponentImageHeader_t *cmp_img_hdr;
Mpi25FWUploadRequest_t *mpi_request;
Mpi2FWUploadReply_t mpi_reply;
int r = 0;
u32 package_version = 0;
void *fwpkg_data = NULL;
dma_addr_t fwpkg_data_dma;
u16 smid, ioc_status;
size_t data_length;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
printk(MPT3SAS_ERR_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
data_length = sizeof(Mpi2FWImageHeader_t);
fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
&fwpkg_data_dma);
if (!fwpkg_data) {
printk(MPT3SAS_ERR_FMT
"Memory allocation for fwpkg data got failed at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return -ENOMEM;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
r = -EAGAIN;
goto out;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
mpi_request->ImageSize = data_length;
ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
data_length);
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
/* Wait for 15 seconds */
wait_for_completion_timeout(&ioc->base_cmds.done,
FW_IMG_HDR_READ_TIMEOUT*HZ);
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: complete\n",
ioc->name, __func__));
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
printk(MPT3SAS_ERR_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi25FWUploadRequest_t)/4);
r = -ETIME;
}
else {
memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
memcpy(&mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2FWUploadReply_t));
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
if (le32_to_cpu(fw_img_hdr->Signature) ==
MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
cmp_img_hdr = (Mpi26ComponentImageHeader_t *)(fwpkg_data);
package_version =
le32_to_cpu(cmp_img_hdr->ApplicationSpecific);
}
else
package_version =
le32_to_cpu(fw_img_hdr->PackageVersion.Word);
if (package_version)
printk(MPT3SAS_INFO_FMT "FW Package Version(%02d.%02d.%02d.%02d)\n",
ioc->name, ((package_version) & 0xFF000000) >> 24,
((package_version) & 0x00FF0000) >> 16,
((package_version) & 0x0000FF00) >> 8,
(package_version) & 0x000000FF);
}
else {
_debug_dump_mf(&mpi_reply,
sizeof(Mpi2FWUploadReply_t)/4);
}
}
}
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
out:
if (fwpkg_data)
pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
fwpkg_data_dma);
return r;
}
/**
* _base_display_ioc_capabilities - Disply IOC's capabilities.
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
char desc[16];
u8 revision;
u32 iounit_pg1_flags;
u32 bios_version;
pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision);
strncpy(desc, ioc->manu_pg0.ChipName, 16);
bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
printk(MPT3SAS_INFO_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "
"ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
ioc->name, desc,
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF,
revision,
(bios_version & 0xFF000000) >> 24,
(bios_version & 0x00FF0000) >> 16,
(bios_version & 0x0000FF00) >> 8,
bios_version & 0x000000FF);
_base_display_OEMs_branding(ioc);
printk(MPT3SAS_INFO_FMT "Protocol=(", ioc->name);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
printk("Initiator");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
printk("%sTarget", i ? "," : "");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
printk("%sNVMe", i ? "," : "");
i++;
}
i = 0;
printk("), ");
printk("Capabilities=(");
if ((!ioc->warpdrive_msg) && (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) {
printk("Raid");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
printk("%sTLR", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
printk("%sMulticast", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
printk("%sBIDI Target", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
printk("%sEEDP", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
printk("%sSnapshot Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
printk("%sDiag Trace Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
printk("%sDiag Extended Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
printk("%sTask Set Full", i ? "," : "");
i++;
}
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
printk("%sNCQ", i ? "," : "");
i++;
}
printk(")\n");
}
/**
* mpt3sas_base_update_missing_delay - change the missing delay timers
* @ioc: per adapter object
* @device_missing_delay: amount of time till device is reported missing
* @io_missing_delay: interval IO is returned when there is a missing device
*
* Return nothing.
*
* Passed on the command line, this function will modify the device missing
* delay, as well as the io missing delay. This should be called at driver
* load time.
*/
void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
u16 device_missing_delay, u8 io_missing_delay)
{
u16 dmd, dmd_new, dmd_orignal;
u8 io_missing_delay_original;
u16 sz;
Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
Mpi2ConfigReply_t mpi_reply;
u8 num_phys = 0;
u16 ioc_status;
mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
if (!num_phys)
return;
sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
sizeof(Mpi2SasIOUnit1PhyData_t));
sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
if (!sas_iounit_pg1) {
printk(MPT3SAS_ERR_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
sas_iounit_pg1, sz))) {
printk(MPT3SAS_ERR_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
printk(MPT3SAS_ERR_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
/* device missing delay */
dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
dmd_orignal = dmd;
if (device_missing_delay > 0x7F) {
dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
device_missing_delay;
dmd = dmd / 16;
dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
} else
dmd = device_missing_delay;
sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
/* io missing delay */
io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
sz)) {
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd_new = (dmd &
MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd_new =
dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
printk(MPT3SAS_INFO_FMT "device_missing_delay: old(%d), "
"new(%d)\n", ioc->name, dmd_orignal, dmd_new);
printk(MPT3SAS_INFO_FMT "ioc_missing_delay: old(%d), "
"new(%d)\n", ioc->name, io_missing_delay_original,
io_missing_delay);
ioc->device_missing_delay = dmd_new;
ioc->io_missing_delay = io_missing_delay;
}
out:
kfree(sas_iounit_pg1);
}
/**
* _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
* according to performance mode.
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCPage1_t ioc_pg1;
Mpi2ConfigReply_t mpi_reply;
mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
switch (perf_mode) {
case MPT_PERF_MODE_DEFAULT:
case MPT_PERF_MODE_BALANCED:
if (ioc->high_iops_queues) {
printk(MPT3SAS_INFO_FMT
"Enable interrupt coalescing only for first %d"
" reply queues\n", ioc->name,
MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
/*
* If 31st bit is zero then interrupt coalescing is
* enabled for all reply descriptor post queues.
* If 31st bit is set to one then user can
* enable/disable interrupt coalescing on per reply
* descriptor post queue group(8) basis. So to enable
* interrupt coalescing only on first reply descriptor
* post queue group 31st bit and zero th bit is enabled.
*/
ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
printk(MPT3SAS_INFO_FMT
"performance mode: balanced\n", ioc->name);
return;
}
/* Fall through */
case MPT_PERF_MODE_LATENCY:
/*
* Enable interrupt coalescing on all reply queues
* with timeout value 0xA
*/
ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
ioc_pg1.ProductSpecific = 0;
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
printk(MPT3SAS_INFO_FMT
"performance mode: latency\n", ioc->name);
break;
case MPT_PERF_MODE_IOPS:
/*
* Enable interrupt coalescing on all reply queues.
*/
printk(MPT3SAS_INFO_FMT
"performance mode: iops with coalescing timeout: 0x%x\n",
ioc->name, le32_to_cpu(ioc_pg1.CoalescingTimeout));
ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
ioc_pg1.ProductSpecific = 0;
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
break;
}
}
/**
* _base_get_mpi_diag_triggers - get mpi diag trigger values from
* persistent pages
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26DriverTriggerPage4_t trigger_pg4;
struct SL_WH_MPI_TRIGGER_T *status_tg;
MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
Mpi2ConfigReply_t mpi_reply;
int r = 0, i = 0;
u16 count = 0;
u16 ioc_status;
r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
&trigger_pg4);
if (r)
return;
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
dinitprintk(ioc,
pr_err(MPT3SAS_FMT
"%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
ioc->name, __func__, ioc_status));
return;
}
if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
count = min_t(u16, NUM_VALID_ENTRIES, count);
ioc->diag_trigger_mpi.ValidEntries = count;
status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
for (i = 0; i < count; i++) {
status_tg->IOCStatus = le16_to_cpu(
mpi_status_tg->IOCStatus);
status_tg->IocLogInfo = le32_to_cpu(
mpi_status_tg->LogInfo);
status_tg++;
mpi_status_tg++;
}
}
}
/**
* _base_get_scsi_diag_triggers - get scsi diag trigger values from
* persistent pages
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26DriverTriggerPage3_t trigger_pg3;
struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
Mpi2ConfigReply_t mpi_reply;
int r = 0, i = 0;
u16 count = 0;
u16 ioc_status;
r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
&trigger_pg3);
if (r)
return;
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
dinitprintk(ioc,
pr_err(MPT3SAS_FMT
"%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
ioc->name, __func__, ioc_status));
return;
}
if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
count = min_t(u16, NUM_VALID_ENTRIES, count);
ioc->diag_trigger_scsi.ValidEntries = count;
scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
for (i = 0; i < count; i++) {
scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
scsi_tg->ASC = mpi_scsi_tg->ASC;
scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
scsi_tg++;
mpi_scsi_tg++;
}
}
}
/**
* _base_get_event_diag_triggers - get event diag trigger values from
* persistent pages
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26DriverTriggerPage2_t trigger_pg2;
struct SL_WH_EVENT_TRIGGER_T *event_tg;
MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
Mpi2ConfigReply_t mpi_reply;
int r = 0, i = 0;
u16 count = 0;
u16 ioc_status;
r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
&trigger_pg2);
if (r)
return;
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
dinitprintk(ioc,
pr_err(MPT3SAS_FMT
"%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
ioc->name, __func__, ioc_status));
return;
}
if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
count = min_t(u16, NUM_VALID_ENTRIES, count);
ioc->diag_trigger_event.ValidEntries = count;
event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
for (i = 0; i < count; i++) {
event_tg->EventValue = le16_to_cpu(
mpi_event_tg->MPIEventCode);
event_tg->LogEntryQualifier = le16_to_cpu(
mpi_event_tg->MPIEventCodeSpecific);
event_tg++;
mpi_event_tg++;
}
}
}
/**
* _base_get_master_diag_triggers - get master diag trigger values from
* persistent pages
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26DriverTriggerPage1_t trigger_pg1;
Mpi2ConfigReply_t mpi_reply;
int r;
u16 ioc_status;
r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
&trigger_pg1);
if (r)
return;
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
dinitprintk(ioc,
pr_err(MPT3SAS_FMT
"%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
ioc->name, __func__, ioc_status));
return;
}
if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
ioc->diag_trigger_master.MasterData |=
le32_to_cpu(
trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
}
/**
* _base_check_for_trigger_pages_support - checks whether HBA FW supports
* driver trigger pages or not
* @ioc : per adapter object
*
* Returns trigger flags mask if HBA FW supports driver trigger pages,
* otherwise returns EFAULT.
*/
static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc)
{
Mpi26DriverTriggerPage0_t trigger_pg0;
int r = 0;
Mpi2ConfigReply_t mpi_reply;
u16 ioc_status;
r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
&trigger_pg0);
if (r)
return -EFAULT;
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
return -EFAULT;
return le16_to_cpu(trigger_pg0.TriggerFlags);
}
/**
* _base_get_diag_triggers - Retrieve diag trigger values from
* persistent pages.
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
{
short trigger_flags;
/*
* Default setting of master trigger.
*/
ioc->diag_trigger_master.MasterData =
(MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
trigger_flags = _base_check_for_trigger_pages_support(ioc);
if (trigger_flags < 0)
return;
ioc->supports_trigger_pages = 1;
/*
* Retrieve master diag trigger values from driver trigger pg1
* if master trigger bit enabled in TriggerFlags.
*/
if ((u16)trigger_flags &
MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID)
_base_get_master_diag_triggers(ioc);
/*
* Retrieve event diag trigger values from driver trigger pg2
* if event trigger bit enabled in TriggerFlags.
*/
if ((u16)trigger_flags &
MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID)
_base_get_event_diag_triggers(ioc);
/*
* Retrieve scsi diag trigger values from driver trigger pg3
* if scsi trigger bit enabled in TriggerFlags.
*/
if ((u16)trigger_flags &
MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID)
_base_get_scsi_diag_triggers(ioc);
/*
* Retrieve mpi error diag trigger values from driver trigger pg4
* if loginfo trigger bit enabled in TriggerFlags.
*/
if ((u16)trigger_flags &
MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID)
_base_get_mpi_diag_triggers(ioc);
}
/**
* _base_update_diag_trigger_pages - Update the driver trigger pages after
* online FW update, incase updated FW supports driver
* trigger pages.
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->diag_trigger_master.MasterData)
mpt3sas_config_update_driver_trigger_pg1(ioc,
&ioc->diag_trigger_master, 1);
if (ioc->diag_trigger_event.ValidEntries)
mpt3sas_config_update_driver_trigger_pg2(ioc,
&ioc->diag_trigger_event, 1);
if (ioc->diag_trigger_scsi.ValidEntries)
mpt3sas_config_update_driver_trigger_pg3(ioc,
&ioc->diag_trigger_scsi, 1);
if (ioc->diag_trigger_mpi.ValidEntries)
mpt3sas_config_update_driver_trigger_pg4(ioc,
&ioc->diag_trigger_mpi, 1);
}
/**
* _base_static_config_pages - static start of day config pages
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2ConfigReply_t mpi_reply;
u32 iounit_pg1_flags;
int tg_flags;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0) && \
LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0))
u32 cap;
int ret;
#endif
ioc->nvme_abort_timeout = 30;
mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
if (ioc->ir_firmware || ioc->is_warpdrive)
mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
&ioc->manu_pg10);
mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
if ((!ioc->is_gen35_ioc) && (!ioc->disable_eedp_support)) {
/*
* Ensure correct T10 PI operation if vendor left EEDPTagMode
* flag unset in NVDATA.
*/
if (ioc->manu_pg11.EEDPTagMode == 0) {
printk(KERN_ERR "%s: overriding NVDATA EEDPTagMode setting\n",
ioc->name);
ioc->manu_pg11.EEDPTagMode &= ~0x3;
ioc->manu_pg11.EEDPTagMode |= 0x1;
mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
&ioc->manu_pg11);
}
}
if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
ioc->tm_custom_handling = 1;
else {
ioc->tm_custom_handling = 0;
if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
else if (ioc->manu_pg11.NVMeAbortTO > NVME_TASK_ABORT_MAX_TIMEOUT)
ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
else
ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
}
ioc->time_sync_interval =
ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
if (ioc->time_sync_interval) {
if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
ioc->time_sync_interval =
ioc->time_sync_interval * SECONDS_PER_HOUR;
else
ioc->time_sync_interval =
ioc->time_sync_interval * SECONDS_PER_MIN;
dinitprintk(ioc, printk(MPT3SAS_FMT
"Driver-FW TimeSync interval is %d seconds. "
"ManuPg11 TimeSync Unit is in %s's", ioc->name,
ioc->time_sync_interval, ((ioc->manu_pg11.TimeSyncInterval &
MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")));
}
else {
if (ioc->is_gen35_ioc)
pr_warn("%s: TimeSync Interval in Manuf page-11 is not enabled.\n"
"Periodic Time-Sync will be disabled \n", ioc->name);
}
mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
_base_display_ioc_capabilities(ioc);
#if defined(CPQ_CIM)
mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1);
#endif
/*
* Enable task_set_full handling in iounit_pg1 when the
* facts capabilities indicate that its supported.
*/
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
iounit_pg1_flags &=
~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
else
iounit_pg1_flags |=
MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
if(ioc->iounit_pg8.NumSensors)
ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0) && \
LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0))
/* Enabling PCIe extended tag feature if HBA supports,
* On Aero/SEA card sometimes this feature is getting disabled
* on kernel lessthan 4.11. */
pcie_capability_read_dword(ioc->pdev, PCI_EXP_DEVCAP, &cap);
if (cap & PCI_EXP_DEVCAP_EXT_TAG) {
ret = pcie_capability_set_word(ioc->pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_EXT_TAG);
if (!ret)
dev_info(&ioc->pdev->dev,
"Enabled Extended Tags as Controller Supports\n");
else
dev_info(&ioc->pdev->dev,
"Unable to Enable Extended Tags feature\n");
}
#endif
if (ioc->is_aero_ioc)
_base_update_ioc_page1_inlinewith_perf_mode(ioc);
if (ioc->is_gen35_ioc) {
if (ioc->is_driver_loading)
_base_get_diag_triggers(ioc);
else {
/*
* In case of online HBA FW update operation,
* check whether updated FW supports the driver trigger
* pages or not.
* - If previous FW has not supported driver trigger
* pages and newer FW supports them then update these
* pages with current diag trigger values.
* - If previous FW has supported driver trigger pages
* and new FW doesn't support them then disable
* support_trigger_pages flag.
*/
tg_flags = _base_check_for_trigger_pages_support(ioc);
if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
_base_update_diag_trigger_pages(ioc);
else if (ioc->supports_trigger_pages &&
tg_flags == -EFAULT)
ioc->supports_trigger_pages = 0;
}
}
}
/**
* mpt3sas_free_enclosure_list - release memory
* @ioc: per adapter object
*
* Free memory allocated during encloure add.
*
* Return nothing.
*/
void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
{
struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
/* Free enclosure list */
list_for_each_entry_safe(enclosure_dev,
enclosure_dev_next, &ioc->enclosure_list, list) {
list_del(&enclosure_dev->list);
kfree(enclosure_dev);
}
}
/**
* _base_release_memory_pools - release memory
* @ioc: per adapter object
*
* Free memory allocated from _base_allocate_memory_pools.
*
* Return nothing.
*/
static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
int i, j;
int dma_alloc_count = 0;
struct chain_tracker *ct;
int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (ioc->request) {
dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "request_pool(0x%p)"
": free\n", ioc->name, ioc->request));
ioc->request = NULL;
}
if (ioc->sense) {
dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
dma_pool_destroy(ioc->sense_dma_pool);
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "sense_pool(0x%p)"
": free\n", ioc->name, ioc->sense));
ioc->sense = NULL;
}
if (ioc->reply) {
dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
dma_pool_destroy(ioc->reply_dma_pool);
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "reply_pool(0x%p)"
": free\n", ioc->name, ioc->reply));
ioc->reply = NULL;
}
if (ioc->reply_free) {
dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
ioc->reply_free_dma);
dma_pool_destroy(ioc->reply_free_dma_pool);
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "reply_free_pool"
"(0x%p): free\n", ioc->name, ioc->reply_free));
ioc->reply_free = NULL;
}
if (ioc->reply_post) {
dma_alloc_count = DIV_ROUND_UP(count,
RDPQ_MAX_INDEX_IN_ONE_CHUNK);
for (i = 0; i < count; i++) {
if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
&& dma_alloc_count) {
if (ioc->reply_post[i].reply_post_free) {
dma_pool_free(
ioc->reply_post_free_dma_pool,
ioc->reply_post[i].reply_post_free,
ioc->reply_post[i].reply_post_free_dma);
printk(MPT3SAS_ERR_FMT
"reply_post_free_pool(0x%p): free\n",
ioc->name,
ioc->reply_post[i].reply_post_free);
ioc->reply_post[i].reply_post_free =
NULL;
}
--dma_alloc_count;
}
}
dma_pool_destroy(ioc->reply_post_free_dma_pool);
if (ioc->reply_post_free_array &&
ioc->rdpq_array_enable) {
dma_pool_free(ioc->reply_post_free_array_dma_pool,
ioc->reply_post_free_array,
ioc->reply_post_free_array_dma);
ioc->reply_post_free_array = NULL;
}
dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
kfree(ioc->reply_post);
}
if(ioc->pcie_sgl_dma_pool) {
for (i = 0; i < ioc->scsiio_depth; i++) {
dma_pool_free(ioc->pcie_sgl_dma_pool,
ioc->pcie_sg_lookup[i].pcie_sgl,
ioc->pcie_sg_lookup[i].pcie_sgl_dma);
}
dma_pool_destroy(ioc->pcie_sgl_dma_pool);
}
if (ioc->pcie_sg_lookup)
kfree(ioc->pcie_sg_lookup);
if (ioc->config_page) {
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT
"config_page(0x%p): free\n", ioc->name,
ioc->config_page));
dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
ioc->config_page, ioc->config_page_dma);
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0))
if (ioc->scsi_lookup) {
free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
ioc->scsi_lookup = NULL;
}
#endif
kfree(ioc->hpr_lookup);
kfree(ioc->internal_lookup);
if (ioc->chain_lookup) {
for (i = 0; i < ioc->scsiio_depth; i++) {
for (j = ioc->chains_per_prp_buffer;
j < ioc->chains_needed_per_io; j++) {
ct = &ioc->chain_lookup[i].chains_per_smid[j];
if (ct && ct->chain_buffer)
dma_pool_free(ioc->chain_dma_pool,
ct->chain_buffer,
ct->chain_buffer_dma);
}
kfree(ioc->chain_lookup[i].chains_per_smid);
}
dma_pool_destroy(ioc->chain_dma_pool);
kfree(ioc->chain_lookup);
ioc->chain_lookup = NULL;
}
}
/**
* mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
* having same upper 32bits in their base memory address.
* @reply_pool_start_address: Base address of a reply queue set
* @pool_sz: Size of single Reply Descriptor Post Queues pool size
*
* Returns 1 if reply queues in a set have a same upper 32bits in their base memory address,
* else 0
*/
static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
{
long reply_pool_end_address;
reply_pool_end_address = reply_pool_start_address + pool_sz;
if (upper_32_bits(reply_pool_start_address) ==
upper_32_bits(reply_pool_end_address))
return 1;
else
return 0;
}
/**
* _base_reduce_hba_queue_depth- Retry with reduced queue depth
* @ioc: Adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
{
int reduce_sz = 64;
if ((ioc->hba_queue_depth - reduce_sz) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
ioc->hba_queue_depth -= reduce_sz;
return 0;
} else
return -ENOMEM;
}
/**
* _base_allocate_reply_post_free_array - Allocating DMA'able memory
* for reply post free array.
* @ioc: Adapter object
* @reply_post_free_array_sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
int reply_post_free_array_sz)
{
ioc->reply_post_free_array_dma_pool =
dma_pool_create("reply_post_free_array pool",
&ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
if (!ioc->reply_post_free_array_dma_pool) {
dinitprintk(ioc,
pr_err("reply_post_free_array pool: dma_pool_create failed\n"));
return -ENOMEM;
}
ioc->reply_post_free_array =
dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
GFP_KERNEL, &ioc->reply_post_free_array_dma);
if (!ioc->reply_post_free_array) {
dinitprintk(ioc, pr_err(
"reply_post_free_array pool: dma_pool_alloc failed\n"));
return -EAGAIN;
}
if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
reply_post_free_array_sz)) {
dinitprintk(ioc,
pr_err("Bad Reply Free Pool! Reply Free (0x%p)"
"Reply Free dma = (0x%llx)\n",
ioc->reply_free,
(unsigned long long) ioc->reply_free_dma));
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
return 0;
}
/**
* base_alloc_rdpq_dma_pool - Allocating DMA'able memory
* for reply queues.
* @ioc: Adapter object
* @sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
{
int i = 0;
u32 dma_alloc_count = 0;
int reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), GFP_KERNEL);
if (!ioc->reply_post) {
printk(MPT3SAS_ERR_FMT
"reply_post_free pool: kcalloc failed\n", ioc->name);
return -ENOMEM;
}
/*
* For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
* VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
* be within 4GB boundary and also reply queues in a set must have same
* upper 32-bits in their memory address. so here driver is allocating
* the DMA'able memory for reply queues according.
* Driver uses limitation of
* VENTURA_SERIES to manage INVADER_SERIES as well.
*/
dma_alloc_count = DIV_ROUND_UP(count,
RDPQ_MAX_INDEX_IN_ONE_CHUNK);
ioc->reply_post_free_dma_pool =
dma_pool_create("reply_post_free pool",
&ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_post_free_dma_pool) {
pr_err(KERN_ERR "reply_post_free pool: dma_pool_create failed\n");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
ioc->reply_post[i].reply_post_free =
dma_pool_zalloc(ioc->reply_post_free_dma_pool,
GFP_KERNEL,
&ioc->reply_post[i].reply_post_free_dma);
if (!ioc->reply_post[i].reply_post_free) {
pr_err(KERN_ERR "reply_post_free pool: "
"dma_pool_alloc failed\n");
return -EAGAIN;
}
/* reply desc pool requires to be in same 4 gb region.
* Below function will check this.
* In case of failure, new pci pool will be created with updated
* alignment.
* For RDPQ buffers, driver allocates two separate pci pool.
* Alignment will be used such a way that next allocation if
* success, will always meet same 4gb region requirement.
* Flag dma_pool keeps track of each buffers pool,
* It will help driver while freeing the resources.
*/
if (!mpt3sas_check_same_4gb_region(
(long)ioc->reply_post[i].reply_post_free, sz)) {
dinitprintk(ioc,
printk(MPT3SAS_ERR_FMT "bad Replypost free pool(0x%p)"
"reply_post_free_dma = (0x%llx)\n", ioc->name,
ioc->reply_post[i].reply_post_free,
(unsigned long long)
ioc->reply_post[i].reply_post_free_dma));
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
dma_alloc_count--;
} else {
ioc->reply_post[i].reply_post_free =
(Mpi2ReplyDescriptorsUnion_t *)
((long)ioc->reply_post[i-1].reply_post_free
+ reply_post_free_sz);
ioc->reply_post[i].reply_post_free_dma =
(dma_addr_t)
(ioc->reply_post[i-1].reply_post_free_dma +
reply_post_free_sz);
}
}
return 0;
}
/**
* _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
* for pcie sgl pools.
* @ioc: Adapter object
* @sz: DMA Pool size
* @ct: Chain tracker
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, int sz,
struct chain_tracker *ct)
{
int i = 0, j = 0;
ioc->pcie_sgl_dma_pool = dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
ioc->page_size, 0);
if (!ioc->pcie_sgl_dma_pool) {
printk(MPT3SAS_ERR_FMT "PCIe SGL pool: dma_pool_create failed\n",
ioc->name);
return -ENOMEM;
}
ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
ioc->chains_per_prp_buffer =
min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
for (i = 0; i < ioc->scsiio_depth; i++) {
ioc->pcie_sg_lookup[i].pcie_sgl =
dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
printk(MPT3SAS_ERR_FMT
"PCIe SGL pool: dma_pool_alloc failed\n", ioc->name);
return -EAGAIN;
}
if (!mpt3sas_check_same_4gb_region(
(long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
printk(MPT3SAS_ERR_FMT "PCIE SGLs are not in same 4G !!"
" pcie sgl (0x%p) dma = (0x%llx)\n",
ioc->name, ioc->pcie_sg_lookup[i].pcie_sgl,
(unsigned long long)
ioc->pcie_sg_lookup[i].pcie_sgl_dma);
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
ct = &ioc->chain_lookup[i].chains_per_smid[j];
ct->chain_buffer =
ioc->pcie_sg_lookup[i].pcie_sgl +
(j * ioc->chain_segment_sz);
ct->chain_buffer_dma =
ioc->pcie_sg_lookup[i].pcie_sgl_dma +
(j * ioc->chain_segment_sz);
}
}
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "PCIe sgl pool depth(%d), "
"element_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "Number of chains can "
"fit in a PRP page(%d)\n", ioc->name, ioc->chains_per_prp_buffer));
return 0;
}
/**
* _base_allocate_chain_dma_pool - Allocating DMA'able memory
* for chain dma pool.
* @ioc: Adapter object
* @sz: DMA Pool size
* @ct: Chain tracker
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz,
struct chain_tracker *ctr)
{
int i = 0, j = 0;
ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
ioc->chain_segment_sz, 16, 0);
if (!ioc->chain_dma_pool) {
printk(MPT3SAS_ERR_FMT "chain_dma_pool: dma_pool_create "
"failed\n", ioc->name);
return -ENOMEM;
}
for (i = 0; i < ioc->scsiio_depth; i++) {
for (j = ioc->chains_per_prp_buffer;
j < ioc->chains_needed_per_io; j++) {
ctr = &ioc->chain_lookup[i].chains_per_smid[j];
ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
GFP_KERNEL, &ctr->chain_buffer_dma);
if (!ctr->chain_buffer)
return -EAGAIN;
if (!mpt3sas_check_same_4gb_region(
(long)ctr->chain_buffer, ioc->chain_segment_sz)) {
printk(MPT3SAS_ERR_FMT
"Chain buffers are not in same 4G !!!"
"Chain buff (0x%p) dma = (0x%llx)\n",
ioc->name, ctr->chain_buffer,
(unsigned long long)ctr->chain_buffer_dma);
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
}
}
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "chain_lookup depth"
"(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
(ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
ioc->chain_segment_sz))/1024));
return 0;
}
/**
* _base_allocate_sense_dma_pool - Allocating DMA'able memory
* for sense dma pool.
* @ioc: Adapter object
* @sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
{
ioc->sense_dma_pool =
dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
if (!ioc->sense_dma_pool) {
printk(MPT3SAS_ERR_FMT "sense pool: dma_pool_create failed\n",
ioc->name);
return -ENOMEM;
}
ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
GFP_KERNEL, &ioc->sense_dma);
if (!ioc->sense) {
printk(MPT3SAS_ERR_FMT "sense pool: dma_pool_alloc failed\n",
ioc->name);
return -EAGAIN;
}
/* sense buffer requires to be in same 4 gb region.
* Below function will check the same.
* In case of failure, new pci pool will be created with
* updated alignment.
* Older allocation and pool will be destroyed.
* Alignment will be used such a way that next allocation if success,
* will always meet same 4gb region requirement.
* Actual requirement is not alignment, but we need start and end of
* DMA address must have same upper 32 bit address.
*/
if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
dinitprintk(ioc,
pr_err("Bad Sense Pool! sense (0x%p)"
"sense_dma = (0x%llx)\n",
ioc->sense,
(unsigned long long) ioc->sense_dma));
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
printk(MPT3SAS_INFO_FMT
"sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
ioc->name, ioc->sense, (unsigned long long)ioc->sense_dma,
ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
return 0;
}
/**
* _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
* for reply free dma pool.
* @ioc: Adapter object
* @sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
{
/* reply free queue, 16 byte align */
ioc->reply_free_dma_pool = dma_pool_create(
"reply_free pool", &ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_free_dma_pool) {
printk(MPT3SAS_ERR_FMT "reply_free pool: dma_pool_create "
"failed\n", ioc->name);
return -ENOMEM;
}
ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
GFP_KERNEL, &ioc->reply_free_dma);
if (!ioc->reply_free) {
printk(MPT3SAS_ERR_FMT "reply_free pool: dma_pool_alloc "
"failed\n", ioc->name);
return -EAGAIN;
}
if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
dinitprintk(ioc,
pr_err("Bad Reply Free Pool! Reply Free (0x%p)"
"Reply Free dma = (0x%llx)\n",
ioc->reply_free,
(unsigned long long) ioc->reply_free_dma));
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
memset(ioc->reply_free, 0, sz);
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "reply_free pool(0x%p): "
"depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "reply_free_dma"
"(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma));
return 0;
}
/**
* _base_allocate_reply_pool - Allocating DMA'able memory
* for reply pool.
* @ioc: Adapter object
* @sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
{
/* reply pool, 4 byte align */
ioc->reply_dma_pool = dma_pool_create("reply pool",
&ioc->pdev->dev, sz, 4, 0);
if (!ioc->reply_dma_pool) {
printk(MPT3SAS_ERR_FMT "reply pool: dma_pool_create failed\n",
ioc->name);
return -ENOMEM;
}
ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
&ioc->reply_dma);
if (!ioc->reply) {
printk(MPT3SAS_ERR_FMT "reply pool: dma_pool_alloc failed\n",
ioc->name);
return -EAGAIN;
}
if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
dinitprintk(ioc,
pr_err("Bad Reply Pool! Reply (0x%p)"
"Reply dma = (0x%llx)\n",
ioc->reply,
(unsigned long long) ioc->reply_dma));
ioc->use_32bit_dma = 1;
return -EAGAIN;
}
ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
printk(MPT3SAS_INFO_FMT
"reply pool(0x%p) - dma(0x%llx): depth(%d)"
"frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->reply, (unsigned long long)ioc->reply_dma,
ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
return 0;
}
/**
* _base_allocate_memory_pools - allocate start of day memory pools
* @ioc: per adapter object
*
* Returns 0 success, anything else error
*/
static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
struct mpt3sas_facts *facts;
u16 max_sge_elements;
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz, rc=0;
u32 retry_sz;
u32 rdpq_sz = 0, sense_sz = 0, reply_post_free_array_sz = 0;
u32 sgl_sz = 0;
u16 max_request_credit, nvme_blocks_needed;
unsigned short sg_tablesize;
u16 sge_size;
#if defined(TARGET_MODE)
int num_cmd_buffers;
#endif
int i = 0;
struct chain_tracker *ct;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
#if defined(TARGET_MODE)
num_cmd_buffers = min_t(int, NUM_CMD_BUFFERS,
ioc->pfacts[0].MaxPostedCmdBuffers);
#endif
retry_sz = 0;
facts = &ioc->facts;
/* command line tunables for max sgl entries */
if (max_sgl_entries != -1)
sg_tablesize = max_sgl_entries;
else {
if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
sg_tablesize = MPT2SAS_SG_DEPTH;
else
sg_tablesize = MPT3SAS_SG_DEPTH;
}
/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
if (reset_devices)
sg_tablesize = min_t(unsigned short, sg_tablesize,
MPT_KDUMP_MIN_PHYS_SEGMENTS);
if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25))
sg_tablesize = min_t(unsigned short, sg_tablesize,
MPT_MAX_SG_SEGMENTS);
printk(MPT3SAS_WARN_FMT
"sg_tablesize(%u) is bigger than kernel"
" defined %s(%u)\n", ioc->name,
sg_tablesize, MPT_MAX_PHYS_SEGMENTS_STRING, MPT_MAX_PHYS_SEGMENTS);
#else
sg_tablesize = MPT_MAX_PHYS_SEGMENTS;
#endif
}
if(ioc->is_mcpu_endpoint)
ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else
ioc->shost->sg_tablesize = sg_tablesize;
#if defined(TARGET_MODE)
/* allocating 5 extra mf's */
ioc->internal_depth = min_t(int,
(max_t(int, facts->HighPriorityCredit, num_cmd_buffers) + (5)),
(facts->RequestCredit / 4));
#else
ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
(facts->RequestCredit / 4));
#endif
if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
INTERNAL_SCSIIO_CMDS_COUNT)) {
printk(MPT3SAS_ERR_FMT "IOC doesn't have enough"
" RequestCredits, it has just %d number of credits\n",
ioc->name, facts->RequestCredit);
return -ENOMEM;
}
ioc->internal_depth = 10;
}
ioc->hi_priority_depth = ioc->internal_depth - (5);
/* command line tunables for max controller queue depth */
if (max_queue_depth != -1 && max_queue_depth != 0) {
max_request_credit = min_t(u16, max_queue_depth +
ioc->internal_depth, facts->RequestCredit);
if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
max_request_credit = MAX_HBA_QUEUE_DEPTH;
}
else if (reset_devices)
max_request_credit = min_t(u16, facts->RequestCredit,
(MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
else
max_request_credit = min_t(u16, facts->RequestCredit,
MAX_HBA_QUEUE_DEPTH);
retry:
/* Firmware maintains additional facts->HighPriorityCredit number of
* credits for HiPriprity Request messages, so hba queue depth will be
* sum of max_request_credit and high priority queue depth.
*/
ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
/* request frame size */
ioc->request_sz = facts->IOCRequestFrameSize * 4;
/* reply frame size */
ioc->reply_sz = facts->ReplyFrameSize * 4;
/* chain segment size */
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
if (facts->IOCMaxChainSegmentSize)
ioc->chain_segment_sz = facts->IOCMaxChainSegmentSize * MAX_CHAIN_ELEMT_SZ;
else
/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * MAX_CHAIN_ELEMT_SZ;
}
else
ioc->chain_segment_sz = ioc->request_sz;
/* calculate the max scatter element size */
sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
retry_allocation:
total_sz = 0;
/* calculate number of sg elements left over in the 1st frame */
if (ioc->hba_mpi_version_belonged == MPI2_VERSION) {
max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
sizeof(Mpi2SGEIOUnion_t)) + ioc->sge_size);
}
else {
/* reserve 2 SGE's, one for chain SGE and
* anther for SGL1 (i.e. for meta data)
*/
max_sge_elements = ioc->request_sz -
((sizeof(Mpi25SCSIIORequest_t) -
sizeof(Mpi25SGEIOUnion_t)) + 2 * sge_size);
}
ioc->max_sges_in_main_message = max_sge_elements/sge_size;
/* now do the same for a chain buffer */
max_sge_elements = ioc->chain_segment_sz - sge_size;
ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
/*
* MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
*/
chains_needed_per_io = ((ioc->shost->sg_tablesize -
ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
+ 1;
if (chains_needed_per_io > facts->MaxChainDepth) {
chains_needed_per_io = facts->MaxChainDepth;
ioc->shost->sg_tablesize = min_t(u16,
ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
* chains_needed_per_io), ioc->shost->sg_tablesize);
}
/* Double the chains if DIX support is enabled for Meta data SGLs*/
if ((prot_mask & 0x78) && ioc->hba_mpi_version_belonged != MPI2_VERSION)
ioc->chains_needed_per_io = chains_needed_per_io * 2;
else
ioc->chains_needed_per_io = chains_needed_per_io;
/* reply free queue sizing - taking into account for 64 FW events */
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
/* mCPU manage single counters for simplicity */
if(ioc->is_mcpu_endpoint)
ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
else {
/* calculate reply descriptor post queue depth */
ioc->reply_post_queue_depth = ioc->hba_queue_depth +
ioc->reply_free_queue_depth + 1 ;
/* align the reply post queue on the next 16 count boundary */
if (ioc->reply_post_queue_depth % 16)
ioc->reply_post_queue_depth += 16 - (ioc->reply_post_queue_depth % 16);
}
if (ioc->reply_post_queue_depth >
facts->MaxReplyDescriptorPostQueueDepth) {
ioc->reply_post_queue_depth = facts->MaxReplyDescriptorPostQueueDepth -
(facts->MaxReplyDescriptorPostQueueDepth % 16);
ioc->hba_queue_depth = ((ioc->reply_post_queue_depth - 64) / 2) -1;
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
}
printk(MPT3SAS_INFO_FMT "scatter gather: "
"sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
"chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
ioc->chains_needed_per_io);
ioc->scsiio_depth = ioc->hba_queue_depth -
ioc->hi_priority_depth - ioc->internal_depth;
/* set the scsi host can_queue depth
* with some internal commands that could be outstanding
*/
#if defined(TARGET_MODE)
/* allocating 2 extra mf's */
ioc->shost->can_queue = ioc->scsiio_depth -
(num_cmd_buffers + INTERNAL_SCSIIO_CMDS_COUNT);
#else
ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
#endif
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "scsi host: "
"can_queue depth (%d)\n", ioc->name, ioc->shost->can_queue));
/* contiguous pool for request and chains, 16 byte align, one extra "
* "frame for smid=0
*/
sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
/* hi-priority queue */
sz += (ioc->hi_priority_depth * ioc->request_sz);
/* internal queue */
sz += (ioc->internal_depth * ioc->request_sz);
ioc->request_dma_sz = sz;
ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
&ioc->request_dma, GFP_KERNEL);
if (!ioc->request) {
printk(MPT3SAS_ERR_FMT "request pool: dma_alloc_consistent "
"failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) {
rc = -ENOMEM;
goto out;
}
retry_sz = 64;
if((ioc->hba_queue_depth - retry_sz) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
ioc->hba_queue_depth -= retry_sz;
goto retry_allocation;
}
else {
rc = -ENOMEM;
goto out;
}
}
memset(ioc->request, 0, sz);
if (retry_sz)
printk(MPT3SAS_ERR_FMT "request pool: dma_alloc_consistent "
"succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
/* hi-priority queue */
ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
/* internal queue */
ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
ioc->request_sz);
ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
ioc->request_sz);
printk(MPT3SAS_INFO_FMT "request pool(0x%p) - dma(0x%llx): "
"depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->request, (unsigned long long) ioc->request_dma,
ioc->hba_queue_depth, ioc->request_sz,
(ioc->hba_queue_depth * ioc->request_sz)/1024);
total_sz += sz;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0))
sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
ioc->scsi_lookup_pages = get_order(sz);
ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
GFP_KERNEL, ioc->scsi_lookup_pages);
if (!ioc->scsi_lookup) {
// Retry allocating memory by reducing the queue depth
if ((max_request_credit - 64) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
max_request_credit -= 64;
if (ioc->request) {
dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
ioc->request = NULL;
}
goto retry;
}
else {
printk(MPT3SAS_ERR_FMT "scsi_lookup: get_free_pages failed, "
"sz(%d)\n", ioc->name, (int)sz);
rc = -ENOMEM;
goto out;
}
}
#endif
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "scsiio(0x%p): "
"depth(%d)\n", ioc->name, ioc->request,
ioc->scsiio_depth));
/* initialize hi-priority queue smid's */
ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->hpr_lookup) {
printk(MPT3SAS_ERR_FMT "hpr_lookup: kcalloc failed\n",
ioc->name);
rc = -ENOMEM;
goto out;
}
ioc->hi_priority_smid = ioc->scsiio_depth + 1;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "hi_priority(0x%p): "
"depth(%d), start smid(%d)\n", ioc->name, ioc->hi_priority,
ioc->hi_priority_depth, ioc->hi_priority_smid));
/* initialize internal queue smid's */
ioc->internal_lookup = kcalloc(ioc->internal_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->internal_lookup) {
printk(MPT3SAS_ERR_FMT "internal_lookup: kcalloc failed\n",
ioc->name);
rc = -ENOMEM;
goto out;
}
ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "internal(0x%p): "
"depth(%d), start smid(%d)\n", ioc->name, ioc->internal,
ioc->internal_depth, ioc->internal_smid));
sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
if (!ioc->chain_lookup) {
// Retry allocating memory by reducing the queue depth
if ((max_request_credit - 64) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
max_request_credit -= 64;
_base_release_memory_pools(ioc);
goto retry;
}
else {
printk(MPT3SAS_ERR_FMT "chain_lookup: __get_free_pages "
"failed\n", ioc->name);
rc = -ENOMEM;
goto out;
}
}
sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
for (i=0; i < ioc->scsiio_depth; i++) {
ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
if (!ioc->chain_lookup[i].chains_per_smid) {
// Retry allocating memory by reducing the queue depth
if ((max_request_credit - 64) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
max_request_credit -= 64;
_base_release_memory_pools(ioc);
goto retry;
}
else {
printk(MPT3SAS_ERR_FMT "chain_lookup: "
" kzalloc failed\n", ioc->name);
rc = -ENOMEM;
goto out;
}
}
}
/*
* The number of NVMe page sized blocks needed is:
* (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
* ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
* that is placed in the main message frame. 8 is the size of each PRP
* entry or PRP list pointer entry. 8 is subtracted from page_size
* because of the PRP list pointer entry at the end of a page, so this
* is not counted as a PRP entry. The 1 added page is a round up.
*
* To avoid allocation failures due to the amount of memory that could
* be required for NVMe PRP's, only each set of NVMe blocks will be
* contiguous, so a new set is allocated for each possible I/O.
*/
ioc->chains_per_prp_buffer = 0;
if(ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
nvme_blocks_needed = (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
nvme_blocks_needed++;
sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
if (!ioc->pcie_sg_lookup) {
printk(MPT3SAS_ERR_FMT "PCIe SGL lookup: kzalloc "
"failed\n", ioc->name);
rc = -ENOMEM;
goto out;
}
sgl_sz = nvme_blocks_needed * ioc->page_size;
if ((rc = _base_allocate_pcie_sgl_pool(ioc, sgl_sz, ct)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
total_sz += sgl_sz * ioc->scsiio_depth;
}
rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz, ct);
if (rc == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN) {
if (ioc->use_32bit_dma && ioc->dma_mask > 32)
goto try_32bit_dma;
else {
if ((max_request_credit - 64) >
(ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
max_request_credit -= 64;
_base_release_memory_pools(ioc);
goto retry_allocation;
} else {
printk(MPT3SAS_ERR_FMT "chain_lookup: "
" dma_pool_alloc failed\n", ioc->name);
return -ENOMEM;
}
}
}
total_sz += ioc->chain_segment_sz *
((ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
ioc->scsiio_depth);
/* sense buffers, 4 byte align */
sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE ;
if ((rc = _base_allocate_sense_dma_pool(ioc, sense_sz)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
total_sz += sense_sz;
/* reply pool, 4 byte align */
sz = ioc->reply_free_queue_depth * ioc->reply_sz;
if ((rc = _base_allocate_reply_pool(ioc, sz)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
total_sz += sz;
/* reply free queue, 16 byte align */
sz = ioc->reply_free_queue_depth * 4;
if ((rc = _base_allocate_reply_free_dma_pool(ioc, sz)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
total_sz += sz;
/* reply post queue, 16 byte align */
reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
if ((rc = base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
else {
if (ioc->rdpq_array_enable && rc == 0) {
reply_post_free_array_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
if ((rc = _base_allocate_reply_post_free_array(ioc,
reply_post_free_array_sz)) == -ENOMEM)
return -ENOMEM;
else if (rc == -EAGAIN)
goto try_32bit_dma;
}
}
total_sz += rdpq_sz;
ioc->config_page_sz = 512;
ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
if (!ioc->config_page) {
printk(MPT3SAS_ERR_FMT "config page: dma_pool_alloc "
"failed\n", ioc->name);
rc = -ENOMEM;
goto out;
}
printk(MPT3SAS_INFO_FMT "config page(0x%p) - dma(0x%llx): size(%d)\n",
ioc->name, ioc->config_page,
(unsigned long long)ioc->config_page_dma, ioc->config_page_sz);
total_sz += ioc->config_page_sz;
printk(MPT3SAS_INFO_FMT "Allocated physical memory: size(%d kB)\n",
ioc->name, total_sz/1024);
printk(MPT3SAS_INFO_FMT "Current Controller Queue Depth(%d), "
"Max Controller Queue Depth(%d)\n",
ioc->name, ioc->shost->can_queue, facts->RequestCredit);
return 0;
try_32bit_dma:
_base_release_memory_pools(ioc);
if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
/* Change dma coherent mask to 32 bit and reallocate */
if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
pci_name(ioc->pdev));
return -ENODEV;
}
} else if (_base_reduce_hba_queue_depth(ioc) !=0)
return -ENOMEM;
goto retry_allocation;
out:
return rc;
}
/**
*_base_flush_ios_and_panic - Flush the IOs and panic
* @ioc: Pointer to MPT_ADAPTER structure
*
* Return nothing.
*/
void
_base_flush_ios_and_panic(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
{
ioc->adapter_over_temp = 1;
mpt3sas_base_stop_smart_polling(ioc);
mpt3sas_base_stop_watchdog(ioc);
mpt3sas_base_stop_hba_unplug_watchdog(ioc);
mpt3sas_scsih_flush_running_cmds(ioc);
mpt3sas_print_fault_code(ioc, fault_code);
}
/**
* mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
* @ioc: Pointer to MPT_ADAPTER structure
* @cooked: Request raw or cooked IOC state
*
* Returns all IOC Doorbell register bits if cooked==0, else just the
* Doorbell bits in MPI_IOC_STATE_MASK.
*/
u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
{
u32 s, sc;
s = ioc->base_readl(&ioc->chip->Doorbell);
sc = s & MPI2_IOC_STATE_MASK;
if ((ioc->hba_mpi_version_belonged != MPI2_VERSION) &&
(sc != MPI2_IOC_STATE_MASK)) {
if ((sc == MPI2_IOC_STATE_FAULT) &&
((s & MPI2_DOORBELL_DATA_MASK) ==
IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED)) {
_base_flush_ios_and_panic(ioc, s & MPI2_DOORBELL_DATA_MASK);
panic("TEMPERATURE FAULT: STOPPING; panic in %s\n", __func__);
}
}
return cooked ? sc : s;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_get_iocstate);
#endif
/**
* _base_send_ioc_reset - send doorbell reset
* @ioc: per adapter object
* @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
{
u32 ioc_state;
int r = 0;
unsigned long flags;
if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
printk(MPT3SAS_ERR_FMT "%s: unknown reset_type\n",
ioc->name, __func__);
return -EFAULT;
}
if (!(ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
return -EFAULT;
printk(MPT3SAS_INFO_FMT "sending message unit reset !!\n", ioc->name);
writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
&ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 15)))
r = -EFAULT;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP
&& (ioc->is_driver_loading == 1 || ioc->fault_reset_work_q == NULL)) {
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
mpt3sas_base_coredump_info(ioc, ioc_state);
mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
r = -EFAULT;
goto out;
}
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (r != 0) // doorbell did not ACK
goto out;
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
timeout);
if (ioc_state) {
printk(MPT3SAS_ERR_FMT "%s: failed going to ready state "
" (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state);
r = -EFAULT;
goto out;
}
out:
printk(MPT3SAS_INFO_FMT "message unit reset: %s\n",
ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
return r;
}
int
mpt3sas_wait_for_ioc_to_operational(struct MPT3SAS_ADAPTER *ioc,
int wait_count)
{
int wait_state_count = 0;
u32 ioc_state;
if (mpt3sas_base_pci_device_is_unplugged(ioc))
return -EFAULT;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (mpt3sas_base_pci_device_is_unplugged(ioc))
return -EFAULT;
if (wait_state_count++ == wait_count) {
printk(MPT3SAS_ERR_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
return -EFAULT;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
printk(MPT3SAS_INFO_FMT "%s: waiting for "
"operational state(count=%d)\n", ioc->name,
__func__, wait_state_count);
}
if (wait_state_count)
printk(MPT3SAS_INFO_FMT "%s: ioc is operational\n",
ioc->name, __func__);
return 0;
}
/**
* mpt3sas_base_sas_iounit_control - send sas iounit control to FW
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SAS IO Unit Control Request message allows the host to perform low-level
* operations, such as resets on the PHYs of the IO Unit, also allows the host
* to obtain the IOC assigned device handles for a device if it has other
* identifying information about the device, in addition allows the host to
* remove IOC resources associated with the device.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
Mpi2SasIoUnitControlReply_t *mpi_reply,
Mpi2SasIoUnitControlRequest_t *mpi_request)
{
u16 smid;
u8 issue_reset;
int rc;
void *request;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = mpt3sas_wait_for_ioc_to_operational(ioc, 10);
if (rc)
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
ioc->ioc_link_reset_in_progress = 1;
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
ioc->ioc_link_reset_in_progress)
ioc->ioc_link_reset_in_progress = 0;
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->base_cmds.status, mpi_request,
sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SasIoUnitControlReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_sas_iounit_control);
#endif
/**
* mpt3sas_base_scsi_enclosure_processor - sending request to sep device
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SCSI Enclosure Processor request message causes the IOC to
* communicate with SES devices to control LED status signals.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
{
u16 smid;
u8 issue_reset;
int rc;
void *request;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
printk(MPT3SAS_ERR_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = mpt3sas_wait_for_ioc_to_operational(ioc, 10);
if (rc)
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(request, 0, ioc->request_sz);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SepRequest_t));
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->base_cmds.status, mpi_request,
sizeof(Mpi2SepRequest_t)/4, issue_reset);
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SepReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* _base_get_port_facts - obtain port facts reply and save in ioc
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
{
Mpi2PortFactsRequest_t mpi_request;
Mpi2PortFactsReply_t mpi_reply;
struct mpt3sas_port_facts *pfacts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
mpi_request.PortNumber = port;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
printk(MPT3SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
pfacts = &ioc->pfacts[port];
memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
pfacts->PortNumber = mpi_reply.PortNumber;
pfacts->VP_ID = mpi_reply.VP_ID;
pfacts->VF_ID = mpi_reply.VF_ID;
pfacts->MaxPostedCmdBuffers =
le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
return 0;
}
/**
* _base_send_ioc_init - send ioc_init to firmware
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCInitRequest_t mpi_request;
Mpi2IOCInitReply_t mpi_reply;
int i, r = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
ktime_t current_time;
#else
struct timeval current_time;
#endif
u16 ioc_status;
u32 reply_post_free_ary_sz;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
mpi_request.VF_ID = 0; /* TODO */
mpi_request.VP_ID = 0;
mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
if (_base_is_controller_msix_enabled(ioc))
mpi_request.HostMSIxVectors = ioc->reply_queue_count;
mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
mpi_request.ReplyDescriptorPostQueueDepth =
cpu_to_le16(ioc->reply_post_queue_depth);
mpi_request.ReplyFreeQueueDepth =
cpu_to_le16(ioc->reply_free_queue_depth);
mpi_request.SenseBufferAddressHigh =
cpu_to_le32((u64)ioc->sense_dma >> 32);
mpi_request.SystemReplyAddressHigh =
cpu_to_le32((u64)ioc->reply_dma >> 32);
mpi_request.SystemRequestFrameBaseAddress =
cpu_to_le64((u64)ioc->request_dma);
mpi_request.ReplyFreeQueueAddress =
cpu_to_le64((u64)ioc->reply_free_dma);
if (ioc->rdpq_array_enable) {
reply_post_free_ary_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
memset(ioc->reply_post_free_array, 0, reply_post_free_ary_sz);
for (i = 0; i < ioc->reply_queue_count; i++)
ioc->reply_post_free_array[i].RDPQBaseAddress =
cpu_to_le64((u64)ioc->reply_post[i].reply_post_free_dma);
mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post_free_array_dma);
} else {
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
}
/* CoreDump. Set the flag to enable CoreDump in the FW */
mpi_request.ConfigurationFlags |= MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE;
/* This time stamp specifies number of milliseconds
* since epoch ~ midnight January 1, 1970.
*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,6,0))
current_time = ktime_get_real();
mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
#else
do_gettimeofday(&current_time);
mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
(current_time.tv_usec / 1000));
#endif
if (ioc->logging_level & MPT_DEBUG_INIT) {
__le32 *mfp;
int i;
mfp = (__le32 *)&mpi_request;
printk(MPT3SAS_INFO_FMT "\toffset:data\n", ioc->name);
for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
printk(MPT3SAS_INFO_FMT "\t[0x%02x]:%08x\n",
ioc->name, i*4, le32_to_cpu(mfp[i]));
}
r = _base_handshake_req_reply_wait(ioc,
sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
if (r != 0) {
printk(MPT3SAS_ERR_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
mpi_reply.IOCLogInfo) {
printk(MPT3SAS_ERR_FMT "%s: failed\n", ioc->name, __func__);
r = -EIO;
}
/* Reset TimeSync Counter*/
ioc->timestamp_update_count = 0;
return r;
}
/**
* mpt3sas_port_enable_done - command completion routine for port enable
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
return 1;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
return 1;
ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
ioc->port_enable_failed = 1;
if (ioc->is_driver_loading) {
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
mpt3sas_port_enable_complete(ioc);
return 1;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
} else {
ioc->start_scan_failed = ioc_status;
ioc->start_scan = 0;
return 1;
#endif
}
}
complete(&ioc->port_enable_cmds.done);
return 1;
}
/**
* _base_send_port_enable - send port_enable(discovery stuff) to firmware
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
Mpi2PortEnableReply_t *mpi_reply;
int r = 0;
u16 smid;
u16 ioc_status;
printk(MPT3SAS_INFO_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
printk(MPT3SAS_ERR_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
init_completion(&ioc->port_enable_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->port_enable_cmds.done,
300*HZ);
if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
printk(MPT3SAS_ERR_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2PortEnableRequest_t)/4);
if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
goto out;
}
mpi_reply = ioc->port_enable_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
printk(MPT3SAS_ERR_FMT "%s: failed with (ioc_status=0x%08x)\n",
ioc->name, __func__, ioc_status);
r = -EFAULT;
goto out;
}
out:
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
printk(MPT3SAS_INFO_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
"SUCCESS" : "FAILED"));
return r;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
/**
* mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
u16 smid;
printk(MPT3SAS_INFO_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
printk(MPT3SAS_ERR_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
ioc->put_smid_default(ioc, smid);
return 0;
}
#endif
/**
* _base_determine_wait_on_discovery - desposition
* @ioc: per adapter object
*
* Decide whether to wait on discovery to complete. Used to either
* locate boot device, or report volumes ahead of physical devices.
*
* Returns 1 for wait, 0 for don't wait
*/
static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
{
/* We wait for discovery to complete if IR firmware is loaded.
* The sas topology events arrive before PD events, so we need time to
* turn on the bit in ioc->pd_handles to indicate PD
* Also, it maybe required to report Volumes ahead of physical
* devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
*/
if (ioc->ir_firmware)
return 1;
/* if no Bios, then we don't need to wait */
if (!ioc->bios_pg3.BiosVersion)
return 0;
/* Bios is present, then we drop down here.
*
* If there any entries in the Bios Page 2, then we wait
* for discovery to complete.
*/
/* Current Boot Device */
if ((ioc->bios_pg2.CurrentBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Request Boot Device */
(ioc->bios_pg2.ReqBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Alternate Request Boot Device */
(ioc->bios_pg2.ReqAltBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
return 0;
return 1;
}
/**
* _base_unmask_events - turn on notification for this event
* @ioc: per adapter object
* @event: firmware event
*
* The mask is stored in ioc->event_masks.
*/
static void
_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
{
u32 desired_event;
if (event >= 128)
return;
desired_event = (1 << (event % 32));
if (event < 32)
ioc->event_masks[0] &= ~desired_event;
else if (event < 64)
ioc->event_masks[1] &= ~desired_event;
else if (event < 96)
ioc->event_masks[2] &= ~desired_event;
else if (event < 128)
ioc->event_masks[3] &= ~desired_event;
}
/**
* _base_event_notification - send event notification
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2EventNotificationRequest_t *mpi_request;
u16 smid;
int r = 0;
int i;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
printk(MPT3SAS_ERR_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
printk(MPT3SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mpi_request->EventMasks[i] =
cpu_to_le32(ioc->event_masks[i]);
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
printk(MPT3SAS_ERR_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2EventNotificationRequest_t)/4);
if (ioc->base_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
} else
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: complete\n",
ioc->name, __func__));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
return r;
}
/**
* mpt3sas_base_validate_event_type - validating event types
* @ioc: per adapter object
* @event: firmware event
*
* This will turn on firmware event notification when application
* ask for that event. We don't mask events that are already enabled.
*/
void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
{
int i, j;
u32 event_mask, desired_event;
u8 send_update_to_fw;
for (i = 0, send_update_to_fw = 0; i <
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
event_mask = ~event_type[i];
desired_event = 1;
for (j = 0; j < 32; j++) {
if (!(event_mask & desired_event) &&
(ioc->event_masks[i] & desired_event)) {
ioc->event_masks[i] &= ~desired_event;
send_update_to_fw = 1;
}
desired_event = (desired_event << 1);
}
}
if (!send_update_to_fw)
return;
mutex_lock(&ioc->base_cmds.mutex);
_base_event_notification(ioc);
mutex_unlock(&ioc->base_cmds.mutex);
}
/**
* mpt3sas_base_make_ioc_ready - put controller in READY state
* @ioc: per adapter object
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
{
u32 ioc_state;
int rc;
int count;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (!mpt3sas_base_pci_device_is_available(ioc))
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
/* if in RESET state, it should move to READY state shortly */
count = 0;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
while ((ioc_state & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_READY) {
if (count++ == 10) {
printk(MPT3SAS_ERR_FMT "%s: failed going to "
" ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
return -EFAULT;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
}
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
printk(MPT3SAS_INFO_FMT "unexpected doorbell active!\n",
ioc->name);
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
mpt3sas_base_coredump_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
}
goto issue_diag_reset;
}
if (type == FORCE_BIG_HAMMER)
goto issue_diag_reset;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
if (!(_base_send_ioc_reset(ioc,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
return 0;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_make_ioc_operational - put controller in OPERATIONAL state
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
{
int r, rc, i, index;
unsigned long flags;
u32 reply_address;
u16 smid;
struct _tr_list *delayed_tr, *delayed_tr_next;
struct _sc_list *delayed_sc, *delayed_sc_next;
struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
struct adapter_reply_queue *reply_q;
Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
u8 hide_flag;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
/* clean the delayed target reset list */
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_volume_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_internal_tm_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_sc, delayed_sc_next,
&ioc->delayed_sc_list, list) {
list_del(&delayed_sc->list);
kfree(delayed_sc);
}
list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
&ioc->delayed_event_ack_list, list) {
list_del(&delayed_event_ack->list);
kfree(delayed_event_ack);
}
/* initialize the scsi lookup free list */
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3,16,0))
smid = 1;
for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
ioc->scsi_lookup[i].cb_idx = 0xFF;
ioc->scsi_lookup[i].smid = smid;
ioc->scsi_lookup[i].scmd = NULL;
ioc->scsi_lookup[i].direct_io = 0;
}
#endif
/* hi-priority queue */
INIT_LIST_HEAD(&ioc->hpr_free_list);
smid = ioc->hi_priority_smid;
for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
ioc->hpr_lookup[i].cb_idx = 0xFF;
ioc->hpr_lookup[i].smid = smid;
list_add_tail(&ioc->hpr_lookup[i].tracker_list,
&ioc->hpr_free_list);
}
/* internal queue */
INIT_LIST_HEAD(&ioc->internal_free_list);
smid = ioc->internal_smid;
for (i = 0; i < ioc->internal_depth; i++, smid++) {
ioc->internal_lookup[i].cb_idx = 0xFF;
ioc->internal_lookup[i].smid = smid;
list_add_tail(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/* initialize Reply Free Queue */
for (i = 0, reply_address = (u32)ioc->reply_dma ;
i < ioc->reply_free_queue_depth ; i++, reply_address +=
ioc->reply_sz) {
ioc->reply_free[i] = cpu_to_le32(reply_address);
if (ioc->is_mcpu_endpoint)
_base_clone_reply_to_sys_mem(ioc, reply_address, i);
}
/* initialize reply queues */
if (ioc->is_driver_loading)
_base_assign_reply_queues(ioc);
/* initialize Reply Post Free Queue */
index = 0;
reply_post_free_contig = ioc->reply_post[0].reply_post_free;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
/*
* If RDPQ is enabled, switch to the next allocation.
* Otherwise advance within the contiguous region.
*/
if (ioc->rdpq_array_enable) {
reply_q->reply_post_free =
ioc->reply_post[index++].reply_post_free;
} else {
reply_q->reply_post_free = reply_post_free_contig;
reply_post_free_contig += ioc->reply_post_queue_depth;
}
reply_q->reply_post_host_index = 0;
for (i = 0; i < ioc->reply_post_queue_depth; i++)
reply_q->reply_post_free[i].Words =
cpu_to_le64(ULLONG_MAX);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_free_queue;
}
skip_init_reply_post_free_queue:
r = _base_send_ioc_init(ioc);
if (r) {
/*
* No need to check IOC state for fault state & issue
* diag reset during host reset. This check is need
* only during driver load time.
*/
if (!ioc->is_driver_loading)
return r;
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (r = _base_send_ioc_init(ioc)))
return r;
}
/* initialize reply free host index */
ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
/* initialize reply post host index */
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->combined_reply_queue) {
for ( i = 0; i < ioc->nc_reply_index_count; i++ )
writel((reply_q->msix_index & 7)<< MPI2_RPHI_MSIX_INDEX_SHIFT,
ioc->replyPostRegisterIndex[i]);
} else {
writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
&ioc->chip->ReplyPostHostIndex);
}
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_host_index;
}
skip_init_reply_post_host_index:
mpt3sas_base_start_hba_unplug_watchdog(ioc);
mpt3sas_base_unmask_interrupts(ioc);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
r = _base_display_fwpkg_version(ioc);
if (r)
return r;
}
_base_static_config_pages(ioc);
/* event_unmask and port_enable must be issued without any/very less window */
r = _base_event_notification(ioc);
if (r)
return r;
if (ioc->is_driver_loading) {
if (ioc->is_warpdrive &&
ioc->manu_pg10.OEMIdentifier == 0x80) {
hide_flag = (u8) (
le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
MFG_PAGE10_HIDE_SSDS_MASK);
if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
ioc->mfg_pg10_hide_flag = hide_flag;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20))
if (ioc->is_warpdrive)
mpt3sas_enable_diag_buffer(ioc, 1);
else if (diag_buffer_enable != -1 && diag_buffer_enable != 0)
mpt3sas_enable_diag_buffer(ioc, diag_buffer_enable);
else if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0)
mpt3sas_enable_diag_buffer(ioc, 1);
if (disable_discovery > 0)
return r;
#endif
ioc->wait_for_discovery_to_complete =
_base_determine_wait_on_discovery(ioc);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
return r; /* scan_start and scan_finished support */
#endif
}
r = _base_send_port_enable(ioc);
if (r)
return r;
return r;
}
/**
* mpt3sas_base_free_resources - free resources controller resources
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (!ioc->chip_phys)
return;
mpt3sas_base_mask_interrupts(ioc);
ioc->shost_recovery = 1;
mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
ioc->shost_recovery = 0;
_base_unmap_resources(ioc);
return;
}
/**
* mpt3sas_base_attach - attach controller instance
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
{
int r, rc, i;
int cpu_id, last_cpu_id = 0;
dinitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
/* setup cpu_msix_table */
ioc->cpu_count = num_online_cpus();
for_each_online_cpu(cpu_id)
last_cpu_id = cpu_id;
ioc->cpu_msix_table_sz = last_cpu_id + 1;
ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
ioc->reply_queue_count = 1;
if (!ioc->cpu_msix_table) {
printk(MPT3SAS_ERR_FMT
"allocation for cpu_msix_table failed!!!\n", ioc->name);
r = -ENOMEM;
goto out_free_resources;
}
if (ioc->is_warpdrive) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
sizeof(resource_size_t *), GFP_KERNEL);
#else
ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
sizeof(u64 *), GFP_KERNEL);
#endif
if (!ioc->reply_post_host_index) {
printk(MPT3SAS_INFO_FMT
"allocation for reply_post_host_index failed!!!\n",
ioc->name);
r = -ENOMEM;
goto out_free_resources;
}
}
ioc->rdpq_array_enable_assigned = 0;
ioc->use_32bit_dma = 0;
ioc->dma_mask = 64;
if (ioc->is_aero_ioc)
ioc->base_readl = &_base_readl_aero;
else
ioc->base_readl = &_base_readl;
ioc->smp_affinity_enable = smp_affinity_enable;
r = mpt3sas_base_map_resources(ioc);
if (r)
goto out_free_resources;
if (ioc->is_warpdrive) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,18))
ioc->reply_post_host_index[0] =
(resource_size_t *)&ioc->chip->ReplyPostHostIndex;
for (i = 1; i < ioc->cpu_msix_table_sz; i++)
ioc->reply_post_host_index[i] = (resource_size_t *)
((u8 *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
* 4)));
#else
ioc->reply_post_host_index[0] =
(u64 *)&ioc->chip->ReplyPostHostIndex;
for (i = 1; i < ioc->cpu_msix_table_sz; i++)
ioc->reply_post_host_index[i] = (u64 *)
((u8 *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
* 4)));
#endif
}
pci_set_drvdata(ioc->pdev, ioc->shost);
r = _base_get_ioc_facts(ioc);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (r =_base_get_ioc_facts(ioc)))
goto out_free_resources;
}
switch(ioc->hba_mpi_version_belonged) {
case MPI2_VERSION:
ioc->build_sg_scmd = &_base_build_sg_scmd;
ioc->build_sg = &_base_build_sg;
ioc->build_zero_len_sge = &_base_build_zero_len_sge;
ioc->get_msix_index_for_smlio = &_base_get_msix_index;
break;
case MPI25_VERSION:
case MPI26_VERSION:
/*
* SAS3.0 support
*
* SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
* Target Status - all require the IEEE formated scatter gather
* elements.
*
*/
ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
ioc->build_sg = &_base_build_sg_ieee;
ioc->build_nvme_prp = &_base_build_nvme_prp;
ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
if (ioc->high_iops_queues)
ioc->get_msix_index_for_smlio = &_base_get_high_iops_msix_index;
else
ioc->get_msix_index_for_smlio = &_base_get_msix_index;
break;
}
if (ioc->atomic_desc_capable) {
ioc->put_smid_default = &_base_put_smid_default_atomic;
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
ioc->put_smid_nvme_encap= &_base_put_smid_nvme_encap_atomic;
#if defined(TARGET_MODE)
ioc->put_smid_target_assist = &_base_put_smid_target_assist_atomic;
#endif
} else {
ioc->put_smid_default = &_base_put_smid_default;
if (ioc->is_mcpu_endpoint)
ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
else
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
ioc->put_smid_fast_path = &_base_put_smid_fast_path;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
ioc->put_smid_nvme_encap= &_base_put_smid_nvme_encap;
#if defined(TARGET_MODE)
ioc->put_smid_target_assist = &_base_put_smid_target_assist;
#endif
}
/*
* These function pointers for other requests that don't
* require IEEE scatter gather elements.
*
* For example Configuration Pages and SAS IOUNIT Control don't.
*/
ioc->build_sg_mpi = &_base_build_sg;
ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
if (r)
goto out_free_resources;
ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
if (!ioc->pfacts) {
printk(MPT3SAS_ERR_FMT
"allocation for port facts failed!!!\n", ioc->name);
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
r = _base_get_port_facts(ioc, i);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (r = _base_get_port_facts(ioc, i)))
goto out_free_resources;
}
}
r = _base_allocate_memory_pools(ioc);
if (r)
goto out_free_resources;
if (irqpoll_weight > 0)
ioc->thresh_hold = irqpoll_weight;
else
ioc->thresh_hold = ioc->hba_queue_depth/4;
#if defined(MPT3SAS_ENABLE_IRQ_POLL)
_base_init_irqpolls(ioc);
#endif
init_waitqueue_head(&ioc->reset_wq);
/* allocate memory pd handle bitmask list */
ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pd_handles_sz++;
ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->pd_handles) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->blocking_handles) {
r = -ENOMEM;
goto out_free_resources;
}
/* allocate memory for pending OS device add list */
ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pend_os_device_add_sz++;
ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
GFP_KERNEL);
if (!ioc->pend_os_device_add)
goto out_free_resources;
ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
ioc->device_remove_in_progress = kzalloc(ioc->device_remove_in_progress_sz,
GFP_KERNEL);
if (!ioc->device_remove_in_progress)
goto out_free_resources;
ioc->tm_tr_retry_sz = ioc->facts.MaxDevHandle * sizeof(u8);
ioc->tm_tr_retry = kzalloc(ioc->tm_tr_retry_sz, GFP_KERNEL);
if (!ioc->tm_tr_retry)
goto out_free_resources;
ioc->fwfault_debug = mpt3sas_fwfault_debug;
/* base internal command bits */
mutex_init(&ioc->base_cmds.mutex);
ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
/* port_enable command bits */
ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
/* transport internal command bits */
ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->transport_cmds.mutex);
/* scsih internal command bits */
ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->scsih_cmds.mutex);
/* task management internal command bits */
ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->tm_cmds.mutex);
/* config page internal command bits */
ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->config_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->config_cmds.mutex);
/* ctl module internal command bits */
ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->ctl_cmds.mutex);
/* ctl module diag_buffer internal command bits */
ioc->ctl_diag_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->ctl_diag_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->ctl_diag_cmds.mutex);
if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
!ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
!ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
!ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense ||
!ioc->ctl_diag_cmds.reply) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
ioc->event_masks[i] = -1;
/* here we enable the events we care about */
_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
if (ioc->is_gen35_ioc) {
_base_unmask_events(ioc, MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
_base_unmask_events(ioc, MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
}
}
#if defined(TARGET_MODE)
_base_unmask_events(ioc, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
_base_unmask_events(ioc, MPI2_EVENT_HARD_RESET_RECEIVED);
#endif
r = _base_make_ioc_operational(ioc);
if (r)
goto out_free_resources;
/*
* Copy current copy of IOCFacts in prev_fw_facts
* and it will be used during online firmware upgrade.
*/
memcpy(&ioc->prev_fw_facts, &ioc->facts,
sizeof(struct mpt3sas_facts));
ioc->non_operational_loop = 0;
ioc->ioc_coredump_loop = 0;
ioc->got_task_abort_from_ioctl = 0;
ioc->got_task_abort_from_sysfs = 0;
return 0;
out_free_resources:
ioc->remove_host = 1;
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->tm_tr_retry);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->ctl_diag_cmds.reply);
kfree(ioc->pfacts);
ioc->ctl_cmds.reply = NULL;
ioc->base_cmds.reply = NULL;
ioc->tm_cmds.reply = NULL;
ioc->scsih_cmds.reply = NULL;
ioc->transport_cmds.reply = NULL;
ioc->config_cmds.reply = NULL;
ioc->pfacts = NULL;
return r;
}
/**
* mpt3sas_base_detach - remove controller instance
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, printk(MPT3SAS_INFO_FMT "%s\n", ioc->name,
__func__));
mpt3sas_base_stop_watchdog(ioc);
mpt3sas_base_stop_hba_unplug_watchdog(ioc);
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
mpt3sas_free_enclosure_list(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->tm_tr_retry);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->pfacts);
kfree(ioc->ctl_diag_cmds.reply);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
}
static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
{
struct _internal_qcmd *scsih_qcmd, *scsih_qcmd_next;
unsigned long flags;
if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
ioc->transport_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
complete(&ioc->transport_cmds.done);
}
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc->base_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
complete(&ioc->base_cmds.done);
}
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc->port_enable_failed = 1;
ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
if (ioc->is_driver_loading) {
ioc->start_scan_failed =
MPI2_IOCSTATUS_INTERNAL_ERROR;
ioc->start_scan = 0;
ioc->port_enable_cmds.status =
MPT3_CMD_NOT_USED;
} else
complete(&ioc->port_enable_cmds.done);
#else
complete(&ioc->port_enable_cmds.done);
#endif
}
if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
ioc->config_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
ioc->config_cmds.smid = USHORT_MAX;
complete(&ioc->config_cmds.done);
}
spin_lock_irqsave(&ioc->scsih_q_internal_lock, flags);
list_for_each_entry_safe(scsih_qcmd, scsih_qcmd_next,
&ioc->scsih_q_intenal_cmds, list) {
if ((scsih_qcmd->status) & MPT3_CMD_PENDING) {
scsih_qcmd->status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, scsih_qcmd->smid);
}
}
spin_unlock_irqrestore(&ioc->scsih_q_internal_lock, flags);
}
/**
* _base_reset_handler - reset callback handler (for base)
* @ioc: per adapter object
* @reset_phase: phase
*
* The handler for doing any required cleanup or initialization.
*
* The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
* MPT3_IOC_DONE_RESET
*
* Return nothing.
*/
static void
_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
{
mpt3sas_scsih_reset_handler(ioc, reset_phase);
mpt3sas_ctl_reset_handler(ioc, reset_phase);
#if defined(TARGET_MODE)
if (stm_callbacks.reset_handler)
stm_callbacks.reset_handler(ioc, reset_phase);
#endif
switch (reset_phase) {
case MPT3_IOC_PRE_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
break;
case MPT3_IOC_AFTER_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
_base_clear_outstanding_mpt_commands(ioc);
break;
case MPT3_IOC_DONE_RESET:
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: "
"MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
break;
}
}
/**
* mpt3sas_wait_for_commands_to_complete - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
*
* This function waiting(3s) for all pending commands to complete
* prior to putting controller in reset.
*/
void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
{
u32 ioc_state;
unsigned long flags;
u16 i;
struct scsiio_tracker *st;
ioc->pending_io_count = 0;
if (!mpt3sas_base_pci_device_is_available(ioc)) {
printk(MPT3SAS_ERR_FMT
"%s: pci error recovery reset or"
" pci device unplug occured\n",
ioc->name, __func__);
return;
}
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
return;
/* pending command count */
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
for (i = 1; i <= ioc->scsiio_depth; i++) {
st = mpt3sas_get_st_from_smid(ioc, i);
if (st && st->smid !=0) {
if (st->cb_idx != 0xFF)
ioc->pending_io_count++;
}
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
if (!ioc->pending_io_count)
return;
/* wait for pending commands to complete */
wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
}
/**
* _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
* attributes during online firmware upgrade and update the corresponding
* IOC variables accordingly.
*
* @ioc: Pointer to MPT_ADAPTER structure
* @old_facts: IOCFacts object before firmware upgrade
*/
static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
{
u16 pd_handles_sz, tm_tr_retry_sz;
void *pd_handles = NULL, *blocking_handles = NULL;
void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
u8 *tm_tr_retry = NULL;
struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle)
{
pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
pd_handles_sz++;
pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
GFP_KERNEL);
if (!pd_handles) {
printk(MPT3SAS_ERR_FMT
"Unable to allocate the memory for pd_handles of sz: %d\n",
ioc->name, pd_handles_sz );
return -ENOMEM;
}
memset(pd_handles + ioc->pd_handles_sz, 0,
(pd_handles_sz - ioc->pd_handles_sz));
ioc->pd_handles = pd_handles;
blocking_handles = krealloc(ioc->blocking_handles, pd_handles_sz,
GFP_KERNEL);
if (!blocking_handles) {
printk(MPT3SAS_ERR_FMT
"Unable to allocate the memory for blocking_handles of sz: %d\n",
ioc->name, pd_handles_sz );
return -ENOMEM;
}
memset(blocking_handles + ioc->pd_handles_sz, 0,
(pd_handles_sz - ioc->pd_handles_sz));
ioc->blocking_handles = blocking_handles;
ioc->pd_handles_sz = pd_handles_sz;
pend_os_device_add = krealloc(ioc->pend_os_device_add, pd_handles_sz,
GFP_KERNEL);
if (!pend_os_device_add) {
printk(MPT3SAS_ERR_FMT
"Unable to allocate the memory for pend_os_device_add of sz: %d\n",
ioc->name, pd_handles_sz);
return -ENOMEM;
}
memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
(pd_handles_sz - ioc->pend_os_device_add_sz));
ioc->pend_os_device_add = pend_os_device_add;
ioc->pend_os_device_add_sz = pd_handles_sz;
device_remove_in_progress = krealloc(ioc->device_remove_in_progress,
pd_handles_sz, GFP_KERNEL);
if (!device_remove_in_progress) {
printk(MPT3SAS_ERR_FMT
"Unable to allocate the memory for device_remove_in_progress of sz: %d\n",
ioc->name, pd_handles_sz);
return -ENOMEM;
}
memset(device_remove_in_progress +
ioc->device_remove_in_progress_sz, 0,
(pd_handles_sz - ioc->device_remove_in_progress_sz));
ioc->device_remove_in_progress = device_remove_in_progress;
ioc->device_remove_in_progress_sz = pd_handles_sz;
tm_tr_retry_sz = ioc->facts.MaxDevHandle * sizeof(u8);
tm_tr_retry = krealloc(ioc->tm_tr_retry, tm_tr_retry_sz,
GFP_KERNEL);
if (!tm_tr_retry) {
printk(MPT3SAS_ERR_FMT
"Unable to allocate the memory for tm_tr_retry of sz: %d\n",
ioc->name, tm_tr_retry_sz);
return -ENOMEM;
}
memset(tm_tr_retry + ioc->tm_tr_retry_sz, 0,
(tm_tr_retry_sz - ioc->tm_tr_retry_sz));
ioc->tm_tr_retry = tm_tr_retry;
ioc->tm_tr_retry_sz = tm_tr_retry_sz;
}
// TODO - Check for other IOCFacts attributies also.
memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
return 0;
}
/**
* mpt3sas_base_hard_reset_handler - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
{
int r;
unsigned long flags;
u32 ioc_state;
u8 is_fault = 0, is_trigger = 0;
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
/* wait for an active reset in progress to complete */
if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
do {
ssleep(1);
} while (ioc->shost_recovery == 1);
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: exit\n", ioc->name,
__func__));
return ioc->ioc_reset_status;
}
if (!mpt3sas_base_pci_device_is_available(ioc)) {
printk(MPT3SAS_ERR_FMT
"%s: pci error recovery reset or"
" pci device unplug occured\n",
ioc->name, __func__);
if (mpt3sas_base_pci_device_is_unplugged(ioc))
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
r = 0;
goto out_unlocked;
}
mpt3sas_halt_firmware(ioc, 0);
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) &&
(!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))) {
is_trigger = 1;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
is_fault = 1;
ioc->htb_rel.trigger_info_dwords[1] =
(ioc_state & MPI2_DOORBELL_DATA_MASK);
}
}
_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
mpt3sas_wait_for_commands_to_complete(ioc);
mpt3sas_base_mask_interrupts(ioc);
r = mpt3sas_base_make_ioc_ready(ioc, type);
if (r)
goto out;
_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
/* If this hard reset is called while port enable is active, then
* there is no reason to call make_ioc_operational
*/
if (ioc->is_driver_loading && ioc->port_enable_failed) {
ioc->remove_host = 1;
r = -EFAULT;
goto out;
}
r = _base_get_ioc_facts(ioc);
if (r)
goto out;
r = _base_check_ioc_facts_changes(ioc);
if (r) {
printk(MPT3SAS_ERR_FMT
"Some of the parameters got changed in this new firmware"
" image and it requires system reboot\n", ioc->name);
goto out;
}
if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
panic("%s: Issue occurred with flashing controller firmware. "
"Please reboot the system and ensure that the correct"
" firmware version is running\n", ioc->name);
r = _base_make_ioc_operational(ioc);
if (!r)
_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
out:
printk(MPT3SAS_INFO_FMT "%s: %s\n",
ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED"));
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_status = r;
ioc->shost_recovery = 0;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_count++;
mutex_unlock(&ioc->reset_in_progress_mutex);
#if defined(DISABLE_RESET_SUPPORT)
if (r != 0) {
struct task_struct *p;
ioc->remove_host = 1;
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"mpt3sas_dead_ioc_%d", ioc->id);
if (IS_ERR(p))
printk(MPT3SAS_ERR_FMT "%s: Running"
" mpt3sas_dead_ioc thread failed !!!!\n",
ioc->name, __func__);
else
printk(MPT3SAS_ERR_FMT "%s: Running"
" mpt3sas_dead_ioc thread success !!!!\n",
ioc->name, __func__);
}
#else
/* Flush all the outstanding IOs even when diag reset fails*/
if (r != 0)
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
#endif
out_unlocked:
if ((r == 0) && is_trigger) {
if (is_fault)
mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
else
mpt3sas_trigger_master(ioc,
MASTER_TRIGGER_ADAPTER_RESET);
}
dtmprintk(ioc, printk(MPT3SAS_INFO_FMT "%s: exit\n", ioc->name,
__func__));
return r;
}
#if defined(TARGET_MODE)
EXPORT_SYMBOL(mpt3sas_base_hard_reset_handler);
#endif