OpenCloudOS-Kernel/drivers/gpu/drm/omapdrm/dss/dss.c

1601 lines
35 KiB
C

/*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "DSS"
#include <linux/debugfs.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/seq_file.h>
#include <linux/clk.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/gfp.h>
#include <linux/sizes.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <linux/suspend.h>
#include <linux/component.h>
#include <linux/sys_soc.h>
#include "omapdss.h"
#include "dss.h"
struct dss_reg {
u16 idx;
};
#define DSS_REG(idx) ((const struct dss_reg) { idx })
#define DSS_REVISION DSS_REG(0x0000)
#define DSS_SYSCONFIG DSS_REG(0x0010)
#define DSS_SYSSTATUS DSS_REG(0x0014)
#define DSS_CONTROL DSS_REG(0x0040)
#define DSS_SDI_CONTROL DSS_REG(0x0044)
#define DSS_PLL_CONTROL DSS_REG(0x0048)
#define DSS_SDI_STATUS DSS_REG(0x005C)
#define REG_GET(dss, idx, start, end) \
FLD_GET(dss_read_reg(dss, idx), start, end)
#define REG_FLD_MOD(dss, idx, val, start, end) \
dss_write_reg(dss, idx, \
FLD_MOD(dss_read_reg(dss, idx), val, start, end))
struct dss_ops {
int (*dpi_select_source)(struct dss_device *dss, int port,
enum omap_channel channel);
int (*select_lcd_source)(struct dss_device *dss,
enum omap_channel channel,
enum dss_clk_source clk_src);
};
struct dss_features {
enum dss_model model;
u8 fck_div_max;
unsigned int fck_freq_max;
u8 dss_fck_multiplier;
const char *parent_clk_name;
const enum omap_display_type *ports;
int num_ports;
const enum omap_dss_output_id *outputs;
const struct dss_ops *ops;
struct dss_reg_field dispc_clk_switch;
bool has_lcd_clk_src;
};
static const char * const dss_generic_clk_source_names[] = {
[DSS_CLK_SRC_FCK] = "FCK",
[DSS_CLK_SRC_PLL1_1] = "PLL1:1",
[DSS_CLK_SRC_PLL1_2] = "PLL1:2",
[DSS_CLK_SRC_PLL1_3] = "PLL1:3",
[DSS_CLK_SRC_PLL2_1] = "PLL2:1",
[DSS_CLK_SRC_PLL2_2] = "PLL2:2",
[DSS_CLK_SRC_PLL2_3] = "PLL2:3",
[DSS_CLK_SRC_HDMI_PLL] = "HDMI PLL",
};
static inline void dss_write_reg(struct dss_device *dss,
const struct dss_reg idx, u32 val)
{
__raw_writel(val, dss->base + idx.idx);
}
static inline u32 dss_read_reg(struct dss_device *dss, const struct dss_reg idx)
{
return __raw_readl(dss->base + idx.idx);
}
#define SR(dss, reg) \
dss->ctx[(DSS_##reg).idx / sizeof(u32)] = dss_read_reg(dss, DSS_##reg)
#define RR(dss, reg) \
dss_write_reg(dss, DSS_##reg, dss->ctx[(DSS_##reg).idx / sizeof(u32)])
static void dss_save_context(struct dss_device *dss)
{
DSSDBG("dss_save_context\n");
SR(dss, CONTROL);
if (dss->feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) {
SR(dss, SDI_CONTROL);
SR(dss, PLL_CONTROL);
}
dss->ctx_valid = true;
DSSDBG("context saved\n");
}
static void dss_restore_context(struct dss_device *dss)
{
DSSDBG("dss_restore_context\n");
if (!dss->ctx_valid)
return;
RR(dss, CONTROL);
if (dss->feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) {
RR(dss, SDI_CONTROL);
RR(dss, PLL_CONTROL);
}
DSSDBG("context restored\n");
}
#undef SR
#undef RR
void dss_ctrl_pll_enable(struct dss_pll *pll, bool enable)
{
unsigned int shift;
unsigned int val;
if (!pll->dss->syscon_pll_ctrl)
return;
val = !enable;
switch (pll->id) {
case DSS_PLL_VIDEO1:
shift = 0;
break;
case DSS_PLL_VIDEO2:
shift = 1;
break;
case DSS_PLL_HDMI:
shift = 2;
break;
default:
DSSERR("illegal DSS PLL ID %d\n", pll->id);
return;
}
regmap_update_bits(pll->dss->syscon_pll_ctrl,
pll->dss->syscon_pll_ctrl_offset,
1 << shift, val << shift);
}
static int dss_ctrl_pll_set_control_mux(struct dss_device *dss,
enum dss_clk_source clk_src,
enum omap_channel channel)
{
unsigned int shift, val;
if (!dss->syscon_pll_ctrl)
return -EINVAL;
switch (channel) {
case OMAP_DSS_CHANNEL_LCD:
shift = 3;
switch (clk_src) {
case DSS_CLK_SRC_PLL1_1:
val = 0; break;
case DSS_CLK_SRC_HDMI_PLL:
val = 1; break;
default:
DSSERR("error in PLL mux config for LCD\n");
return -EINVAL;
}
break;
case OMAP_DSS_CHANNEL_LCD2:
shift = 5;
switch (clk_src) {
case DSS_CLK_SRC_PLL1_3:
val = 0; break;
case DSS_CLK_SRC_PLL2_3:
val = 1; break;
case DSS_CLK_SRC_HDMI_PLL:
val = 2; break;
default:
DSSERR("error in PLL mux config for LCD2\n");
return -EINVAL;
}
break;
case OMAP_DSS_CHANNEL_LCD3:
shift = 7;
switch (clk_src) {
case DSS_CLK_SRC_PLL2_1:
val = 0; break;
case DSS_CLK_SRC_PLL1_3:
val = 1; break;
case DSS_CLK_SRC_HDMI_PLL:
val = 2; break;
default:
DSSERR("error in PLL mux config for LCD3\n");
return -EINVAL;
}
break;
default:
DSSERR("error in PLL mux config\n");
return -EINVAL;
}
regmap_update_bits(dss->syscon_pll_ctrl, dss->syscon_pll_ctrl_offset,
0x3 << shift, val << shift);
return 0;
}
void dss_sdi_init(struct dss_device *dss, int datapairs)
{
u32 l;
BUG_ON(datapairs > 3 || datapairs < 1);
l = dss_read_reg(dss, DSS_SDI_CONTROL);
l = FLD_MOD(l, 0xf, 19, 15); /* SDI_PDIV */
l = FLD_MOD(l, datapairs-1, 3, 2); /* SDI_PRSEL */
l = FLD_MOD(l, 2, 1, 0); /* SDI_BWSEL */
dss_write_reg(dss, DSS_SDI_CONTROL, l);
l = dss_read_reg(dss, DSS_PLL_CONTROL);
l = FLD_MOD(l, 0x7, 25, 22); /* SDI_PLL_FREQSEL */
l = FLD_MOD(l, 0xb, 16, 11); /* SDI_PLL_REGN */
l = FLD_MOD(l, 0xb4, 10, 1); /* SDI_PLL_REGM */
dss_write_reg(dss, DSS_PLL_CONTROL, l);
}
int dss_sdi_enable(struct dss_device *dss)
{
unsigned long timeout;
dispc_pck_free_enable(dss->dispc, 1);
/* Reset SDI PLL */
REG_FLD_MOD(dss, DSS_PLL_CONTROL, 1, 18, 18); /* SDI_PLL_SYSRESET */
udelay(1); /* wait 2x PCLK */
/* Lock SDI PLL */
REG_FLD_MOD(dss, DSS_PLL_CONTROL, 1, 28, 28); /* SDI_PLL_GOBIT */
/* Waiting for PLL lock request to complete */
timeout = jiffies + msecs_to_jiffies(500);
while (dss_read_reg(dss, DSS_SDI_STATUS) & (1 << 6)) {
if (time_after_eq(jiffies, timeout)) {
DSSERR("PLL lock request timed out\n");
goto err1;
}
}
/* Clearing PLL_GO bit */
REG_FLD_MOD(dss, DSS_PLL_CONTROL, 0, 28, 28);
/* Waiting for PLL to lock */
timeout = jiffies + msecs_to_jiffies(500);
while (!(dss_read_reg(dss, DSS_SDI_STATUS) & (1 << 5))) {
if (time_after_eq(jiffies, timeout)) {
DSSERR("PLL lock timed out\n");
goto err1;
}
}
dispc_lcd_enable_signal(dss->dispc, 1);
/* Waiting for SDI reset to complete */
timeout = jiffies + msecs_to_jiffies(500);
while (!(dss_read_reg(dss, DSS_SDI_STATUS) & (1 << 2))) {
if (time_after_eq(jiffies, timeout)) {
DSSERR("SDI reset timed out\n");
goto err2;
}
}
return 0;
err2:
dispc_lcd_enable_signal(dss->dispc, 0);
err1:
/* Reset SDI PLL */
REG_FLD_MOD(dss, DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */
dispc_pck_free_enable(dss->dispc, 0);
return -ETIMEDOUT;
}
void dss_sdi_disable(struct dss_device *dss)
{
dispc_lcd_enable_signal(dss->dispc, 0);
dispc_pck_free_enable(dss->dispc, 0);
/* Reset SDI PLL */
REG_FLD_MOD(dss, DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */
}
const char *dss_get_clk_source_name(enum dss_clk_source clk_src)
{
return dss_generic_clk_source_names[clk_src];
}
static void dss_dump_clocks(struct dss_device *dss, struct seq_file *s)
{
const char *fclk_name;
unsigned long fclk_rate;
if (dss_runtime_get(dss))
return;
seq_printf(s, "- DSS -\n");
fclk_name = dss_get_clk_source_name(DSS_CLK_SRC_FCK);
fclk_rate = clk_get_rate(dss->dss_clk);
seq_printf(s, "%s = %lu\n",
fclk_name,
fclk_rate);
dss_runtime_put(dss);
}
static int dss_dump_regs(struct seq_file *s, void *p)
{
struct dss_device *dss = s->private;
#define DUMPREG(dss, r) seq_printf(s, "%-35s %08x\n", #r, dss_read_reg(dss, r))
if (dss_runtime_get(dss))
return 0;
DUMPREG(dss, DSS_REVISION);
DUMPREG(dss, DSS_SYSCONFIG);
DUMPREG(dss, DSS_SYSSTATUS);
DUMPREG(dss, DSS_CONTROL);
if (dss->feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) {
DUMPREG(dss, DSS_SDI_CONTROL);
DUMPREG(dss, DSS_PLL_CONTROL);
DUMPREG(dss, DSS_SDI_STATUS);
}
dss_runtime_put(dss);
#undef DUMPREG
return 0;
}
static int dss_debug_dump_clocks(struct seq_file *s, void *p)
{
struct dss_device *dss = s->private;
dss_dump_clocks(dss, s);
dispc_dump_clocks(dss->dispc, s);
#ifdef CONFIG_OMAP2_DSS_DSI
dsi_dump_clocks(s);
#endif
return 0;
}
static int dss_get_channel_index(enum omap_channel channel)
{
switch (channel) {
case OMAP_DSS_CHANNEL_LCD:
return 0;
case OMAP_DSS_CHANNEL_LCD2:
return 1;
case OMAP_DSS_CHANNEL_LCD3:
return 2;
default:
WARN_ON(1);
return 0;
}
}
static void dss_select_dispc_clk_source(struct dss_device *dss,
enum dss_clk_source clk_src)
{
int b;
/*
* We always use PRCM clock as the DISPC func clock, except on DSS3,
* where we don't have separate DISPC and LCD clock sources.
*/
if (WARN_ON(dss->feat->has_lcd_clk_src && clk_src != DSS_CLK_SRC_FCK))
return;
switch (clk_src) {
case DSS_CLK_SRC_FCK:
b = 0;
break;
case DSS_CLK_SRC_PLL1_1:
b = 1;
break;
case DSS_CLK_SRC_PLL2_1:
b = 2;
break;
default:
BUG();
return;
}
REG_FLD_MOD(dss, DSS_CONTROL, b, /* DISPC_CLK_SWITCH */
dss->feat->dispc_clk_switch.start,
dss->feat->dispc_clk_switch.end);
dss->dispc_clk_source = clk_src;
}
void dss_select_dsi_clk_source(struct dss_device *dss, int dsi_module,
enum dss_clk_source clk_src)
{
int b, pos;
switch (clk_src) {
case DSS_CLK_SRC_FCK:
b = 0;
break;
case DSS_CLK_SRC_PLL1_2:
BUG_ON(dsi_module != 0);
b = 1;
break;
case DSS_CLK_SRC_PLL2_2:
BUG_ON(dsi_module != 1);
b = 1;
break;
default:
BUG();
return;
}
pos = dsi_module == 0 ? 1 : 10;
REG_FLD_MOD(dss, DSS_CONTROL, b, pos, pos); /* DSIx_CLK_SWITCH */
dss->dsi_clk_source[dsi_module] = clk_src;
}
static int dss_lcd_clk_mux_dra7(struct dss_device *dss,
enum omap_channel channel,
enum dss_clk_source clk_src)
{
const u8 ctrl_bits[] = {
[OMAP_DSS_CHANNEL_LCD] = 0,
[OMAP_DSS_CHANNEL_LCD2] = 12,
[OMAP_DSS_CHANNEL_LCD3] = 19,
};
u8 ctrl_bit = ctrl_bits[channel];
int r;
if (clk_src == DSS_CLK_SRC_FCK) {
/* LCDx_CLK_SWITCH */
REG_FLD_MOD(dss, DSS_CONTROL, 0, ctrl_bit, ctrl_bit);
return -EINVAL;
}
r = dss_ctrl_pll_set_control_mux(dss, clk_src, channel);
if (r)
return r;
REG_FLD_MOD(dss, DSS_CONTROL, 1, ctrl_bit, ctrl_bit);
return 0;
}
static int dss_lcd_clk_mux_omap5(struct dss_device *dss,
enum omap_channel channel,
enum dss_clk_source clk_src)
{
const u8 ctrl_bits[] = {
[OMAP_DSS_CHANNEL_LCD] = 0,
[OMAP_DSS_CHANNEL_LCD2] = 12,
[OMAP_DSS_CHANNEL_LCD3] = 19,
};
const enum dss_clk_source allowed_plls[] = {
[OMAP_DSS_CHANNEL_LCD] = DSS_CLK_SRC_PLL1_1,
[OMAP_DSS_CHANNEL_LCD2] = DSS_CLK_SRC_FCK,
[OMAP_DSS_CHANNEL_LCD3] = DSS_CLK_SRC_PLL2_1,
};
u8 ctrl_bit = ctrl_bits[channel];
if (clk_src == DSS_CLK_SRC_FCK) {
/* LCDx_CLK_SWITCH */
REG_FLD_MOD(dss, DSS_CONTROL, 0, ctrl_bit, ctrl_bit);
return -EINVAL;
}
if (WARN_ON(allowed_plls[channel] != clk_src))
return -EINVAL;
REG_FLD_MOD(dss, DSS_CONTROL, 1, ctrl_bit, ctrl_bit);
return 0;
}
static int dss_lcd_clk_mux_omap4(struct dss_device *dss,
enum omap_channel channel,
enum dss_clk_source clk_src)
{
const u8 ctrl_bits[] = {
[OMAP_DSS_CHANNEL_LCD] = 0,
[OMAP_DSS_CHANNEL_LCD2] = 12,
};
const enum dss_clk_source allowed_plls[] = {
[OMAP_DSS_CHANNEL_LCD] = DSS_CLK_SRC_PLL1_1,
[OMAP_DSS_CHANNEL_LCD2] = DSS_CLK_SRC_PLL2_1,
};
u8 ctrl_bit = ctrl_bits[channel];
if (clk_src == DSS_CLK_SRC_FCK) {
/* LCDx_CLK_SWITCH */
REG_FLD_MOD(dss, DSS_CONTROL, 0, ctrl_bit, ctrl_bit);
return 0;
}
if (WARN_ON(allowed_plls[channel] != clk_src))
return -EINVAL;
REG_FLD_MOD(dss, DSS_CONTROL, 1, ctrl_bit, ctrl_bit);
return 0;
}
void dss_select_lcd_clk_source(struct dss_device *dss,
enum omap_channel channel,
enum dss_clk_source clk_src)
{
int idx = dss_get_channel_index(channel);
int r;
if (!dss->feat->has_lcd_clk_src) {
dss_select_dispc_clk_source(dss, clk_src);
dss->lcd_clk_source[idx] = clk_src;
return;
}
r = dss->feat->ops->select_lcd_source(dss, channel, clk_src);
if (r)
return;
dss->lcd_clk_source[idx] = clk_src;
}
enum dss_clk_source dss_get_dispc_clk_source(struct dss_device *dss)
{
return dss->dispc_clk_source;
}
enum dss_clk_source dss_get_dsi_clk_source(struct dss_device *dss,
int dsi_module)
{
return dss->dsi_clk_source[dsi_module];
}
enum dss_clk_source dss_get_lcd_clk_source(struct dss_device *dss,
enum omap_channel channel)
{
if (dss->feat->has_lcd_clk_src) {
int idx = dss_get_channel_index(channel);
return dss->lcd_clk_source[idx];
} else {
/* LCD_CLK source is the same as DISPC_FCLK source for
* OMAP2 and OMAP3 */
return dss->dispc_clk_source;
}
}
bool dss_div_calc(struct dss_device *dss, unsigned long pck,
unsigned long fck_min, dss_div_calc_func func, void *data)
{
int fckd, fckd_start, fckd_stop;
unsigned long fck;
unsigned long fck_hw_max;
unsigned long fckd_hw_max;
unsigned long prate;
unsigned int m;
fck_hw_max = dss->feat->fck_freq_max;
if (dss->parent_clk == NULL) {
unsigned int pckd;
pckd = fck_hw_max / pck;
fck = pck * pckd;
fck = clk_round_rate(dss->dss_clk, fck);
return func(fck, data);
}
fckd_hw_max = dss->feat->fck_div_max;
m = dss->feat->dss_fck_multiplier;
prate = clk_get_rate(dss->parent_clk);
fck_min = fck_min ? fck_min : 1;
fckd_start = min(prate * m / fck_min, fckd_hw_max);
fckd_stop = max(DIV_ROUND_UP(prate * m, fck_hw_max), 1ul);
for (fckd = fckd_start; fckd >= fckd_stop; --fckd) {
fck = DIV_ROUND_UP(prate, fckd) * m;
if (func(fck, data))
return true;
}
return false;
}
int dss_set_fck_rate(struct dss_device *dss, unsigned long rate)
{
int r;
DSSDBG("set fck to %lu\n", rate);
r = clk_set_rate(dss->dss_clk, rate);
if (r)
return r;
dss->dss_clk_rate = clk_get_rate(dss->dss_clk);
WARN_ONCE(dss->dss_clk_rate != rate, "clk rate mismatch: %lu != %lu",
dss->dss_clk_rate, rate);
return 0;
}
unsigned long dss_get_dispc_clk_rate(struct dss_device *dss)
{
return dss->dss_clk_rate;
}
unsigned long dss_get_max_fck_rate(struct dss_device *dss)
{
return dss->feat->fck_freq_max;
}
enum omap_dss_output_id dss_get_supported_outputs(struct dss_device *dss,
enum omap_channel channel)
{
return dss->feat->outputs[channel];
}
static int dss_setup_default_clock(struct dss_device *dss)
{
unsigned long max_dss_fck, prate;
unsigned long fck;
unsigned int fck_div;
int r;
max_dss_fck = dss->feat->fck_freq_max;
if (dss->parent_clk == NULL) {
fck = clk_round_rate(dss->dss_clk, max_dss_fck);
} else {
prate = clk_get_rate(dss->parent_clk);
fck_div = DIV_ROUND_UP(prate * dss->feat->dss_fck_multiplier,
max_dss_fck);
fck = DIV_ROUND_UP(prate, fck_div)
* dss->feat->dss_fck_multiplier;
}
r = dss_set_fck_rate(dss, fck);
if (r)
return r;
return 0;
}
void dss_set_venc_output(struct dss_device *dss, enum omap_dss_venc_type type)
{
int l = 0;
if (type == OMAP_DSS_VENC_TYPE_COMPOSITE)
l = 0;
else if (type == OMAP_DSS_VENC_TYPE_SVIDEO)
l = 1;
else
BUG();
/* venc out selection. 0 = comp, 1 = svideo */
REG_FLD_MOD(dss, DSS_CONTROL, l, 6, 6);
}
void dss_set_dac_pwrdn_bgz(struct dss_device *dss, bool enable)
{
/* DAC Power-Down Control */
REG_FLD_MOD(dss, DSS_CONTROL, enable, 5, 5);
}
void dss_select_hdmi_venc_clk_source(struct dss_device *dss,
enum dss_hdmi_venc_clk_source_select src)
{
enum omap_dss_output_id outputs;
outputs = dss->feat->outputs[OMAP_DSS_CHANNEL_DIGIT];
/* Complain about invalid selections */
WARN_ON((src == DSS_VENC_TV_CLK) && !(outputs & OMAP_DSS_OUTPUT_VENC));
WARN_ON((src == DSS_HDMI_M_PCLK) && !(outputs & OMAP_DSS_OUTPUT_HDMI));
/* Select only if we have options */
if ((outputs & OMAP_DSS_OUTPUT_VENC) &&
(outputs & OMAP_DSS_OUTPUT_HDMI))
/* VENC_HDMI_SWITCH */
REG_FLD_MOD(dss, DSS_CONTROL, src, 15, 15);
}
static int dss_dpi_select_source_omap2_omap3(struct dss_device *dss, int port,
enum omap_channel channel)
{
if (channel != OMAP_DSS_CHANNEL_LCD)
return -EINVAL;
return 0;
}
static int dss_dpi_select_source_omap4(struct dss_device *dss, int port,
enum omap_channel channel)
{
int val;
switch (channel) {
case OMAP_DSS_CHANNEL_LCD2:
val = 0;
break;
case OMAP_DSS_CHANNEL_DIGIT:
val = 1;
break;
default:
return -EINVAL;
}
REG_FLD_MOD(dss, DSS_CONTROL, val, 17, 17);
return 0;
}
static int dss_dpi_select_source_omap5(struct dss_device *dss, int port,
enum omap_channel channel)
{
int val;
switch (channel) {
case OMAP_DSS_CHANNEL_LCD:
val = 1;
break;
case OMAP_DSS_CHANNEL_LCD2:
val = 2;
break;
case OMAP_DSS_CHANNEL_LCD3:
val = 3;
break;
case OMAP_DSS_CHANNEL_DIGIT:
val = 0;
break;
default:
return -EINVAL;
}
REG_FLD_MOD(dss, DSS_CONTROL, val, 17, 16);
return 0;
}
static int dss_dpi_select_source_dra7xx(struct dss_device *dss, int port,
enum omap_channel channel)
{
switch (port) {
case 0:
return dss_dpi_select_source_omap5(dss, port, channel);
case 1:
if (channel != OMAP_DSS_CHANNEL_LCD2)
return -EINVAL;
break;
case 2:
if (channel != OMAP_DSS_CHANNEL_LCD3)
return -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
int dss_dpi_select_source(struct dss_device *dss, int port,
enum omap_channel channel)
{
return dss->feat->ops->dpi_select_source(dss, port, channel);
}
static int dss_get_clocks(struct dss_device *dss)
{
struct clk *clk;
clk = devm_clk_get(&dss->pdev->dev, "fck");
if (IS_ERR(clk)) {
DSSERR("can't get clock fck\n");
return PTR_ERR(clk);
}
dss->dss_clk = clk;
if (dss->feat->parent_clk_name) {
clk = clk_get(NULL, dss->feat->parent_clk_name);
if (IS_ERR(clk)) {
DSSERR("Failed to get %s\n",
dss->feat->parent_clk_name);
return PTR_ERR(clk);
}
} else {
clk = NULL;
}
dss->parent_clk = clk;
return 0;
}
static void dss_put_clocks(struct dss_device *dss)
{
if (dss->parent_clk)
clk_put(dss->parent_clk);
}
int dss_runtime_get(struct dss_device *dss)
{
int r;
DSSDBG("dss_runtime_get\n");
r = pm_runtime_get_sync(&dss->pdev->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
void dss_runtime_put(struct dss_device *dss)
{
int r;
DSSDBG("dss_runtime_put\n");
r = pm_runtime_put_sync(&dss->pdev->dev);
WARN_ON(r < 0 && r != -ENOSYS && r != -EBUSY);
}
struct dss_device *dss_get_device(struct device *dev)
{
return dev_get_drvdata(dev);
}
/* DEBUGFS */
#if defined(CONFIG_OMAP2_DSS_DEBUGFS)
static int dss_initialize_debugfs(struct dss_device *dss)
{
struct dentry *dir;
dir = debugfs_create_dir("omapdss", NULL);
if (IS_ERR(dir))
return PTR_ERR(dir);
dss->debugfs.root = dir;
return 0;
}
static void dss_uninitialize_debugfs(struct dss_device *dss)
{
debugfs_remove_recursive(dss->debugfs.root);
}
struct dss_debugfs_entry {
struct dentry *dentry;
int (*show_fn)(struct seq_file *s, void *data);
void *data;
};
static int dss_debug_open(struct inode *inode, struct file *file)
{
struct dss_debugfs_entry *entry = inode->i_private;
return single_open(file, entry->show_fn, entry->data);
}
static const struct file_operations dss_debug_fops = {
.open = dss_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
struct dss_debugfs_entry *
dss_debugfs_create_file(struct dss_device *dss, const char *name,
int (*show_fn)(struct seq_file *s, void *data),
void *data)
{
struct dss_debugfs_entry *entry;
struct dentry *d;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return ERR_PTR(-ENOMEM);
entry->show_fn = show_fn;
entry->data = data;
d = debugfs_create_file(name, 0444, dss->debugfs.root, entry,
&dss_debug_fops);
if (IS_ERR(d)) {
kfree(entry);
return ERR_PTR(PTR_ERR(d));
}
entry->dentry = d;
return entry;
}
void dss_debugfs_remove_file(struct dss_debugfs_entry *entry)
{
if (IS_ERR_OR_NULL(entry))
return;
debugfs_remove(entry->dentry);
kfree(entry);
}
#else /* CONFIG_OMAP2_DSS_DEBUGFS */
static inline int dss_initialize_debugfs(struct dss_device *dss)
{
return 0;
}
static inline void dss_uninitialize_debugfs(struct dss_device *dss)
{
}
#endif /* CONFIG_OMAP2_DSS_DEBUGFS */
static const struct dss_ops dss_ops_omap2_omap3 = {
.dpi_select_source = &dss_dpi_select_source_omap2_omap3,
};
static const struct dss_ops dss_ops_omap4 = {
.dpi_select_source = &dss_dpi_select_source_omap4,
.select_lcd_source = &dss_lcd_clk_mux_omap4,
};
static const struct dss_ops dss_ops_omap5 = {
.dpi_select_source = &dss_dpi_select_source_omap5,
.select_lcd_source = &dss_lcd_clk_mux_omap5,
};
static const struct dss_ops dss_ops_dra7 = {
.dpi_select_source = &dss_dpi_select_source_dra7xx,
.select_lcd_source = &dss_lcd_clk_mux_dra7,
};
static const enum omap_display_type omap2plus_ports[] = {
OMAP_DISPLAY_TYPE_DPI,
};
static const enum omap_display_type omap34xx_ports[] = {
OMAP_DISPLAY_TYPE_DPI,
OMAP_DISPLAY_TYPE_SDI,
};
static const enum omap_display_type dra7xx_ports[] = {
OMAP_DISPLAY_TYPE_DPI,
OMAP_DISPLAY_TYPE_DPI,
OMAP_DISPLAY_TYPE_DPI,
};
static const enum omap_dss_output_id omap2_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI,
/* OMAP_DSS_CHANNEL_DIGIT */
OMAP_DSS_OUTPUT_VENC,
};
static const enum omap_dss_output_id omap3430_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_SDI | OMAP_DSS_OUTPUT_DSI1,
/* OMAP_DSS_CHANNEL_DIGIT */
OMAP_DSS_OUTPUT_VENC,
};
static const enum omap_dss_output_id omap3630_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_DSI1,
/* OMAP_DSS_CHANNEL_DIGIT */
OMAP_DSS_OUTPUT_VENC,
};
static const enum omap_dss_output_id am43xx_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI,
};
static const enum omap_dss_output_id omap4_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI1,
/* OMAP_DSS_CHANNEL_DIGIT */
OMAP_DSS_OUTPUT_VENC | OMAP_DSS_OUTPUT_HDMI,
/* OMAP_DSS_CHANNEL_LCD2 */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_DSI2,
};
static const enum omap_dss_output_id omap5_dss_supported_outputs[] = {
/* OMAP_DSS_CHANNEL_LCD */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_DSI1 | OMAP_DSS_OUTPUT_DSI2,
/* OMAP_DSS_CHANNEL_DIGIT */
OMAP_DSS_OUTPUT_HDMI,
/* OMAP_DSS_CHANNEL_LCD2 */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_DSI1,
/* OMAP_DSS_CHANNEL_LCD3 */
OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI |
OMAP_DSS_OUTPUT_DSI2,
};
static const struct dss_features omap24xx_dss_feats = {
.model = DSS_MODEL_OMAP2,
/*
* fck div max is really 16, but the divider range has gaps. The range
* from 1 to 6 has no gaps, so let's use that as a max.
*/
.fck_div_max = 6,
.fck_freq_max = 133000000,
.dss_fck_multiplier = 2,
.parent_clk_name = "core_ck",
.ports = omap2plus_ports,
.num_ports = ARRAY_SIZE(omap2plus_ports),
.outputs = omap2_dss_supported_outputs,
.ops = &dss_ops_omap2_omap3,
.dispc_clk_switch = { 0, 0 },
.has_lcd_clk_src = false,
};
static const struct dss_features omap34xx_dss_feats = {
.model = DSS_MODEL_OMAP3,
.fck_div_max = 16,
.fck_freq_max = 173000000,
.dss_fck_multiplier = 2,
.parent_clk_name = "dpll4_ck",
.ports = omap34xx_ports,
.outputs = omap3430_dss_supported_outputs,
.num_ports = ARRAY_SIZE(omap34xx_ports),
.ops = &dss_ops_omap2_omap3,
.dispc_clk_switch = { 0, 0 },
.has_lcd_clk_src = false,
};
static const struct dss_features omap3630_dss_feats = {
.model = DSS_MODEL_OMAP3,
.fck_div_max = 32,
.fck_freq_max = 173000000,
.dss_fck_multiplier = 1,
.parent_clk_name = "dpll4_ck",
.ports = omap2plus_ports,
.num_ports = ARRAY_SIZE(omap2plus_ports),
.outputs = omap3630_dss_supported_outputs,
.ops = &dss_ops_omap2_omap3,
.dispc_clk_switch = { 0, 0 },
.has_lcd_clk_src = false,
};
static const struct dss_features omap44xx_dss_feats = {
.model = DSS_MODEL_OMAP4,
.fck_div_max = 32,
.fck_freq_max = 186000000,
.dss_fck_multiplier = 1,
.parent_clk_name = "dpll_per_x2_ck",
.ports = omap2plus_ports,
.num_ports = ARRAY_SIZE(omap2plus_ports),
.outputs = omap4_dss_supported_outputs,
.ops = &dss_ops_omap4,
.dispc_clk_switch = { 9, 8 },
.has_lcd_clk_src = true,
};
static const struct dss_features omap54xx_dss_feats = {
.model = DSS_MODEL_OMAP5,
.fck_div_max = 64,
.fck_freq_max = 209250000,
.dss_fck_multiplier = 1,
.parent_clk_name = "dpll_per_x2_ck",
.ports = omap2plus_ports,
.num_ports = ARRAY_SIZE(omap2plus_ports),
.outputs = omap5_dss_supported_outputs,
.ops = &dss_ops_omap5,
.dispc_clk_switch = { 9, 7 },
.has_lcd_clk_src = true,
};
static const struct dss_features am43xx_dss_feats = {
.model = DSS_MODEL_OMAP3,
.fck_div_max = 0,
.fck_freq_max = 200000000,
.dss_fck_multiplier = 0,
.parent_clk_name = NULL,
.ports = omap2plus_ports,
.num_ports = ARRAY_SIZE(omap2plus_ports),
.outputs = am43xx_dss_supported_outputs,
.ops = &dss_ops_omap2_omap3,
.dispc_clk_switch = { 0, 0 },
.has_lcd_clk_src = true,
};
static const struct dss_features dra7xx_dss_feats = {
.model = DSS_MODEL_DRA7,
.fck_div_max = 64,
.fck_freq_max = 209250000,
.dss_fck_multiplier = 1,
.parent_clk_name = "dpll_per_x2_ck",
.ports = dra7xx_ports,
.num_ports = ARRAY_SIZE(dra7xx_ports),
.outputs = omap5_dss_supported_outputs,
.ops = &dss_ops_dra7,
.dispc_clk_switch = { 9, 7 },
.has_lcd_clk_src = true,
};
static int dss_init_ports(struct dss_device *dss)
{
struct platform_device *pdev = dss->pdev;
struct device_node *parent = pdev->dev.of_node;
struct device_node *port;
int i;
for (i = 0; i < dss->feat->num_ports; i++) {
port = of_graph_get_port_by_id(parent, i);
if (!port)
continue;
switch (dss->feat->ports[i]) {
case OMAP_DISPLAY_TYPE_DPI:
dpi_init_port(dss, pdev, port, dss->feat->model);
break;
case OMAP_DISPLAY_TYPE_SDI:
sdi_init_port(dss, pdev, port);
break;
default:
break;
}
}
return 0;
}
static void dss_uninit_ports(struct dss_device *dss)
{
struct platform_device *pdev = dss->pdev;
struct device_node *parent = pdev->dev.of_node;
struct device_node *port;
int i;
for (i = 0; i < dss->feat->num_ports; i++) {
port = of_graph_get_port_by_id(parent, i);
if (!port)
continue;
switch (dss->feat->ports[i]) {
case OMAP_DISPLAY_TYPE_DPI:
dpi_uninit_port(port);
break;
case OMAP_DISPLAY_TYPE_SDI:
sdi_uninit_port(port);
break;
default:
break;
}
}
}
static int dss_video_pll_probe(struct dss_device *dss)
{
struct platform_device *pdev = dss->pdev;
struct device_node *np = pdev->dev.of_node;
struct regulator *pll_regulator;
int r;
if (!np)
return 0;
if (of_property_read_bool(np, "syscon-pll-ctrl")) {
dss->syscon_pll_ctrl = syscon_regmap_lookup_by_phandle(np,
"syscon-pll-ctrl");
if (IS_ERR(dss->syscon_pll_ctrl)) {
dev_err(&pdev->dev,
"failed to get syscon-pll-ctrl regmap\n");
return PTR_ERR(dss->syscon_pll_ctrl);
}
if (of_property_read_u32_index(np, "syscon-pll-ctrl", 1,
&dss->syscon_pll_ctrl_offset)) {
dev_err(&pdev->dev,
"failed to get syscon-pll-ctrl offset\n");
return -EINVAL;
}
}
pll_regulator = devm_regulator_get(&pdev->dev, "vdda_video");
if (IS_ERR(pll_regulator)) {
r = PTR_ERR(pll_regulator);
switch (r) {
case -ENOENT:
pll_regulator = NULL;
break;
case -EPROBE_DEFER:
return -EPROBE_DEFER;
default:
DSSERR("can't get DPLL VDDA regulator\n");
return r;
}
}
if (of_property_match_string(np, "reg-names", "pll1") >= 0) {
dss->video1_pll = dss_video_pll_init(dss, pdev, 0,
pll_regulator);
if (IS_ERR(dss->video1_pll))
return PTR_ERR(dss->video1_pll);
}
if (of_property_match_string(np, "reg-names", "pll2") >= 0) {
dss->video2_pll = dss_video_pll_init(dss, pdev, 1,
pll_regulator);
if (IS_ERR(dss->video2_pll)) {
dss_video_pll_uninit(dss->video1_pll);
return PTR_ERR(dss->video2_pll);
}
}
return 0;
}
/* DSS HW IP initialisation */
static const struct of_device_id dss_of_match[] = {
{ .compatible = "ti,omap2-dss", .data = &omap24xx_dss_feats },
{ .compatible = "ti,omap3-dss", .data = &omap3630_dss_feats },
{ .compatible = "ti,omap4-dss", .data = &omap44xx_dss_feats },
{ .compatible = "ti,omap5-dss", .data = &omap54xx_dss_feats },
{ .compatible = "ti,dra7-dss", .data = &dra7xx_dss_feats },
{},
};
MODULE_DEVICE_TABLE(of, dss_of_match);
static const struct soc_device_attribute dss_soc_devices[] = {
{ .machine = "OMAP3430/3530", .data = &omap34xx_dss_feats },
{ .machine = "AM35??", .data = &omap34xx_dss_feats },
{ .family = "AM43xx", .data = &am43xx_dss_feats },
{ /* sentinel */ }
};
static int dss_bind(struct device *dev)
{
struct dss_device *dss = dev_get_drvdata(dev);
int r;
r = component_bind_all(dev, NULL);
if (r)
return r;
pm_set_vt_switch(0);
omapdss_gather_components(dev);
omapdss_set_dss(dss);
return 0;
}
static void dss_unbind(struct device *dev)
{
omapdss_set_dss(NULL);
component_unbind_all(dev, NULL);
}
static const struct component_master_ops dss_component_ops = {
.bind = dss_bind,
.unbind = dss_unbind,
};
static int dss_component_compare(struct device *dev, void *data)
{
struct device *child = data;
return dev == child;
}
static int dss_add_child_component(struct device *dev, void *data)
{
struct component_match **match = data;
/*
* HACK
* We don't have a working driver for rfbi, so skip it here always.
* Otherwise dss will never get probed successfully, as it will wait
* for rfbi to get probed.
*/
if (strstr(dev_name(dev), "rfbi"))
return 0;
component_match_add(dev->parent, match, dss_component_compare, dev);
return 0;
}
static int dss_probe_hardware(struct dss_device *dss)
{
u32 rev;
int r;
r = dss_runtime_get(dss);
if (r)
return r;
dss->dss_clk_rate = clk_get_rate(dss->dss_clk);
/* Select DPLL */
REG_FLD_MOD(dss, DSS_CONTROL, 0, 0, 0);
dss_select_dispc_clk_source(dss, DSS_CLK_SRC_FCK);
#ifdef CONFIG_OMAP2_DSS_VENC
REG_FLD_MOD(dss, DSS_CONTROL, 1, 4, 4); /* venc dac demen */
REG_FLD_MOD(dss, DSS_CONTROL, 1, 3, 3); /* venc clock 4x enable */
REG_FLD_MOD(dss, DSS_CONTROL, 0, 2, 2); /* venc clock mode = normal */
#endif
dss->dsi_clk_source[0] = DSS_CLK_SRC_FCK;
dss->dsi_clk_source[1] = DSS_CLK_SRC_FCK;
dss->dispc_clk_source = DSS_CLK_SRC_FCK;
dss->lcd_clk_source[0] = DSS_CLK_SRC_FCK;
dss->lcd_clk_source[1] = DSS_CLK_SRC_FCK;
rev = dss_read_reg(dss, DSS_REVISION);
pr_info("OMAP DSS rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
dss_runtime_put(dss);
return 0;
}
static int dss_probe(struct platform_device *pdev)
{
const struct soc_device_attribute *soc;
struct component_match *match = NULL;
struct resource *dss_mem;
struct dss_device *dss;
int r;
dss = kzalloc(sizeof(*dss), GFP_KERNEL);
if (!dss)
return -ENOMEM;
dss->pdev = pdev;
platform_set_drvdata(pdev, dss);
r = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (r) {
dev_err(&pdev->dev, "Failed to set the DMA mask\n");
goto err_free_dss;
}
/*
* The various OMAP3-based SoCs can't be told apart using the compatible
* string, use SoC device matching.
*/
soc = soc_device_match(dss_soc_devices);
if (soc)
dss->feat = soc->data;
else
dss->feat = of_match_device(dss_of_match, &pdev->dev)->data;
/* Map I/O registers, get and setup clocks. */
dss_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dss->base = devm_ioremap_resource(&pdev->dev, dss_mem);
if (IS_ERR(dss->base)) {
r = PTR_ERR(dss->base);
goto err_free_dss;
}
r = dss_get_clocks(dss);
if (r)
goto err_free_dss;
r = dss_setup_default_clock(dss);
if (r)
goto err_put_clocks;
/* Setup the video PLLs and the DPI and SDI ports. */
r = dss_video_pll_probe(dss);
if (r)
goto err_put_clocks;
r = dss_init_ports(dss);
if (r)
goto err_uninit_plls;
/* Enable runtime PM and probe the hardware. */
pm_runtime_enable(&pdev->dev);
r = dss_probe_hardware(dss);
if (r)
goto err_pm_runtime_disable;
/* Initialize debugfs. */
r = dss_initialize_debugfs(dss);
if (r)
goto err_pm_runtime_disable;
dss->debugfs.clk = dss_debugfs_create_file(dss, "clk",
dss_debug_dump_clocks, dss);
dss->debugfs.dss = dss_debugfs_create_file(dss, "dss", dss_dump_regs,
dss);
/* Add all the child devices as components. */
device_for_each_child(&pdev->dev, &match, dss_add_child_component);
r = component_master_add_with_match(&pdev->dev, &dss_component_ops, match);
if (r)
goto err_uninit_debugfs;
return 0;
err_uninit_debugfs:
dss_debugfs_remove_file(dss->debugfs.clk);
dss_debugfs_remove_file(dss->debugfs.dss);
dss_uninitialize_debugfs(dss);
err_pm_runtime_disable:
pm_runtime_disable(&pdev->dev);
dss_uninit_ports(dss);
err_uninit_plls:
if (dss->video1_pll)
dss_video_pll_uninit(dss->video1_pll);
if (dss->video2_pll)
dss_video_pll_uninit(dss->video2_pll);
err_put_clocks:
dss_put_clocks(dss);
err_free_dss:
kfree(dss);
return r;
}
static int dss_remove(struct platform_device *pdev)
{
struct dss_device *dss = platform_get_drvdata(pdev);
component_master_del(&pdev->dev, &dss_component_ops);
dss_debugfs_remove_file(dss->debugfs.clk);
dss_debugfs_remove_file(dss->debugfs.dss);
dss_uninitialize_debugfs(dss);
pm_runtime_disable(&pdev->dev);
dss_uninit_ports(dss);
if (dss->video1_pll)
dss_video_pll_uninit(dss->video1_pll);
if (dss->video2_pll)
dss_video_pll_uninit(dss->video2_pll);
dss_put_clocks(dss);
kfree(dss);
return 0;
}
static void dss_shutdown(struct platform_device *pdev)
{
struct omap_dss_device *dssdev = NULL;
DSSDBG("shutdown\n");
for_each_dss_dev(dssdev) {
if (!dssdev->driver)
continue;
if (dssdev->state == OMAP_DSS_DISPLAY_ACTIVE)
dssdev->driver->disable(dssdev);
}
}
static int dss_runtime_suspend(struct device *dev)
{
struct dss_device *dss = dev_get_drvdata(dev);
dss_save_context(dss);
dss_set_min_bus_tput(dev, 0);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int dss_runtime_resume(struct device *dev)
{
struct dss_device *dss = dev_get_drvdata(dev);
int r;
pinctrl_pm_select_default_state(dev);
/*
* Set an arbitrarily high tput request to ensure OPP100.
* What we should really do is to make a request to stay in OPP100,
* without any tput requirements, but that is not currently possible
* via the PM layer.
*/
r = dss_set_min_bus_tput(dev, 1000000000);
if (r)
return r;
dss_restore_context(dss);
return 0;
}
static const struct dev_pm_ops dss_pm_ops = {
.runtime_suspend = dss_runtime_suspend,
.runtime_resume = dss_runtime_resume,
};
struct platform_driver omap_dsshw_driver = {
.probe = dss_probe,
.remove = dss_remove,
.shutdown = dss_shutdown,
.driver = {
.name = "omapdss_dss",
.pm = &dss_pm_ops,
.of_match_table = dss_of_match,
.suppress_bind_attrs = true,
},
};