OpenCloudOS-Kernel/drivers/spi/spi-bcm2835.c

518 lines
14 KiB
C

/*
* Driver for Broadcom BCM2835 SPI Controllers
*
* Copyright (C) 2012 Chris Boot
* Copyright (C) 2013 Stephen Warren
* Copyright (C) 2015 Martin Sperl
*
* This driver is inspired by:
* spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
* spi-atmel.c, Copyright (C) 2006 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
/* SPI register offsets */
#define BCM2835_SPI_CS 0x00
#define BCM2835_SPI_FIFO 0x04
#define BCM2835_SPI_CLK 0x08
#define BCM2835_SPI_DLEN 0x0c
#define BCM2835_SPI_LTOH 0x10
#define BCM2835_SPI_DC 0x14
/* Bitfields in CS */
#define BCM2835_SPI_CS_LEN_LONG 0x02000000
#define BCM2835_SPI_CS_DMA_LEN 0x01000000
#define BCM2835_SPI_CS_CSPOL2 0x00800000
#define BCM2835_SPI_CS_CSPOL1 0x00400000
#define BCM2835_SPI_CS_CSPOL0 0x00200000
#define BCM2835_SPI_CS_RXF 0x00100000
#define BCM2835_SPI_CS_RXR 0x00080000
#define BCM2835_SPI_CS_TXD 0x00040000
#define BCM2835_SPI_CS_RXD 0x00020000
#define BCM2835_SPI_CS_DONE 0x00010000
#define BCM2835_SPI_CS_LEN 0x00002000
#define BCM2835_SPI_CS_REN 0x00001000
#define BCM2835_SPI_CS_ADCS 0x00000800
#define BCM2835_SPI_CS_INTR 0x00000400
#define BCM2835_SPI_CS_INTD 0x00000200
#define BCM2835_SPI_CS_DMAEN 0x00000100
#define BCM2835_SPI_CS_TA 0x00000080
#define BCM2835_SPI_CS_CSPOL 0x00000040
#define BCM2835_SPI_CS_CLEAR_RX 0x00000020
#define BCM2835_SPI_CS_CLEAR_TX 0x00000010
#define BCM2835_SPI_CS_CPOL 0x00000008
#define BCM2835_SPI_CS_CPHA 0x00000004
#define BCM2835_SPI_CS_CS_10 0x00000002
#define BCM2835_SPI_CS_CS_01 0x00000001
#define BCM2835_SPI_POLLING_LIMIT_US 30
#define BCM2835_SPI_TIMEOUT_MS 30000
#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
| SPI_NO_CS | SPI_3WIRE)
#define DRV_NAME "spi-bcm2835"
struct bcm2835_spi {
void __iomem *regs;
struct clk *clk;
int irq;
const u8 *tx_buf;
u8 *rx_buf;
int tx_len;
int rx_len;
};
static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
{
return readl(bs->regs + reg);
}
static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
{
writel(val, bs->regs + reg);
}
static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
{
u8 byte;
while ((bs->rx_len) &&
(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
if (bs->rx_buf)
*bs->rx_buf++ = byte;
bs->rx_len--;
}
}
static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
{
u8 byte;
while ((bs->tx_len) &&
(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
byte = bs->tx_buf ? *bs->tx_buf++ : 0;
bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
bs->tx_len--;
}
}
static void bcm2835_spi_reset_hw(struct spi_master *master)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* Disable SPI interrupts and transfer */
cs &= ~(BCM2835_SPI_CS_INTR |
BCM2835_SPI_CS_INTD |
BCM2835_SPI_CS_TA);
/* and reset RX/TX FIFOS */
cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
/* and reset the SPI_HW */
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
}
static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* Read as many bytes as possible from FIFO */
bcm2835_rd_fifo(bs);
/* Write as many bytes as possible to FIFO */
bcm2835_wr_fifo(bs);
/* based on flags decide if we can finish the transfer */
if (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE) {
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* wake up the framework */
complete(&master->xfer_completion);
}
return IRQ_HANDLED;
}
static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs,
unsigned long xfer_time_us)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* set timeout to 1 second of maximum polling */
unsigned long timeout = jiffies + HZ;
/* enable HW block without interrupts */
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
/* loop until finished the transfer */
while (bs->rx_len) {
/* read from fifo as much as possible */
bcm2835_rd_fifo(bs);
/* fill in tx fifo as much as possible */
bcm2835_wr_fifo(bs);
/* if we still expect some data after the read,
* check for a possible timeout
*/
if (bs->rx_len && time_after(jiffies, timeout)) {
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* and return timeout */
return -ETIMEDOUT;
}
}
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* and return without waiting for completion */
return 0;
}
static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* fill in fifo if we have gpio-cs
* note that there have been rare events where the native-CS
* flapped for <1us which may change the behaviour
* with gpio-cs this does not happen, so it is implemented
* only for this case
*/
if (gpio_is_valid(spi->cs_gpio)) {
/* enable HW block, but without interrupts enabled
* this would triggern an immediate interrupt
*/
bcm2835_wr(bs, BCM2835_SPI_CS,
cs | BCM2835_SPI_CS_TA);
/* fill in tx fifo as much as possible */
bcm2835_wr_fifo(bs);
}
/*
* Enable the HW block. This will immediately trigger a DONE (TX
* empty) interrupt, upon which we will fill the TX FIFO with the
* first TX bytes. Pre-filling the TX FIFO here to avoid the
* interrupt doesn't work:-(
*/
cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
/* signal that we need to wait for completion */
return 1;
}
static int bcm2835_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
unsigned long spi_hz, clk_hz, cdiv;
unsigned long spi_used_hz, xfer_time_us;
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/* set clock */
spi_hz = tfr->speed_hz;
clk_hz = clk_get_rate(bs->clk);
if (spi_hz >= clk_hz / 2) {
cdiv = 2; /* clk_hz/2 is the fastest we can go */
} else if (spi_hz) {
/* CDIV must be a multiple of two */
cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
cdiv += (cdiv % 2);
if (cdiv >= 65536)
cdiv = 0; /* 0 is the slowest we can go */
} else {
cdiv = 0; /* 0 is the slowest we can go */
}
spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
/* handle all the modes */
if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
cs |= BCM2835_SPI_CS_REN;
if (spi->mode & SPI_CPOL)
cs |= BCM2835_SPI_CS_CPOL;
if (spi->mode & SPI_CPHA)
cs |= BCM2835_SPI_CS_CPHA;
/* for gpio_cs set dummy CS so that no HW-CS get changed
* we can not run this in bcm2835_spi_set_cs, as it does
* not get called for cs_gpio cases, so we need to do it here
*/
if (gpio_is_valid(spi->cs_gpio) || (spi->mode & SPI_NO_CS))
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
/* set transmit buffers and length */
bs->tx_buf = tfr->tx_buf;
bs->rx_buf = tfr->rx_buf;
bs->tx_len = tfr->len;
bs->rx_len = tfr->len;
/* calculate the estimated time in us the transfer runs */
xfer_time_us = tfr->len
* 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
* 1000000 / spi_used_hz;
/* for short requests run polling*/
if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
return bcm2835_spi_transfer_one_poll(master, spi, tfr,
cs, xfer_time_us);
return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
}
static void bcm2835_spi_handle_err(struct spi_master *master,
struct spi_message *msg)
{
bcm2835_spi_reset_hw(master);
}
static void bcm2835_spi_set_cs(struct spi_device *spi, bool gpio_level)
{
/*
* we can assume that we are "native" as per spi_set_cs
* calling us ONLY when cs_gpio is not set
* we can also assume that we are CS < 3 as per bcm2835_spi_setup
* we would not get called because of error handling there.
* the level passed is the electrical level not enabled/disabled
* so it has to get translated back to enable/disable
* see spi_set_cs in spi.c for the implementation
*/
struct spi_master *master = spi->master;
struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
bool enable;
/* calculate the enable flag from the passed gpio_level */
enable = (spi->mode & SPI_CS_HIGH) ? gpio_level : !gpio_level;
/* set flags for "reverse" polarity in the registers */
if (spi->mode & SPI_CS_HIGH) {
/* set the correct CS-bits */
cs |= BCM2835_SPI_CS_CSPOL;
cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
} else {
/* clean the CS-bits */
cs &= ~BCM2835_SPI_CS_CSPOL;
cs &= ~(BCM2835_SPI_CS_CSPOL0 << spi->chip_select);
}
/* select the correct chip_select depending on disabled/enabled */
if (enable) {
/* set cs correctly */
if (spi->mode & SPI_NO_CS) {
/* use the "undefined" chip-select */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
} else {
/* set the chip select */
cs &= ~(BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01);
cs |= spi->chip_select;
}
} else {
/* disable CSPOL which puts HW-CS into deselected state */
cs &= ~BCM2835_SPI_CS_CSPOL;
/* use the "undefined" chip-select as precaution */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
}
/* finally set the calculated flags in SPI_CS */
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
}
static int chip_match_name(struct gpio_chip *chip, void *data)
{
return !strcmp(chip->label, data);
}
static int bcm2835_spi_setup(struct spi_device *spi)
{
int err;
struct gpio_chip *chip;
/*
* sanity checking the native-chipselects
*/
if (spi->mode & SPI_NO_CS)
return 0;
if (gpio_is_valid(spi->cs_gpio))
return 0;
if (spi->chip_select > 1) {
/* error in the case of native CS requested with CS > 1
* officially there is a CS2, but it is not documented
* which GPIO is connected with that...
*/
dev_err(&spi->dev,
"setup: only two native chip-selects are supported\n");
return -EINVAL;
}
/* now translate native cs to GPIO */
/* get the gpio chip for the base */
chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
if (!chip)
return 0;
/* and calculate the real CS */
spi->cs_gpio = chip->base + 8 - spi->chip_select;
/* and set up the "mode" and level */
dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
spi->chip_select, spi->cs_gpio);
/* set up GPIO as output and pull to the correct level */
err = gpio_direction_output(spi->cs_gpio,
(spi->mode & SPI_CS_HIGH) ? 0 : 1);
if (err) {
dev_err(&spi->dev,
"could not set CS%i gpio %i as output: %i",
spi->chip_select, spi->cs_gpio, err);
return err;
}
/* the implementation of pinctrl-bcm2835 currently does not
* set the GPIO value when using gpio_direction_output
* so we are setting it here explicitly
*/
gpio_set_value(spi->cs_gpio, (spi->mode & SPI_CS_HIGH) ? 0 : 1);
return 0;
}
static int bcm2835_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct bcm2835_spi *bs;
struct resource *res;
int err;
master = spi_alloc_master(&pdev->dev, sizeof(*bs));
if (!master) {
dev_err(&pdev->dev, "spi_alloc_master() failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
master->mode_bits = BCM2835_SPI_MODE_BITS;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->num_chipselect = 3;
master->setup = bcm2835_spi_setup;
master->set_cs = bcm2835_spi_set_cs;
master->transfer_one = bcm2835_spi_transfer_one;
master->handle_err = bcm2835_spi_handle_err;
master->dev.of_node = pdev->dev.of_node;
bs = spi_master_get_devdata(master);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
bs->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(bs->regs)) {
err = PTR_ERR(bs->regs);
goto out_master_put;
}
bs->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(bs->clk)) {
err = PTR_ERR(bs->clk);
dev_err(&pdev->dev, "could not get clk: %d\n", err);
goto out_master_put;
}
bs->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
if (bs->irq <= 0) {
dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
err = bs->irq ? bs->irq : -ENODEV;
goto out_master_put;
}
clk_prepare_enable(bs->clk);
err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
dev_name(&pdev->dev), master);
if (err) {
dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
goto out_clk_disable;
}
/* initialise the hardware with the default polarities */
bcm2835_wr(bs, BCM2835_SPI_CS,
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
err = devm_spi_register_master(&pdev->dev, master);
if (err) {
dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
goto out_clk_disable;
}
return 0;
out_clk_disable:
clk_disable_unprepare(bs->clk);
out_master_put:
spi_master_put(master);
return err;
}
static int bcm2835_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* Clear FIFOs, and disable the HW block */
bcm2835_wr(bs, BCM2835_SPI_CS,
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
clk_disable_unprepare(bs->clk);
return 0;
}
static const struct of_device_id bcm2835_spi_match[] = {
{ .compatible = "brcm,bcm2835-spi", },
{}
};
MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
static struct platform_driver bcm2835_spi_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = bcm2835_spi_match,
},
.probe = bcm2835_spi_probe,
.remove = bcm2835_spi_remove,
};
module_platform_driver(bcm2835_spi_driver);
MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
MODULE_LICENSE("GPL v2");