OpenCloudOS-Kernel/drivers/usb/musb/musb_host.c

2332 lines
64 KiB
C

/*
* MUSB OTG driver host support
*
* Copyright 2005 Mentor Graphics Corporation
* Copyright (C) 2005-2006 by Texas Instruments
* Copyright (C) 2006-2007 Nokia Corporation
* Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include "musb_core.h"
#include "musb_host.h"
/* MUSB HOST status 22-mar-2006
*
* - There's still lots of partial code duplication for fault paths, so
* they aren't handled as consistently as they need to be.
*
* - PIO mostly behaved when last tested.
* + including ep0, with all usbtest cases 9, 10
* + usbtest 14 (ep0out) doesn't seem to run at all
* + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
* configurations, but otherwise double buffering passes basic tests.
* + for 2.6.N, for N > ~10, needs API changes for hcd framework.
*
* - DMA (CPPI) ... partially behaves, not currently recommended
* + about 1/15 the speed of typical EHCI implementations (PCI)
* + RX, all too often reqpkt seems to misbehave after tx
* + TX, no known issues (other than evident silicon issue)
*
* - DMA (Mentor/OMAP) ...has at least toggle update problems
*
* - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
* starvation ... nothing yet for TX, interrupt, or bulk.
*
* - Not tested with HNP, but some SRP paths seem to behave.
*
* NOTE 24-August-2006:
*
* - Bulk traffic finally uses both sides of hardware ep1, freeing up an
* extra endpoint for periodic use enabling hub + keybd + mouse. That
* mostly works, except that with "usbnet" it's easy to trigger cases
* with "ping" where RX loses. (a) ping to davinci, even "ping -f",
* fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
* although ARP RX wins. (That test was done with a full speed link.)
*/
/*
* NOTE on endpoint usage:
*
* CONTROL transfers all go through ep0. BULK ones go through dedicated IN
* and OUT endpoints ... hardware is dedicated for those "async" queue(s).
* (Yes, bulk _could_ use more of the endpoints than that, and would even
* benefit from it.)
*
* INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
* So far that scheduling is both dumb and optimistic: the endpoint will be
* "claimed" until its software queue is no longer refilled. No multiplexing
* of transfers between endpoints, or anything clever.
*/
static void musb_ep_program(struct musb *musb, u8 epnum,
struct urb *urb, int is_out,
u8 *buf, u32 offset, u32 len);
/*
* Clear TX fifo. Needed to avoid BABBLE errors.
*/
static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep)
{
struct musb *musb = ep->musb;
void __iomem *epio = ep->regs;
u16 csr;
u16 lastcsr = 0;
int retries = 1000;
csr = musb_readw(epio, MUSB_TXCSR);
while (csr & MUSB_TXCSR_FIFONOTEMPTY) {
if (csr != lastcsr)
dev_dbg(musb->controller, "Host TX FIFONOTEMPTY csr: %02x\n", csr);
lastcsr = csr;
csr |= MUSB_TXCSR_FLUSHFIFO;
musb_writew(epio, MUSB_TXCSR, csr);
csr = musb_readw(epio, MUSB_TXCSR);
if (WARN(retries-- < 1,
"Could not flush host TX%d fifo: csr: %04x\n",
ep->epnum, csr))
return;
mdelay(1);
}
}
static void musb_h_ep0_flush_fifo(struct musb_hw_ep *ep)
{
void __iomem *epio = ep->regs;
u16 csr;
int retries = 5;
/* scrub any data left in the fifo */
do {
csr = musb_readw(epio, MUSB_TXCSR);
if (!(csr & (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_RXPKTRDY)))
break;
musb_writew(epio, MUSB_TXCSR, MUSB_CSR0_FLUSHFIFO);
csr = musb_readw(epio, MUSB_TXCSR);
udelay(10);
} while (--retries);
WARN(!retries, "Could not flush host TX%d fifo: csr: %04x\n",
ep->epnum, csr);
/* and reset for the next transfer */
musb_writew(epio, MUSB_TXCSR, 0);
}
/*
* Start transmit. Caller is responsible for locking shared resources.
* musb must be locked.
*/
static inline void musb_h_tx_start(struct musb_hw_ep *ep)
{
u16 txcsr;
/* NOTE: no locks here; caller should lock and select EP */
if (ep->epnum) {
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS;
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
} else {
txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY;
musb_writew(ep->regs, MUSB_CSR0, txcsr);
}
}
static inline void musb_h_tx_dma_start(struct musb_hw_ep *ep)
{
u16 txcsr;
/* NOTE: no locks here; caller should lock and select EP */
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS;
if (is_cppi_enabled())
txcsr |= MUSB_TXCSR_DMAMODE;
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
}
static void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh)
{
if (is_in != 0 || ep->is_shared_fifo)
ep->in_qh = qh;
if (is_in == 0 || ep->is_shared_fifo)
ep->out_qh = qh;
}
static struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in)
{
return is_in ? ep->in_qh : ep->out_qh;
}
/*
* Start the URB at the front of an endpoint's queue
* end must be claimed from the caller.
*
* Context: controller locked, irqs blocked
*/
static void
musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh)
{
u16 frame;
u32 len;
void __iomem *mbase = musb->mregs;
struct urb *urb = next_urb(qh);
void *buf = urb->transfer_buffer;
u32 offset = 0;
struct musb_hw_ep *hw_ep = qh->hw_ep;
unsigned pipe = urb->pipe;
u8 address = usb_pipedevice(pipe);
int epnum = hw_ep->epnum;
/* initialize software qh state */
qh->offset = 0;
qh->segsize = 0;
/* gather right source of data */
switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL:
/* control transfers always start with SETUP */
is_in = 0;
musb->ep0_stage = MUSB_EP0_START;
buf = urb->setup_packet;
len = 8;
break;
case USB_ENDPOINT_XFER_ISOC:
qh->iso_idx = 0;
qh->frame = 0;
offset = urb->iso_frame_desc[0].offset;
len = urb->iso_frame_desc[0].length;
break;
default: /* bulk, interrupt */
/* actual_length may be nonzero on retry paths */
buf = urb->transfer_buffer + urb->actual_length;
len = urb->transfer_buffer_length - urb->actual_length;
}
dev_dbg(musb->controller, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
qh, urb, address, qh->epnum,
is_in ? "in" : "out",
({char *s; switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL: s = ""; break;
case USB_ENDPOINT_XFER_BULK: s = "-bulk"; break;
case USB_ENDPOINT_XFER_ISOC: s = "-iso"; break;
default: s = "-intr"; break;
}; s; }),
epnum, buf + offset, len);
/* Configure endpoint */
musb_ep_set_qh(hw_ep, is_in, qh);
musb_ep_program(musb, epnum, urb, !is_in, buf, offset, len);
/* transmit may have more work: start it when it is time */
if (is_in)
return;
/* determine if the time is right for a periodic transfer */
switch (qh->type) {
case USB_ENDPOINT_XFER_ISOC:
case USB_ENDPOINT_XFER_INT:
dev_dbg(musb->controller, "check whether there's still time for periodic Tx\n");
frame = musb_readw(mbase, MUSB_FRAME);
/* FIXME this doesn't implement that scheduling policy ...
* or handle framecounter wrapping
*/
if ((urb->transfer_flags & URB_ISO_ASAP)
|| (frame >= urb->start_frame)) {
/* REVISIT the SOF irq handler shouldn't duplicate
* this code; and we don't init urb->start_frame...
*/
qh->frame = 0;
goto start;
} else {
qh->frame = urb->start_frame;
/* enable SOF interrupt so we can count down */
dev_dbg(musb->controller, "SOF for %d\n", epnum);
#if 1 /* ifndef CONFIG_ARCH_DAVINCI */
musb_writeb(mbase, MUSB_INTRUSBE, 0xff);
#endif
}
break;
default:
start:
dev_dbg(musb->controller, "Start TX%d %s\n", epnum,
hw_ep->tx_channel ? "dma" : "pio");
if (!hw_ep->tx_channel)
musb_h_tx_start(hw_ep);
else if (is_cppi_enabled() || tusb_dma_omap())
musb_h_tx_dma_start(hw_ep);
}
}
/* Context: caller owns controller lock, IRQs are blocked */
static void musb_giveback(struct musb *musb, struct urb *urb, int status)
__releases(musb->lock)
__acquires(musb->lock)
{
dev_dbg(musb->controller,
"complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
urb, urb->complete, status,
usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "in" : "out",
urb->actual_length, urb->transfer_buffer_length
);
usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb);
spin_unlock(&musb->lock);
usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status);
spin_lock(&musb->lock);
}
/* For bulk/interrupt endpoints only */
static inline void musb_save_toggle(struct musb_qh *qh, int is_in,
struct urb *urb)
{
void __iomem *epio = qh->hw_ep->regs;
u16 csr;
/*
* FIXME: the current Mentor DMA code seems to have
* problems getting toggle correct.
*/
if (is_in)
csr = musb_readw(epio, MUSB_RXCSR) & MUSB_RXCSR_H_DATATOGGLE;
else
csr = musb_readw(epio, MUSB_TXCSR) & MUSB_TXCSR_H_DATATOGGLE;
usb_settoggle(urb->dev, qh->epnum, !is_in, csr ? 1 : 0);
}
/*
* Advance this hardware endpoint's queue, completing the specified URB and
* advancing to either the next URB queued to that qh, or else invalidating
* that qh and advancing to the next qh scheduled after the current one.
*
* Context: caller owns controller lock, IRQs are blocked
*/
static void musb_advance_schedule(struct musb *musb, struct urb *urb,
struct musb_hw_ep *hw_ep, int is_in)
{
struct musb_qh *qh = musb_ep_get_qh(hw_ep, is_in);
struct musb_hw_ep *ep = qh->hw_ep;
int ready = qh->is_ready;
int status;
status = (urb->status == -EINPROGRESS) ? 0 : urb->status;
/* save toggle eagerly, for paranoia */
switch (qh->type) {
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
musb_save_toggle(qh, is_in, urb);
break;
case USB_ENDPOINT_XFER_ISOC:
if (status == 0 && urb->error_count)
status = -EXDEV;
break;
}
qh->is_ready = 0;
musb_giveback(musb, urb, status);
qh->is_ready = ready;
/* reclaim resources (and bandwidth) ASAP; deschedule it, and
* invalidate qh as soon as list_empty(&hep->urb_list)
*/
if (list_empty(&qh->hep->urb_list)) {
struct list_head *head;
if (is_in)
ep->rx_reinit = 1;
else
ep->tx_reinit = 1;
/* Clobber old pointers to this qh */
musb_ep_set_qh(ep, is_in, NULL);
qh->hep->hcpriv = NULL;
switch (qh->type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
/* fifo policy for these lists, except that NAKing
* should rotate a qh to the end (for fairness).
*/
if (qh->mux == 1) {
head = qh->ring.prev;
list_del(&qh->ring);
kfree(qh);
qh = first_qh(head);
break;
}
case USB_ENDPOINT_XFER_ISOC:
case USB_ENDPOINT_XFER_INT:
/* this is where periodic bandwidth should be
* de-allocated if it's tracked and allocated;
* and where we'd update the schedule tree...
*/
kfree(qh);
qh = NULL;
break;
}
}
if (qh != NULL && qh->is_ready) {
dev_dbg(musb->controller, "... next ep%d %cX urb %p\n",
hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh));
musb_start_urb(musb, is_in, qh);
}
}
static u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr)
{
/* we don't want fifo to fill itself again;
* ignore dma (various models),
* leave toggle alone (may not have been saved yet)
*/
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY;
csr &= ~(MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR);
/* write 2x to allow double buffering */
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
/* flush writebuffer */
return musb_readw(hw_ep->regs, MUSB_RXCSR);
}
/*
* PIO RX for a packet (or part of it).
*/
static bool
musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err)
{
u16 rx_count;
u8 *buf;
u16 csr;
bool done = false;
u32 length;
int do_flush = 0;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
int pipe = urb->pipe;
void *buffer = urb->transfer_buffer;
/* musb_ep_select(mbase, epnum); */
rx_count = musb_readw(epio, MUSB_RXCOUNT);
dev_dbg(musb->controller, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count,
urb->transfer_buffer, qh->offset,
urb->transfer_buffer_length);
/* unload FIFO */
if (usb_pipeisoc(pipe)) {
int status = 0;
struct usb_iso_packet_descriptor *d;
if (iso_err) {
status = -EILSEQ;
urb->error_count++;
}
d = urb->iso_frame_desc + qh->iso_idx;
buf = buffer + d->offset;
length = d->length;
if (rx_count > length) {
if (status == 0) {
status = -EOVERFLOW;
urb->error_count++;
}
dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length);
do_flush = 1;
} else
length = rx_count;
urb->actual_length += length;
d->actual_length = length;
d->status = status;
/* see if we are done */
done = (++qh->iso_idx >= urb->number_of_packets);
} else {
/* non-isoch */
buf = buffer + qh->offset;
length = urb->transfer_buffer_length - qh->offset;
if (rx_count > length) {
if (urb->status == -EINPROGRESS)
urb->status = -EOVERFLOW;
dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length);
do_flush = 1;
} else
length = rx_count;
urb->actual_length += length;
qh->offset += length;
/* see if we are done */
done = (urb->actual_length == urb->transfer_buffer_length)
|| (rx_count < qh->maxpacket)
|| (urb->status != -EINPROGRESS);
if (done
&& (urb->status == -EINPROGRESS)
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
&& (urb->actual_length
< urb->transfer_buffer_length))
urb->status = -EREMOTEIO;
}
musb_read_fifo(hw_ep, length, buf);
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_H_WZC_BITS;
if (unlikely(do_flush))
musb_h_flush_rxfifo(hw_ep, csr);
else {
/* REVISIT this assumes AUTOCLEAR is never set */
csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT);
if (!done)
csr |= MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR, csr);
}
return done;
}
/* we don't always need to reinit a given side of an endpoint...
* when we do, use tx/rx reinit routine and then construct a new CSR
* to address data toggle, NYET, and DMA or PIO.
*
* it's possible that driver bugs (especially for DMA) or aborting a
* transfer might have left the endpoint busier than it should be.
* the busy/not-empty tests are basically paranoia.
*/
static void
musb_rx_reinit(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep)
{
u16 csr;
/* NOTE: we know the "rx" fifo reinit never triggers for ep0.
* That always uses tx_reinit since ep0 repurposes TX register
* offsets; the initial SETUP packet is also a kind of OUT.
*/
/* if programmed for Tx, put it in RX mode */
if (ep->is_shared_fifo) {
csr = musb_readw(ep->regs, MUSB_TXCSR);
if (csr & MUSB_TXCSR_MODE) {
musb_h_tx_flush_fifo(ep);
csr = musb_readw(ep->regs, MUSB_TXCSR);
musb_writew(ep->regs, MUSB_TXCSR,
csr | MUSB_TXCSR_FRCDATATOG);
}
/*
* Clear the MODE bit (and everything else) to enable Rx.
* NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
*/
if (csr & MUSB_TXCSR_DMAMODE)
musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_DMAMODE);
musb_writew(ep->regs, MUSB_TXCSR, 0);
/* scrub all previous state, clearing toggle */
} else {
csr = musb_readw(ep->regs, MUSB_RXCSR);
if (csr & MUSB_RXCSR_RXPKTRDY)
WARNING("rx%d, packet/%d ready?\n", ep->epnum,
musb_readw(ep->regs, MUSB_RXCOUNT));
musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
}
/* target addr and (for multipoint) hub addr/port */
if (musb->is_multipoint) {
musb_write_rxfunaddr(ep->target_regs, qh->addr_reg);
musb_write_rxhubaddr(ep->target_regs, qh->h_addr_reg);
musb_write_rxhubport(ep->target_regs, qh->h_port_reg);
} else
musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg);
/* protocol/endpoint, interval/NAKlimit, i/o size */
musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg);
musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg);
/* NOTE: bulk combining rewrites high bits of maxpacket */
/* Set RXMAXP with the FIFO size of the endpoint
* to disable double buffer mode.
*/
if (musb->double_buffer_not_ok)
musb_writew(ep->regs, MUSB_RXMAXP, ep->max_packet_sz_rx);
else
musb_writew(ep->regs, MUSB_RXMAXP,
qh->maxpacket | ((qh->hb_mult - 1) << 11));
ep->rx_reinit = 0;
}
static bool musb_tx_dma_program(struct dma_controller *dma,
struct musb_hw_ep *hw_ep, struct musb_qh *qh,
struct urb *urb, u32 offset, u32 length)
{
struct dma_channel *channel = hw_ep->tx_channel;
void __iomem *epio = hw_ep->regs;
u16 pkt_size = qh->maxpacket;
u16 csr;
u8 mode;
#ifdef CONFIG_USB_INVENTRA_DMA
if (length > channel->max_len)
length = channel->max_len;
csr = musb_readw(epio, MUSB_TXCSR);
if (length > pkt_size) {
mode = 1;
csr |= MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB;
/* autoset shouldn't be set in high bandwidth */
if (qh->hb_mult == 1)
csr |= MUSB_TXCSR_AUTOSET;
} else {
mode = 0;
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE);
csr |= MUSB_TXCSR_DMAENAB; /* against programmer's guide */
}
channel->desired_mode = mode;
musb_writew(epio, MUSB_TXCSR, csr);
#else
if (!is_cppi_enabled() && !tusb_dma_omap())
return false;
channel->actual_len = 0;
/*
* TX uses "RNDIS" mode automatically but needs help
* to identify the zero-length-final-packet case.
*/
mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0;
#endif
qh->segsize = length;
/*
* Ensure the data reaches to main memory before starting
* DMA transfer
*/
wmb();
if (!dma->channel_program(channel, pkt_size, mode,
urb->transfer_dma + offset, length)) {
dma->channel_release(channel);
hw_ep->tx_channel = NULL;
csr = musb_readw(epio, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB);
musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_H_WZC_BITS);
return false;
}
return true;
}
/*
* Program an HDRC endpoint as per the given URB
* Context: irqs blocked, controller lock held
*/
static void musb_ep_program(struct musb *musb, u8 epnum,
struct urb *urb, int is_out,
u8 *buf, u32 offset, u32 len)
{
struct dma_controller *dma_controller;
struct dma_channel *dma_channel;
u8 dma_ok;
void __iomem *mbase = musb->mregs;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = musb_ep_get_qh(hw_ep, !is_out);
u16 packet_sz = qh->maxpacket;
dev_dbg(musb->controller, "%s hw%d urb %p spd%d dev%d ep%d%s "
"h_addr%02x h_port%02x bytes %d\n",
is_out ? "-->" : "<--",
epnum, urb, urb->dev->speed,
qh->addr_reg, qh->epnum, is_out ? "out" : "in",
qh->h_addr_reg, qh->h_port_reg,
len);
musb_ep_select(mbase, epnum);
/* candidate for DMA? */
dma_controller = musb->dma_controller;
if (is_dma_capable() && epnum && dma_controller) {
dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel;
if (!dma_channel) {
dma_channel = dma_controller->channel_alloc(
dma_controller, hw_ep, is_out);
if (is_out)
hw_ep->tx_channel = dma_channel;
else
hw_ep->rx_channel = dma_channel;
}
} else
dma_channel = NULL;
/* make sure we clear DMAEnab, autoSet bits from previous run */
/* OUT/transmit/EP0 or IN/receive? */
if (is_out) {
u16 csr;
u16 int_txe;
u16 load_count;
csr = musb_readw(epio, MUSB_TXCSR);
/* disable interrupt in case we flush */
int_txe = musb_readw(mbase, MUSB_INTRTXE);
musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
/* general endpoint setup */
if (epnum) {
/* flush all old state, set default */
musb_h_tx_flush_fifo(hw_ep);
/*
* We must not clear the DMAMODE bit before or in
* the same cycle with the DMAENAB bit, so we clear
* the latter first...
*/
csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT
| MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_FRCDATATOG
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_TXPKTRDY
);
csr |= MUSB_TXCSR_MODE;
if (usb_gettoggle(urb->dev, qh->epnum, 1))
csr |= MUSB_TXCSR_H_WR_DATATOGGLE
| MUSB_TXCSR_H_DATATOGGLE;
else
csr |= MUSB_TXCSR_CLRDATATOG;
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may need to clear FLUSHFIFO ... */
csr &= ~MUSB_TXCSR_DMAMODE;
musb_writew(epio, MUSB_TXCSR, csr);
csr = musb_readw(epio, MUSB_TXCSR);
} else {
/* endpoint 0: just flush */
musb_h_ep0_flush_fifo(hw_ep);
}
/* target addr and (for multipoint) hub addr/port */
if (musb->is_multipoint) {
musb_write_txfunaddr(mbase, epnum, qh->addr_reg);
musb_write_txhubaddr(mbase, epnum, qh->h_addr_reg);
musb_write_txhubport(mbase, epnum, qh->h_port_reg);
/* FIXME if !epnum, do the same for RX ... */
} else
musb_writeb(mbase, MUSB_FADDR, qh->addr_reg);
/* protocol/endpoint/interval/NAKlimit */
if (epnum) {
musb_writeb(epio, MUSB_TXTYPE, qh->type_reg);
if (musb->double_buffer_not_ok)
musb_writew(epio, MUSB_TXMAXP,
hw_ep->max_packet_sz_tx);
else if (can_bulk_split(musb, qh->type))
musb_writew(epio, MUSB_TXMAXP, packet_sz
| ((hw_ep->max_packet_sz_tx /
packet_sz) - 1) << 11);
else
musb_writew(epio, MUSB_TXMAXP,
qh->maxpacket |
((qh->hb_mult - 1) << 11));
musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg);
} else {
musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg);
if (musb->is_multipoint)
musb_writeb(epio, MUSB_TYPE0,
qh->type_reg);
}
if (can_bulk_split(musb, qh->type))
load_count = min((u32) hw_ep->max_packet_sz_tx,
len);
else
load_count = min((u32) packet_sz, len);
if (dma_channel && musb_tx_dma_program(dma_controller,
hw_ep, qh, urb, offset, len))
load_count = 0;
if (load_count) {
/* PIO to load FIFO */
qh->segsize = load_count;
musb_write_fifo(hw_ep, load_count, buf);
}
/* re-enable interrupt */
musb_writew(mbase, MUSB_INTRTXE, int_txe);
/* IN/receive */
} else {
u16 csr;
if (hw_ep->rx_reinit) {
musb_rx_reinit(musb, qh, hw_ep);
/* init new state: toggle and NYET, maybe DMA later */
if (usb_gettoggle(urb->dev, qh->epnum, 0))
csr = MUSB_RXCSR_H_WR_DATATOGGLE
| MUSB_RXCSR_H_DATATOGGLE;
else
csr = 0;
if (qh->type == USB_ENDPOINT_XFER_INT)
csr |= MUSB_RXCSR_DISNYET;
} else {
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
if (csr & (MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_REQPKT))
ERR("broken !rx_reinit, ep%d csr %04x\n",
hw_ep->epnum, csr);
/* scrub any stale state, leaving toggle alone */
csr &= MUSB_RXCSR_DISNYET;
}
/* kick things off */
if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) {
/* Candidate for DMA */
dma_channel->actual_len = 0L;
qh->segsize = len;
/* AUTOREQ is in a DMA register */
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
/*
* Unless caller treats short RX transfers as
* errors, we dare not queue multiple transfers.
*/
dma_ok = dma_controller->channel_program(dma_channel,
packet_sz, !(urb->transfer_flags &
URB_SHORT_NOT_OK),
urb->transfer_dma + offset,
qh->segsize);
if (!dma_ok) {
dma_controller->channel_release(dma_channel);
hw_ep->rx_channel = dma_channel = NULL;
} else
csr |= MUSB_RXCSR_DMAENAB;
}
csr |= MUSB_RXCSR_H_REQPKT;
dev_dbg(musb->controller, "RXCSR%d := %04x\n", epnum, csr);
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
}
}
/*
* Service the default endpoint (ep0) as host.
* Return true until it's time to start the status stage.
*/
static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb)
{
bool more = false;
u8 *fifo_dest = NULL;
u16 fifo_count = 0;
struct musb_hw_ep *hw_ep = musb->control_ep;
struct musb_qh *qh = hw_ep->in_qh;
struct usb_ctrlrequest *request;
switch (musb->ep0_stage) {
case MUSB_EP0_IN:
fifo_dest = urb->transfer_buffer + urb->actual_length;
fifo_count = min_t(size_t, len, urb->transfer_buffer_length -
urb->actual_length);
if (fifo_count < len)
urb->status = -EOVERFLOW;
musb_read_fifo(hw_ep, fifo_count, fifo_dest);
urb->actual_length += fifo_count;
if (len < qh->maxpacket) {
/* always terminate on short read; it's
* rarely reported as an error.
*/
} else if (urb->actual_length <
urb->transfer_buffer_length)
more = true;
break;
case MUSB_EP0_START:
request = (struct usb_ctrlrequest *) urb->setup_packet;
if (!request->wLength) {
dev_dbg(musb->controller, "start no-DATA\n");
break;
} else if (request->bRequestType & USB_DIR_IN) {
dev_dbg(musb->controller, "start IN-DATA\n");
musb->ep0_stage = MUSB_EP0_IN;
more = true;
break;
} else {
dev_dbg(musb->controller, "start OUT-DATA\n");
musb->ep0_stage = MUSB_EP0_OUT;
more = true;
}
/* FALLTHROUGH */
case MUSB_EP0_OUT:
fifo_count = min_t(size_t, qh->maxpacket,
urb->transfer_buffer_length -
urb->actual_length);
if (fifo_count) {
fifo_dest = (u8 *) (urb->transfer_buffer
+ urb->actual_length);
dev_dbg(musb->controller, "Sending %d byte%s to ep0 fifo %p\n",
fifo_count,
(fifo_count == 1) ? "" : "s",
fifo_dest);
musb_write_fifo(hw_ep, fifo_count, fifo_dest);
urb->actual_length += fifo_count;
more = true;
}
break;
default:
ERR("bogus ep0 stage %d\n", musb->ep0_stage);
break;
}
return more;
}
/*
* Handle default endpoint interrupt as host. Only called in IRQ time
* from musb_interrupt().
*
* called with controller irqlocked
*/
irqreturn_t musb_h_ep0_irq(struct musb *musb)
{
struct urb *urb;
u16 csr, len;
int status = 0;
void __iomem *mbase = musb->mregs;
struct musb_hw_ep *hw_ep = musb->control_ep;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
bool complete = false;
irqreturn_t retval = IRQ_NONE;
/* ep0 only has one queue, "in" */
urb = next_urb(qh);
musb_ep_select(mbase, 0);
csr = musb_readw(epio, MUSB_CSR0);
len = (csr & MUSB_CSR0_RXPKTRDY)
? musb_readb(epio, MUSB_COUNT0)
: 0;
dev_dbg(musb->controller, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
csr, qh, len, urb, musb->ep0_stage);
/* if we just did status stage, we are done */
if (MUSB_EP0_STATUS == musb->ep0_stage) {
retval = IRQ_HANDLED;
complete = true;
}
/* prepare status */
if (csr & MUSB_CSR0_H_RXSTALL) {
dev_dbg(musb->controller, "STALLING ENDPOINT\n");
status = -EPIPE;
} else if (csr & MUSB_CSR0_H_ERROR) {
dev_dbg(musb->controller, "no response, csr0 %04x\n", csr);
status = -EPROTO;
} else if (csr & MUSB_CSR0_H_NAKTIMEOUT) {
dev_dbg(musb->controller, "control NAK timeout\n");
/* NOTE: this code path would be a good place to PAUSE a
* control transfer, if another one is queued, so that
* ep0 is more likely to stay busy. That's already done
* for bulk RX transfers.
*
* if (qh->ring.next != &musb->control), then
* we have a candidate... NAKing is *NOT* an error
*/
musb_writew(epio, MUSB_CSR0, 0);
retval = IRQ_HANDLED;
}
if (status) {
dev_dbg(musb->controller, "aborting\n");
retval = IRQ_HANDLED;
if (urb)
urb->status = status;
complete = true;
/* use the proper sequence to abort the transfer */
if (csr & MUSB_CSR0_H_REQPKT) {
csr &= ~MUSB_CSR0_H_REQPKT;
musb_writew(epio, MUSB_CSR0, csr);
csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
musb_writew(epio, MUSB_CSR0, csr);
} else {
musb_h_ep0_flush_fifo(hw_ep);
}
musb_writeb(epio, MUSB_NAKLIMIT0, 0);
/* clear it */
musb_writew(epio, MUSB_CSR0, 0);
}
if (unlikely(!urb)) {
/* stop endpoint since we have no place for its data, this
* SHOULD NEVER HAPPEN! */
ERR("no URB for end 0\n");
musb_h_ep0_flush_fifo(hw_ep);
goto done;
}
if (!complete) {
/* call common logic and prepare response */
if (musb_h_ep0_continue(musb, len, urb)) {
/* more packets required */
csr = (MUSB_EP0_IN == musb->ep0_stage)
? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY;
} else {
/* data transfer complete; perform status phase */
if (usb_pipeout(urb->pipe)
|| !urb->transfer_buffer_length)
csr = MUSB_CSR0_H_STATUSPKT
| MUSB_CSR0_H_REQPKT;
else
csr = MUSB_CSR0_H_STATUSPKT
| MUSB_CSR0_TXPKTRDY;
/* flag status stage */
musb->ep0_stage = MUSB_EP0_STATUS;
dev_dbg(musb->controller, "ep0 STATUS, csr %04x\n", csr);
}
musb_writew(epio, MUSB_CSR0, csr);
retval = IRQ_HANDLED;
} else
musb->ep0_stage = MUSB_EP0_IDLE;
/* call completion handler if done */
if (complete)
musb_advance_schedule(musb, urb, hw_ep, 1);
done:
return retval;
}
#ifdef CONFIG_USB_INVENTRA_DMA
/* Host side TX (OUT) using Mentor DMA works as follows:
submit_urb ->
- if queue was empty, Program Endpoint
- ... which starts DMA to fifo in mode 1 or 0
DMA Isr (transfer complete) -> TxAvail()
- Stop DMA (~DmaEnab) (<--- Alert ... currently happens
only in musb_cleanup_urb)
- TxPktRdy has to be set in mode 0 or for
short packets in mode 1.
*/
#endif
/* Service a Tx-Available or dma completion irq for the endpoint */
void musb_host_tx(struct musb *musb, u8 epnum)
{
int pipe;
bool done = false;
u16 tx_csr;
size_t length = 0;
size_t offset = 0;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->out_qh;
struct urb *urb = next_urb(qh);
u32 status = 0;
void __iomem *mbase = musb->mregs;
struct dma_channel *dma;
bool transfer_pending = false;
musb_ep_select(mbase, epnum);
tx_csr = musb_readw(epio, MUSB_TXCSR);
/* with CPPI, DMA sometimes triggers "extra" irqs */
if (!urb) {
dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
return;
}
pipe = urb->pipe;
dma = is_dma_capable() ? hw_ep->tx_channel : NULL;
dev_dbg(musb->controller, "OUT/TX%d end, csr %04x%s\n", epnum, tx_csr,
dma ? ", dma" : "");
/* check for errors */
if (tx_csr & MUSB_TXCSR_H_RXSTALL) {
/* dma was disabled, fifo flushed */
dev_dbg(musb->controller, "TX end %d stall\n", epnum);
/* stall; record URB status */
status = -EPIPE;
} else if (tx_csr & MUSB_TXCSR_H_ERROR) {
/* (NON-ISO) dma was disabled, fifo flushed */
dev_dbg(musb->controller, "TX 3strikes on ep=%d\n", epnum);
status = -ETIMEDOUT;
} else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) {
dev_dbg(musb->controller, "TX end=%d device not responding\n", epnum);
/* NOTE: this code path would be a good place to PAUSE a
* transfer, if there's some other (nonperiodic) tx urb
* that could use this fifo. (dma complicates it...)
* That's already done for bulk RX transfers.
*
* if (bulk && qh->ring.next != &musb->out_bulk), then
* we have a candidate... NAKing is *NOT* an error
*/
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY);
return;
}
if (status) {
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void) musb->dma_controller->channel_abort(dma);
}
/* do the proper sequence to abort the transfer in the
* usb core; the dma engine should already be stopped.
*/
musb_h_tx_flush_fifo(hw_ep);
tx_csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_NAKTIMEOUT
);
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_TXCSR, tx_csr);
/* REVISIT may need to clear FLUSHFIFO ... */
musb_writew(epio, MUSB_TXCSR, tx_csr);
musb_writeb(epio, MUSB_TXINTERVAL, 0);
done = true;
}
/* second cppi case */
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr);
return;
}
if (is_dma_capable() && dma && !status) {
/*
* DMA has completed. But if we're using DMA mode 1 (multi
* packet DMA), we need a terminal TXPKTRDY interrupt before
* we can consider this transfer completed, lest we trash
* its last packet when writing the next URB's data. So we
* switch back to mode 0 to get that interrupt; we'll come
* back here once it happens.
*/
if (tx_csr & MUSB_TXCSR_DMAMODE) {
/*
* We shouldn't clear DMAMODE with DMAENAB set; so
* clear them in a safe order. That should be OK
* once TXPKTRDY has been set (and I've never seen
* it being 0 at this moment -- DMA interrupt latency
* is significant) but if it hasn't been then we have
* no choice but to stop being polite and ignore the
* programmer's guide... :-)
*
* Note that we must write TXCSR with TXPKTRDY cleared
* in order not to re-trigger the packet send (this bit
* can't be cleared by CPU), and there's another caveat:
* TXPKTRDY may be set shortly and then cleared in the
* double-buffered FIFO mode, so we do an extra TXCSR
* read for debouncing...
*/
tx_csr &= musb_readw(epio, MUSB_TXCSR);
if (tx_csr & MUSB_TXCSR_TXPKTRDY) {
tx_csr &= ~(MUSB_TXCSR_DMAENAB |
MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR,
tx_csr | MUSB_TXCSR_H_WZC_BITS);
}
tx_csr &= ~(MUSB_TXCSR_DMAMODE |
MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR,
tx_csr | MUSB_TXCSR_H_WZC_BITS);
/*
* There is no guarantee that we'll get an interrupt
* after clearing DMAMODE as we might have done this
* too late (after TXPKTRDY was cleared by controller).
* Re-read TXCSR as we have spoiled its previous value.
*/
tx_csr = musb_readw(epio, MUSB_TXCSR);
}
/*
* We may get here from a DMA completion or TXPKTRDY interrupt.
* In any case, we must check the FIFO status here and bail out
* only if the FIFO still has data -- that should prevent the
* "missed" TXPKTRDY interrupts and deal with double-buffered
* FIFO mode too...
*/
if (tx_csr & (MUSB_TXCSR_FIFONOTEMPTY | MUSB_TXCSR_TXPKTRDY)) {
dev_dbg(musb->controller, "DMA complete but packet still in FIFO, "
"CSR %04x\n", tx_csr);
return;
}
}
if (!status || dma || usb_pipeisoc(pipe)) {
if (dma)
length = dma->actual_len;
else
length = qh->segsize;
qh->offset += length;
if (usb_pipeisoc(pipe)) {
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
d->actual_length = length;
d->status = status;
if (++qh->iso_idx >= urb->number_of_packets) {
done = true;
} else {
d++;
offset = d->offset;
length = d->length;
}
} else if (dma && urb->transfer_buffer_length == qh->offset) {
done = true;
} else {
/* see if we need to send more data, or ZLP */
if (qh->segsize < qh->maxpacket)
done = true;
else if (qh->offset == urb->transfer_buffer_length
&& !(urb->transfer_flags
& URB_ZERO_PACKET))
done = true;
if (!done) {
offset = qh->offset;
length = urb->transfer_buffer_length - offset;
transfer_pending = true;
}
}
}
/* urb->status != -EINPROGRESS means request has been faulted,
* so we must abort this transfer after cleanup
*/
if (urb->status != -EINPROGRESS) {
done = true;
if (status == 0)
status = urb->status;
}
if (done) {
/* set status */
urb->status = status;
urb->actual_length = qh->offset;
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
return;
} else if ((usb_pipeisoc(pipe) || transfer_pending) && dma) {
if (musb_tx_dma_program(musb->dma_controller, hw_ep, qh, urb,
offset, length)) {
if (is_cppi_enabled() || tusb_dma_omap())
musb_h_tx_dma_start(hw_ep);
return;
}
} else if (tx_csr & MUSB_TXCSR_DMAENAB) {
dev_dbg(musb->controller, "not complete, but DMA enabled?\n");
return;
}
/*
* PIO: start next packet in this URB.
*
* REVISIT: some docs say that when hw_ep->tx_double_buffered,
* (and presumably, FIFO is not half-full) we should write *two*
* packets before updating TXCSR; other docs disagree...
*/
if (length > qh->maxpacket)
length = qh->maxpacket;
/* Unmap the buffer so that CPU can use it */
usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
musb_write_fifo(hw_ep, length, urb->transfer_buffer + offset);
qh->segsize = length;
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY);
}
#ifdef CONFIG_USB_INVENTRA_DMA
/* Host side RX (IN) using Mentor DMA works as follows:
submit_urb ->
- if queue was empty, ProgramEndpoint
- first IN token is sent out (by setting ReqPkt)
LinuxIsr -> RxReady()
/\ => first packet is received
| - Set in mode 0 (DmaEnab, ~ReqPkt)
| -> DMA Isr (transfer complete) -> RxReady()
| - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
| - if urb not complete, send next IN token (ReqPkt)
| | else complete urb.
| |
---------------------------
*
* Nuances of mode 1:
* For short packets, no ack (+RxPktRdy) is sent automatically
* (even if AutoClear is ON)
* For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
* automatically => major problem, as collecting the next packet becomes
* difficult. Hence mode 1 is not used.
*
* REVISIT
* All we care about at this driver level is that
* (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
* (b) termination conditions are: short RX, or buffer full;
* (c) fault modes include
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
* (and that endpoint's dma queue stops immediately)
* - overflow (full, PLUS more bytes in the terminal packet)
*
* So for example, usb-storage sets URB_SHORT_NOT_OK, and would
* thus be a great candidate for using mode 1 ... for all but the
* last packet of one URB's transfer.
*/
#endif
/* Schedule next QH from musb->in_bulk and move the current qh to
* the end; avoids starvation for other endpoints.
*/
static void musb_bulk_rx_nak_timeout(struct musb *musb, struct musb_hw_ep *ep)
{
struct dma_channel *dma;
struct urb *urb;
void __iomem *mbase = musb->mregs;
void __iomem *epio = ep->regs;
struct musb_qh *cur_qh, *next_qh;
u16 rx_csr;
musb_ep_select(mbase, ep->epnum);
dma = is_dma_capable() ? ep->rx_channel : NULL;
/* clear nak timeout bit */
rx_csr = musb_readw(epio, MUSB_RXCSR);
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
rx_csr &= ~MUSB_RXCSR_DATAERROR;
musb_writew(epio, MUSB_RXCSR, rx_csr);
cur_qh = first_qh(&musb->in_bulk);
if (cur_qh) {
urb = next_urb(cur_qh);
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
musb->dma_controller->channel_abort(dma);
urb->actual_length += dma->actual_len;
dma->actual_len = 0L;
}
musb_save_toggle(cur_qh, 1, urb);
/* move cur_qh to end of queue */
list_move_tail(&cur_qh->ring, &musb->in_bulk);
/* get the next qh from musb->in_bulk */
next_qh = first_qh(&musb->in_bulk);
/* set rx_reinit and schedule the next qh */
ep->rx_reinit = 1;
musb_start_urb(musb, 1, next_qh);
}
}
/*
* Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
* and high-bandwidth IN transfer cases.
*/
void musb_host_rx(struct musb *musb, u8 epnum)
{
struct urb *urb;
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
void __iomem *epio = hw_ep->regs;
struct musb_qh *qh = hw_ep->in_qh;
size_t xfer_len;
void __iomem *mbase = musb->mregs;
int pipe;
u16 rx_csr, val;
bool iso_err = false;
bool done = false;
u32 status;
struct dma_channel *dma;
musb_ep_select(mbase, epnum);
urb = next_urb(qh);
dma = is_dma_capable() ? hw_ep->rx_channel : NULL;
status = 0;
xfer_len = 0;
rx_csr = musb_readw(epio, MUSB_RXCSR);
val = rx_csr;
if (unlikely(!urb)) {
/* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
* usbtest #11 (unlinks) triggers it regularly, sometimes
* with fifo full. (Only with DMA??)
*/
dev_dbg(musb->controller, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val,
musb_readw(epio, MUSB_RXCOUNT));
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
return;
}
pipe = urb->pipe;
dev_dbg(musb->controller, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
epnum, rx_csr, urb->actual_length,
dma ? dma->actual_len : 0);
/* check for errors, concurrent stall & unlink is not really
* handled yet! */
if (rx_csr & MUSB_RXCSR_H_RXSTALL) {
dev_dbg(musb->controller, "RX end %d STALL\n", epnum);
/* stall; record URB status */
status = -EPIPE;
} else if (rx_csr & MUSB_RXCSR_H_ERROR) {
dev_dbg(musb->controller, "end %d RX proto error\n", epnum);
status = -EPROTO;
musb_writeb(epio, MUSB_RXINTERVAL, 0);
} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
if (USB_ENDPOINT_XFER_ISOC != qh->type) {
dev_dbg(musb->controller, "RX end %d NAK timeout\n", epnum);
/* NOTE: NAKing is *NOT* an error, so we want to
* continue. Except ... if there's a request for
* another QH, use that instead of starving it.
*
* Devices like Ethernet and serial adapters keep
* reads posted at all times, which will starve
* other devices without this logic.
*/
if (usb_pipebulk(urb->pipe)
&& qh->mux == 1
&& !list_is_singular(&musb->in_bulk)) {
musb_bulk_rx_nak_timeout(musb, hw_ep);
return;
}
musb_ep_select(mbase, epnum);
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
rx_csr &= ~MUSB_RXCSR_DATAERROR;
musb_writew(epio, MUSB_RXCSR, rx_csr);
goto finish;
} else {
dev_dbg(musb->controller, "RX end %d ISO data error\n", epnum);
/* packet error reported later */
iso_err = true;
}
} else if (rx_csr & MUSB_RXCSR_INCOMPRX) {
dev_dbg(musb->controller, "end %d high bandwidth incomplete ISO packet RX\n",
epnum);
status = -EPROTO;
}
/* faults abort the transfer */
if (status) {
/* clean up dma and collect transfer count */
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void) musb->dma_controller->channel_abort(dma);
xfer_len = dma->actual_len;
}
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
musb_writeb(epio, MUSB_RXINTERVAL, 0);
done = true;
goto finish;
}
if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) {
/* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr);
goto finish;
}
/* thorough shutdown for now ... given more precise fault handling
* and better queueing support, we might keep a DMA pipeline going
* while processing this irq for earlier completions.
*/
/* FIXME this is _way_ too much in-line logic for Mentor DMA */
#ifndef CONFIG_USB_INVENTRA_DMA
if (rx_csr & MUSB_RXCSR_H_REQPKT) {
/* REVISIT this happened for a while on some short reads...
* the cleanup still needs investigation... looks bad...
* and also duplicates dma cleanup code above ... plus,
* shouldn't this be the "half full" double buffer case?
*/
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
(void) musb->dma_controller->channel_abort(dma);
xfer_len = dma->actual_len;
done = true;
}
dev_dbg(musb->controller, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr,
xfer_len, dma ? ", dma" : "");
rx_csr &= ~MUSB_RXCSR_H_REQPKT;
musb_ep_select(mbase, epnum);
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_H_WZC_BITS | rx_csr);
}
#endif
if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) {
xfer_len = dma->actual_len;
val &= ~(MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_H_AUTOREQ
| MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_RXPKTRDY);
musb_writew(hw_ep->regs, MUSB_RXCSR, val);
#ifdef CONFIG_USB_INVENTRA_DMA
if (usb_pipeisoc(pipe)) {
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
d->actual_length = xfer_len;
/* even if there was an error, we did the dma
* for iso_frame_desc->length
*/
if (d->status != -EILSEQ && d->status != -EOVERFLOW)
d->status = 0;
if (++qh->iso_idx >= urb->number_of_packets)
done = true;
else
done = false;
} else {
/* done if urb buffer is full or short packet is recd */
done = (urb->actual_length + xfer_len >=
urb->transfer_buffer_length
|| dma->actual_len < qh->maxpacket);
}
/* send IN token for next packet, without AUTOREQ */
if (!done) {
val |= MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_H_WZC_BITS | val);
}
dev_dbg(musb->controller, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum,
done ? "off" : "reset",
musb_readw(epio, MUSB_RXCSR),
musb_readw(epio, MUSB_RXCOUNT));
#else
done = true;
#endif
} else if (urb->status == -EINPROGRESS) {
/* if no errors, be sure a packet is ready for unloading */
if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) {
status = -EPROTO;
ERR("Rx interrupt with no errors or packet!\n");
/* FIXME this is another "SHOULD NEVER HAPPEN" */
/* SCRUB (RX) */
/* do the proper sequence to abort the transfer */
musb_ep_select(mbase, epnum);
val &= ~MUSB_RXCSR_H_REQPKT;
musb_writew(epio, MUSB_RXCSR, val);
goto finish;
}
/* we are expecting IN packets */
#ifdef CONFIG_USB_INVENTRA_DMA
if (dma) {
struct dma_controller *c;
u16 rx_count;
int ret, length;
dma_addr_t buf;
rx_count = musb_readw(epio, MUSB_RXCOUNT);
dev_dbg(musb->controller, "RX%d count %d, buffer 0x%x len %d/%d\n",
epnum, rx_count,
urb->transfer_dma
+ urb->actual_length,
qh->offset,
urb->transfer_buffer_length);
c = musb->dma_controller;
if (usb_pipeisoc(pipe)) {
int d_status = 0;
struct usb_iso_packet_descriptor *d;
d = urb->iso_frame_desc + qh->iso_idx;
if (iso_err) {
d_status = -EILSEQ;
urb->error_count++;
}
if (rx_count > d->length) {
if (d_status == 0) {
d_status = -EOVERFLOW;
urb->error_count++;
}
dev_dbg(musb->controller, "** OVERFLOW %d into %d\n",\
rx_count, d->length);
length = d->length;
} else
length = rx_count;
d->status = d_status;
buf = urb->transfer_dma + d->offset;
} else {
length = rx_count;
buf = urb->transfer_dma +
urb->actual_length;
}
dma->desired_mode = 0;
#ifdef USE_MODE1
/* because of the issue below, mode 1 will
* only rarely behave with correct semantics.
*/
if ((urb->transfer_flags &
URB_SHORT_NOT_OK)
&& (urb->transfer_buffer_length -
urb->actual_length)
> qh->maxpacket)
dma->desired_mode = 1;
if (rx_count < hw_ep->max_packet_sz_rx) {
length = rx_count;
dma->desired_mode = 0;
} else {
length = urb->transfer_buffer_length;
}
#endif
/* Disadvantage of using mode 1:
* It's basically usable only for mass storage class; essentially all
* other protocols also terminate transfers on short packets.
*
* Details:
* An extra IN token is sent at the end of the transfer (due to AUTOREQ)
* If you try to use mode 1 for (transfer_buffer_length - 512), and try
* to use the extra IN token to grab the last packet using mode 0, then
* the problem is that you cannot be sure when the device will send the
* last packet and RxPktRdy set. Sometimes the packet is recd too soon
* such that it gets lost when RxCSR is re-set at the end of the mode 1
* transfer, while sometimes it is recd just a little late so that if you
* try to configure for mode 0 soon after the mode 1 transfer is
* completed, you will find rxcount 0. Okay, so you might think why not
* wait for an interrupt when the pkt is recd. Well, you won't get any!
*/
val = musb_readw(epio, MUSB_RXCSR);
val &= ~MUSB_RXCSR_H_REQPKT;
if (dma->desired_mode == 0)
val &= ~MUSB_RXCSR_H_AUTOREQ;
else
val |= MUSB_RXCSR_H_AUTOREQ;
val |= MUSB_RXCSR_DMAENAB;
/* autoclear shouldn't be set in high bandwidth */
if (qh->hb_mult == 1)
val |= MUSB_RXCSR_AUTOCLEAR;
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_H_WZC_BITS | val);
/* REVISIT if when actual_length != 0,
* transfer_buffer_length needs to be
* adjusted first...
*/
ret = c->channel_program(
dma, qh->maxpacket,
dma->desired_mode, buf, length);
if (!ret) {
c->channel_release(dma);
hw_ep->rx_channel = NULL;
dma = NULL;
/* REVISIT reset CSR */
}
}
#endif /* Mentor DMA */
if (!dma) {
/* Unmap the buffer so that CPU can use it */
usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb);
done = musb_host_packet_rx(musb, urb,
epnum, iso_err);
dev_dbg(musb->controller, "read %spacket\n", done ? "last " : "");
}
}
finish:
urb->actual_length += xfer_len;
qh->offset += xfer_len;
if (done) {
if (urb->status == -EINPROGRESS)
urb->status = status;
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN);
}
}
/* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
* the software schedule associates multiple such nodes with a given
* host side hardware endpoint + direction; scheduling may activate
* that hardware endpoint.
*/
static int musb_schedule(
struct musb *musb,
struct musb_qh *qh,
int is_in)
{
int idle;
int best_diff;
int best_end, epnum;
struct musb_hw_ep *hw_ep = NULL;
struct list_head *head = NULL;
u8 toggle;
u8 txtype;
struct urb *urb = next_urb(qh);
/* use fixed hardware for control and bulk */
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
head = &musb->control;
hw_ep = musb->control_ep;
goto success;
}
/* else, periodic transfers get muxed to other endpoints */
/*
* We know this qh hasn't been scheduled, so all we need to do
* is choose which hardware endpoint to put it on ...
*
* REVISIT what we really want here is a regular schedule tree
* like e.g. OHCI uses.
*/
best_diff = 4096;
best_end = -1;
for (epnum = 1, hw_ep = musb->endpoints + 1;
epnum < musb->nr_endpoints;
epnum++, hw_ep++) {
int diff;
if (musb_ep_get_qh(hw_ep, is_in) != NULL)
continue;
if (hw_ep == musb->bulk_ep)
continue;
if (is_in)
diff = hw_ep->max_packet_sz_rx;
else
diff = hw_ep->max_packet_sz_tx;
diff -= (qh->maxpacket * qh->hb_mult);
if (diff >= 0 && best_diff > diff) {
/*
* Mentor controller has a bug in that if we schedule
* a BULK Tx transfer on an endpoint that had earlier
* handled ISOC then the BULK transfer has to start on
* a zero toggle. If the BULK transfer starts on a 1
* toggle then this transfer will fail as the mentor
* controller starts the Bulk transfer on a 0 toggle
* irrespective of the programming of the toggle bits
* in the TXCSR register. Check for this condition
* while allocating the EP for a Tx Bulk transfer. If
* so skip this EP.
*/
hw_ep = musb->endpoints + epnum;
toggle = usb_gettoggle(urb->dev, qh->epnum, !is_in);
txtype = (musb_readb(hw_ep->regs, MUSB_TXTYPE)
>> 4) & 0x3;
if (!is_in && (qh->type == USB_ENDPOINT_XFER_BULK) &&
toggle && (txtype == USB_ENDPOINT_XFER_ISOC))
continue;
best_diff = diff;
best_end = epnum;
}
}
/* use bulk reserved ep1 if no other ep is free */
if (best_end < 0 && qh->type == USB_ENDPOINT_XFER_BULK) {
hw_ep = musb->bulk_ep;
if (is_in)
head = &musb->in_bulk;
else
head = &musb->out_bulk;
/* Enable bulk RX NAK timeout scheme when bulk requests are
* multiplexed. This scheme doen't work in high speed to full
* speed scenario as NAK interrupts are not coming from a
* full speed device connected to a high speed device.
* NAK timeout interval is 8 (128 uframe or 16ms) for HS and
* 4 (8 frame or 8ms) for FS device.
*/
if (is_in && qh->dev)
qh->intv_reg =
(USB_SPEED_HIGH == qh->dev->speed) ? 8 : 4;
goto success;
} else if (best_end < 0) {
return -ENOSPC;
}
idle = 1;
qh->mux = 0;
hw_ep = musb->endpoints + best_end;
dev_dbg(musb->controller, "qh %p periodic slot %d\n", qh, best_end);
success:
if (head) {
idle = list_empty(head);
list_add_tail(&qh->ring, head);
qh->mux = 1;
}
qh->hw_ep = hw_ep;
qh->hep->hcpriv = qh;
if (idle)
musb_start_urb(musb, is_in, qh);
return 0;
}
static int musb_urb_enqueue(
struct usb_hcd *hcd,
struct urb *urb,
gfp_t mem_flags)
{
unsigned long flags;
struct musb *musb = hcd_to_musb(hcd);
struct usb_host_endpoint *hep = urb->ep;
struct musb_qh *qh;
struct usb_endpoint_descriptor *epd = &hep->desc;
int ret;
unsigned type_reg;
unsigned interval;
/* host role must be active */
if (!is_host_active(musb) || !musb->is_active)
return -ENODEV;
spin_lock_irqsave(&musb->lock, flags);
ret = usb_hcd_link_urb_to_ep(hcd, urb);
qh = ret ? NULL : hep->hcpriv;
if (qh)
urb->hcpriv = qh;
spin_unlock_irqrestore(&musb->lock, flags);
/* DMA mapping was already done, if needed, and this urb is on
* hep->urb_list now ... so we're done, unless hep wasn't yet
* scheduled onto a live qh.
*
* REVISIT best to keep hep->hcpriv valid until the endpoint gets
* disabled, testing for empty qh->ring and avoiding qh setup costs
* except for the first urb queued after a config change.
*/
if (qh || ret)
return ret;
/* Allocate and initialize qh, minimizing the work done each time
* hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
*
* REVISIT consider a dedicated qh kmem_cache, so it's harder
* for bugs in other kernel code to break this driver...
*/
qh = kzalloc(sizeof *qh, mem_flags);
if (!qh) {
spin_lock_irqsave(&musb->lock, flags);
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock_irqrestore(&musb->lock, flags);
return -ENOMEM;
}
qh->hep = hep;
qh->dev = urb->dev;
INIT_LIST_HEAD(&qh->ring);
qh->is_ready = 1;
qh->maxpacket = usb_endpoint_maxp(epd);
qh->type = usb_endpoint_type(epd);
/* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
* Some musb cores don't support high bandwidth ISO transfers; and
* we don't (yet!) support high bandwidth interrupt transfers.
*/
qh->hb_mult = 1 + ((qh->maxpacket >> 11) & 0x03);
if (qh->hb_mult > 1) {
int ok = (qh->type == USB_ENDPOINT_XFER_ISOC);
if (ok)
ok = (usb_pipein(urb->pipe) && musb->hb_iso_rx)
|| (usb_pipeout(urb->pipe) && musb->hb_iso_tx);
if (!ok) {
ret = -EMSGSIZE;
goto done;
}
qh->maxpacket &= 0x7ff;
}
qh->epnum = usb_endpoint_num(epd);
/* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
qh->addr_reg = (u8) usb_pipedevice(urb->pipe);
/* precompute rxtype/txtype/type0 register */
type_reg = (qh->type << 4) | qh->epnum;
switch (urb->dev->speed) {
case USB_SPEED_LOW:
type_reg |= 0xc0;
break;
case USB_SPEED_FULL:
type_reg |= 0x80;
break;
default:
type_reg |= 0x40;
}
qh->type_reg = type_reg;
/* Precompute RXINTERVAL/TXINTERVAL register */
switch (qh->type) {
case USB_ENDPOINT_XFER_INT:
/*
* Full/low speeds use the linear encoding,
* high speed uses the logarithmic encoding.
*/
if (urb->dev->speed <= USB_SPEED_FULL) {
interval = max_t(u8, epd->bInterval, 1);
break;
}
/* FALLTHROUGH */
case USB_ENDPOINT_XFER_ISOC:
/* ISO always uses logarithmic encoding */
interval = min_t(u8, epd->bInterval, 16);
break;
default:
/* REVISIT we actually want to use NAK limits, hinting to the
* transfer scheduling logic to try some other qh, e.g. try
* for 2 msec first:
*
* interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
*
* The downside of disabling this is that transfer scheduling
* gets VERY unfair for nonperiodic transfers; a misbehaving
* peripheral could make that hurt. That's perfectly normal
* for reads from network or serial adapters ... so we have
* partial NAKlimit support for bulk RX.
*
* The upside of disabling it is simpler transfer scheduling.
*/
interval = 0;
}
qh->intv_reg = interval;
/* precompute addressing for external hub/tt ports */
if (musb->is_multipoint) {
struct usb_device *parent = urb->dev->parent;
if (parent != hcd->self.root_hub) {
qh->h_addr_reg = (u8) parent->devnum;
/* set up tt info if needed */
if (urb->dev->tt) {
qh->h_port_reg = (u8) urb->dev->ttport;
if (urb->dev->tt->hub)
qh->h_addr_reg =
(u8) urb->dev->tt->hub->devnum;
if (urb->dev->tt->multi)
qh->h_addr_reg |= 0x80;
}
}
}
/* invariant: hep->hcpriv is null OR the qh that's already scheduled.
* until we get real dma queues (with an entry for each urb/buffer),
* we only have work to do in the former case.
*/
spin_lock_irqsave(&musb->lock, flags);
if (hep->hcpriv) {
/* some concurrent activity submitted another urb to hep...
* odd, rare, error prone, but legal.
*/
kfree(qh);
qh = NULL;
ret = 0;
} else
ret = musb_schedule(musb, qh,
epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK);
if (ret == 0) {
urb->hcpriv = qh;
/* FIXME set urb->start_frame for iso/intr, it's tested in
* musb_start_urb(), but otherwise only konicawc cares ...
*/
}
spin_unlock_irqrestore(&musb->lock, flags);
done:
if (ret != 0) {
spin_lock_irqsave(&musb->lock, flags);
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock_irqrestore(&musb->lock, flags);
kfree(qh);
}
return ret;
}
/*
* abort a transfer that's at the head of a hardware queue.
* called with controller locked, irqs blocked
* that hardware queue advances to the next transfer, unless prevented
*/
static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh)
{
struct musb_hw_ep *ep = qh->hw_ep;
struct musb *musb = ep->musb;
void __iomem *epio = ep->regs;
unsigned hw_end = ep->epnum;
void __iomem *regs = ep->musb->mregs;
int is_in = usb_pipein(urb->pipe);
int status = 0;
u16 csr;
musb_ep_select(regs, hw_end);
if (is_dma_capable()) {
struct dma_channel *dma;
dma = is_in ? ep->rx_channel : ep->tx_channel;
if (dma) {
status = ep->musb->dma_controller->channel_abort(dma);
dev_dbg(musb->controller,
"abort %cX%d DMA for urb %p --> %d\n",
is_in ? 'R' : 'T', ep->epnum,
urb, status);
urb->actual_length += dma->actual_len;
}
}
/* turn off DMA requests, discard state, stop polling ... */
if (is_in) {
/* giveback saves bulk toggle */
csr = musb_h_flush_rxfifo(ep, 0);
/* REVISIT we still get an irq; should likely clear the
* endpoint's irq status here to avoid bogus irqs.
* clearing that status is platform-specific...
*/
} else if (ep->epnum) {
musb_h_tx_flush_fifo(ep);
csr = musb_readw(epio, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_RXSTALL
| MUSB_TXCSR_H_NAKTIMEOUT
| MUSB_TXCSR_H_ERROR
| MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may need to clear FLUSHFIFO ... */
musb_writew(epio, MUSB_TXCSR, csr);
/* flush cpu writebuffer */
csr = musb_readw(epio, MUSB_TXCSR);
} else {
musb_h_ep0_flush_fifo(ep);
}
if (status == 0)
musb_advance_schedule(ep->musb, urb, ep, is_in);
return status;
}
static int musb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct musb *musb = hcd_to_musb(hcd);
struct musb_qh *qh;
unsigned long flags;
int is_in = usb_pipein(urb->pipe);
int ret;
dev_dbg(musb->controller, "urb=%p, dev%d ep%d%s\n", urb,
usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
is_in ? "in" : "out");
spin_lock_irqsave(&musb->lock, flags);
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
if (ret)
goto done;
qh = urb->hcpriv;
if (!qh)
goto done;
/*
* Any URB not actively programmed into endpoint hardware can be
* immediately given back; that's any URB not at the head of an
* endpoint queue, unless someday we get real DMA queues. And even
* if it's at the head, it might not be known to the hardware...
*
* Otherwise abort current transfer, pending DMA, etc.; urb->status
* has already been updated. This is a synchronous abort; it'd be
* OK to hold off until after some IRQ, though.
*
* NOTE: qh is invalid unless !list_empty(&hep->urb_list)
*/
if (!qh->is_ready
|| urb->urb_list.prev != &qh->hep->urb_list
|| musb_ep_get_qh(qh->hw_ep, is_in) != qh) {
int ready = qh->is_ready;
qh->is_ready = 0;
musb_giveback(musb, urb, 0);
qh->is_ready = ready;
/* If nothing else (usually musb_giveback) is using it
* and its URB list has emptied, recycle this qh.
*/
if (ready && list_empty(&qh->hep->urb_list)) {
qh->hep->hcpriv = NULL;
list_del(&qh->ring);
kfree(qh);
}
} else
ret = musb_cleanup_urb(urb, qh);
done:
spin_unlock_irqrestore(&musb->lock, flags);
return ret;
}
/* disable an endpoint */
static void
musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep)
{
u8 is_in = hep->desc.bEndpointAddress & USB_DIR_IN;
unsigned long flags;
struct musb *musb = hcd_to_musb(hcd);
struct musb_qh *qh;
struct urb *urb;
spin_lock_irqsave(&musb->lock, flags);
qh = hep->hcpriv;
if (qh == NULL)
goto exit;
/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
/* Kick the first URB off the hardware, if needed */
qh->is_ready = 0;
if (musb_ep_get_qh(qh->hw_ep, is_in) == qh) {
urb = next_urb(qh);
/* make software (then hardware) stop ASAP */
if (!urb->unlinked)
urb->status = -ESHUTDOWN;
/* cleanup */
musb_cleanup_urb(urb, qh);
/* Then nuke all the others ... and advance the
* queue on hw_ep (e.g. bulk ring) when we're done.
*/
while (!list_empty(&hep->urb_list)) {
urb = next_urb(qh);
urb->status = -ESHUTDOWN;
musb_advance_schedule(musb, urb, qh->hw_ep, is_in);
}
} else {
/* Just empty the queue; the hardware is busy with
* other transfers, and since !qh->is_ready nothing
* will activate any of these as it advances.
*/
while (!list_empty(&hep->urb_list))
musb_giveback(musb, next_urb(qh), -ESHUTDOWN);
hep->hcpriv = NULL;
list_del(&qh->ring);
kfree(qh);
}
exit:
spin_unlock_irqrestore(&musb->lock, flags);
}
static int musb_h_get_frame_number(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
return musb_readw(musb->mregs, MUSB_FRAME);
}
static int musb_h_start(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
/* NOTE: musb_start() is called when the hub driver turns
* on port power, or when (OTG) peripheral starts.
*/
hcd->state = HC_STATE_RUNNING;
musb->port1_status = 0;
return 0;
}
static void musb_h_stop(struct usb_hcd *hcd)
{
musb_stop(hcd_to_musb(hcd));
hcd->state = HC_STATE_HALT;
}
static int musb_bus_suspend(struct usb_hcd *hcd)
{
struct musb *musb = hcd_to_musb(hcd);
u8 devctl;
if (!is_host_active(musb))
return 0;
switch (musb->xceiv->state) {
case OTG_STATE_A_SUSPEND:
return 0;
case OTG_STATE_A_WAIT_VRISE:
/* ID could be grounded even if there's no device
* on the other end of the cable. NOTE that the
* A_WAIT_VRISE timers are messy with MUSB...
*/
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
musb->xceiv->state = OTG_STATE_A_WAIT_BCON;
break;
default:
break;
}
if (musb->is_active) {
WARNING("trying to suspend as %s while active\n",
otg_state_string(musb->xceiv->state));
return -EBUSY;
} else
return 0;
}
static int musb_bus_resume(struct usb_hcd *hcd)
{
/* resuming child port does the work */
return 0;
}
const struct hc_driver musb_hc_driver = {
.description = "musb-hcd",
.product_desc = "MUSB HDRC host driver",
.hcd_priv_size = sizeof(struct musb),
.flags = HCD_USB2 | HCD_MEMORY,
/* not using irq handler or reset hooks from usbcore, since
* those must be shared with peripheral code for OTG configs
*/
.start = musb_h_start,
.stop = musb_h_stop,
.get_frame_number = musb_h_get_frame_number,
.urb_enqueue = musb_urb_enqueue,
.urb_dequeue = musb_urb_dequeue,
.endpoint_disable = musb_h_disable,
.hub_status_data = musb_hub_status_data,
.hub_control = musb_hub_control,
.bus_suspend = musb_bus_suspend,
.bus_resume = musb_bus_resume,
/* .start_port_reset = NULL, */
/* .hub_irq_enable = NULL, */
};