OpenCloudOS-Kernel/drivers/hwmon/adt7473.c

1159 lines
35 KiB
C

/*
* A hwmon driver for the Analog Devices ADT7473
* Copyright (C) 2007 IBM
*
* Author: Darrick J. Wong <djwong@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/log2.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2C, 0x2D, 0x2E, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_1(adt7473);
/* ADT7473 registers */
#define ADT7473_REG_BASE_ADDR 0x20
#define ADT7473_REG_VOLT_BASE_ADDR 0x21
#define ADT7473_REG_VOLT_MAX_ADDR 0x22
#define ADT7473_REG_VOLT_MIN_BASE_ADDR 0x46
#define ADT7473_REG_VOLT_MIN_MAX_ADDR 0x49
#define ADT7473_REG_TEMP_BASE_ADDR 0x25
#define ADT7473_REG_TEMP_MAX_ADDR 0x27
#define ADT7473_REG_TEMP_LIMITS_BASE_ADDR 0x4E
#define ADT7473_REG_TEMP_LIMITS_MAX_ADDR 0x53
#define ADT7473_REG_TEMP_TMIN_BASE_ADDR 0x67
#define ADT7473_REG_TEMP_TMIN_MAX_ADDR 0x69
#define ADT7473_REG_TEMP_TMAX_BASE_ADDR 0x6A
#define ADT7473_REG_TEMP_TMAX_MAX_ADDR 0x6C
#define ADT7473_REG_FAN_BASE_ADDR 0x28
#define ADT7473_REG_FAN_MAX_ADDR 0x2F
#define ADT7473_REG_FAN_MIN_BASE_ADDR 0x54
#define ADT7473_REG_FAN_MIN_MAX_ADDR 0x5B
#define ADT7473_REG_PWM_BASE_ADDR 0x30
#define ADT7473_REG_PWM_MAX_ADDR 0x32
#define ADT7473_REG_PWM_MIN_BASE_ADDR 0x64
#define ADT7473_REG_PWM_MIN_MAX_ADDR 0x66
#define ADT7473_REG_PWM_MAX_BASE_ADDR 0x38
#define ADT7473_REG_PWM_MAX_MAX_ADDR 0x3A
#define ADT7473_REG_PWM_BHVR_BASE_ADDR 0x5C
#define ADT7473_REG_PWM_BHVR_MAX_ADDR 0x5E
#define ADT7473_PWM_BHVR_MASK 0xE0
#define ADT7473_PWM_BHVR_SHIFT 5
#define ADT7473_REG_CFG1 0x40
#define ADT7473_CFG1_START 0x01
#define ADT7473_CFG1_READY 0x04
#define ADT7473_REG_CFG2 0x73
#define ADT7473_REG_CFG3 0x78
#define ADT7473_REG_CFG4 0x7D
#define ADT7473_CFG4_MAX_DUTY_AT_OVT 0x08
#define ADT7473_REG_CFG5 0x7C
#define ADT7473_CFG5_TEMP_TWOS 0x01
#define ADT7473_CFG5_TEMP_OFFSET 0x02
#define ADT7473_REG_DEVICE 0x3D
#define ADT7473_VENDOR 0x41
#define ADT7473_REG_VENDOR 0x3E
#define ADT7473_DEVICE 0x73
#define ADT7473_REG_REVISION 0x3F
#define ADT7473_REV_68 0x68
#define ADT7473_REV_69 0x69
#define ADT7473_REG_ALARM1 0x41
#define ADT7473_VCCP_ALARM 0x02
#define ADT7473_VCC_ALARM 0x04
#define ADT7473_R1T_ALARM 0x10
#define ADT7473_LT_ALARM 0x20
#define ADT7473_R2T_ALARM 0x40
#define ADT7473_OOL 0x80
#define ADT7473_REG_ALARM2 0x42
#define ADT7473_OVT_ALARM 0x02
#define ADT7473_FAN1_ALARM 0x04
#define ADT7473_FAN2_ALARM 0x08
#define ADT7473_FAN3_ALARM 0x10
#define ADT7473_FAN4_ALARM 0x20
#define ADT7473_R1T_SHORT 0x40
#define ADT7473_R2T_SHORT 0x80
#define ADT7473_REG_MAX_ADDR 0x80
#define ALARM2(x) ((x) << 8)
#define ADT7473_VOLT_COUNT 2
#define ADT7473_REG_VOLT(x) (ADT7473_REG_VOLT_BASE_ADDR + (x))
#define ADT7473_REG_VOLT_MIN(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_VOLT_MAX(x) (ADT7473_REG_VOLT_MIN_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_TEMP_COUNT 3
#define ADT7473_REG_TEMP(x) (ADT7473_REG_TEMP_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_MIN(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_TEMP_MAX(x) (ADT7473_REG_TEMP_LIMITS_BASE_ADDR + \
((x) * 2) + 1)
#define ADT7473_REG_TEMP_TMIN(x) (ADT7473_REG_TEMP_TMIN_BASE_ADDR + (x))
#define ADT7473_REG_TEMP_TMAX(x) (ADT7473_REG_TEMP_TMAX_BASE_ADDR + (x))
#define ADT7473_FAN_COUNT 4
#define ADT7473_REG_FAN(x) (ADT7473_REG_FAN_BASE_ADDR + ((x) * 2))
#define ADT7473_REG_FAN_MIN(x) (ADT7473_REG_FAN_MIN_BASE_ADDR + ((x) * 2))
#define ADT7473_PWM_COUNT 3
#define ADT7473_REG_PWM(x) (ADT7473_REG_PWM_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MAX(x) (ADT7473_REG_PWM_MAX_BASE_ADDR + (x))
#define ADT7473_REG_PWM_MIN(x) (ADT7473_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7473_REG_PWM_BHVR(x) (ADT7473_REG_PWM_BHVR_BASE_ADDR + (x))
/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL (2 * HZ)
/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL (60 * HZ)
/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID 65535
#define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID)
struct adt7473_data {
struct i2c_client client;
struct device *hwmon_dev;
struct attribute_group attrs;
struct mutex lock;
char sensors_valid;
char limits_valid;
unsigned long sensors_last_updated; /* In jiffies */
unsigned long limits_last_updated; /* In jiffies */
u8 volt[ADT7473_VOLT_COUNT];
s8 volt_min[ADT7473_VOLT_COUNT];
s8 volt_max[ADT7473_VOLT_COUNT];
s8 temp[ADT7473_TEMP_COUNT];
s8 temp_min[ADT7473_TEMP_COUNT];
s8 temp_max[ADT7473_TEMP_COUNT];
s8 temp_tmin[ADT7473_TEMP_COUNT];
/* This is called the !THERM limit in the datasheet */
s8 temp_tmax[ADT7473_TEMP_COUNT];
u16 fan[ADT7473_FAN_COUNT];
u16 fan_min[ADT7473_FAN_COUNT];
u8 pwm[ADT7473_PWM_COUNT];
u8 pwm_max[ADT7473_PWM_COUNT];
u8 pwm_min[ADT7473_PWM_COUNT];
u8 pwm_behavior[ADT7473_PWM_COUNT];
u8 temp_twos_complement;
u8 temp_offset;
u16 alarm;
u8 max_duty_at_overheat;
};
static int adt7473_attach_adapter(struct i2c_adapter *adapter);
static int adt7473_detect(struct i2c_adapter *adapter, int address, int kind);
static int adt7473_detach_client(struct i2c_client *client);
static struct i2c_driver adt7473_driver = {
.driver = {
.name = "adt7473",
},
.attach_adapter = adt7473_attach_adapter,
.detach_client = adt7473_detach_client,
};
/*
* 16-bit registers on the ADT7473 are low-byte first. The data sheet says
* that the low byte must be read before the high byte.
*/
static inline int adt7473_read_word_data(struct i2c_client *client, u8 reg)
{
u16 foo;
foo = i2c_smbus_read_byte_data(client, reg);
foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
return foo;
}
static inline int adt7473_write_word_data(struct i2c_client *client, u8 reg,
u16 value)
{
return i2c_smbus_write_byte_data(client, reg, value & 0xFF)
&& i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
}
static void adt7473_init_client(struct i2c_client *client)
{
int reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG1);
if (!(reg & ADT7473_CFG1_READY)) {
dev_err(&client->dev, "Chip not ready.\n");
} else {
/* start monitoring */
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG1,
reg | ADT7473_CFG1_START);
}
}
static struct adt7473_data *adt7473_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
unsigned long local_jiffies = jiffies;
u8 cfg;
int i;
mutex_lock(&data->lock);
if (time_before(local_jiffies, data->sensors_last_updated +
SENSOR_REFRESH_INTERVAL)
&& data->sensors_valid)
goto no_sensor_update;
for (i = 0; i < ADT7473_VOLT_COUNT; i++)
data->volt[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT(i));
/* Determine temperature encoding */
cfg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG5);
data->temp_twos_complement = (cfg & ADT7473_CFG5_TEMP_TWOS);
/*
* What does this do? it implies a variable temperature sensor
* offset, but the datasheet doesn't say anything about this bit
* and other parts of the datasheet imply that "offset64" mode
* means that you shift temp values by -64 if the above bit was set.
*/
data->temp_offset = (cfg & ADT7473_CFG5_TEMP_OFFSET);
for (i = 0; i < ADT7473_TEMP_COUNT; i++)
data->temp[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP(i));
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++)
data->pwm[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM(i));
data->alarm = i2c_smbus_read_byte_data(client, ADT7473_REG_ALARM1);
if (data->alarm & ADT7473_OOL)
data->alarm |= ALARM2(i2c_smbus_read_byte_data(client,
ADT7473_REG_ALARM2));
data->sensors_last_updated = local_jiffies;
data->sensors_valid = 1;
no_sensor_update:
if (time_before(local_jiffies, data->limits_last_updated +
LIMIT_REFRESH_INTERVAL)
&& data->limits_valid)
goto out;
for (i = 0; i < ADT7473_VOLT_COUNT; i++) {
data->volt_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MIN(i));
data->volt_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_VOLT_MAX(i));
}
for (i = 0; i < ADT7473_TEMP_COUNT; i++) {
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MIN(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_MAX(i));
data->temp_tmin[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMIN(i));
data->temp_tmax[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_TEMP_TMAX(i));
}
for (i = 0; i < ADT7473_FAN_COUNT; i++)
data->fan_min[i] = adt7473_read_word_data(client,
ADT7473_REG_FAN_MIN(i));
for (i = 0; i < ADT7473_PWM_COUNT; i++) {
data->pwm_max[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MAX(i));
data->pwm_min[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_MIN(i));
data->pwm_behavior[i] = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(i));
}
data->limits_last_updated = local_jiffies;
data->limits_valid = 1;
out:
mutex_unlock(&data->lock);
return data;
}
/*
* On this chip, voltages are given as a count of steps between a minimum
* and maximum voltage, not a direct voltage.
*/
static const int volt_convert_table[][2] = {
{2997, 3},
{4395, 4},
};
static int decode_volt(int volt_index, u8 raw)
{
int cmax = volt_convert_table[volt_index][0];
int cmin = volt_convert_table[volt_index][1];
return ((raw * (cmax - cmin)) / 255) + cmin;
}
static u8 encode_volt(int volt_index, int cooked)
{
int cmax = volt_convert_table[volt_index][0];
int cmin = volt_convert_table[volt_index][1];
u8 x;
if (cooked > cmax)
cooked = cmax;
else if (cooked < cmin)
cooked = cmin;
x = ((cooked - cmin) * 255) / (cmax - cmin);
return x;
}
static ssize_t show_volt_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_min[attr->index]));
}
static ssize_t set_volt_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int volt = encode_volt(attr->index, simple_strtol(buf, NULL, 10));
mutex_lock(&data->lock);
data->volt_min[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MIN(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt_max[attr->index]));
}
static ssize_t set_volt_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int volt = encode_volt(attr->index, simple_strtol(buf, NULL, 10));
mutex_lock(&data->lock);
data->volt_max[attr->index] = volt;
i2c_smbus_write_byte_data(client, ADT7473_REG_VOLT_MAX(attr->index),
volt);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_volt(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n",
decode_volt(attr->index, data->volt[attr->index]));
}
/*
* This chip can report temperature data either as a two's complement
* number in the range -128 to 127, or as an unsigned number that must
* be offset by 64.
*/
static int decode_temp(u8 twos_complement, u8 raw)
{
return twos_complement ? (s8)raw : raw - 64;
}
static u8 encode_temp(u8 twos_complement, int cooked)
{
return twos_complement ? cooked & 0xFF : cooked + 64;
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_min[attr->index]));
}
static ssize_t set_temp_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_max[attr->index]));
}
static ssize_t set_temp_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp[attr->index]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan_min[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan_min[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t set_fan_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
if (!temp)
return -EINVAL;
temp = FAN_RPM_TO_PERIOD(temp);
mutex_lock(&data->lock);
data->fan_min[attr->index] = temp;
adt7473_write_word_data(client, ADT7473_REG_FAN_MIN(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (FAN_DATA_VALID(data->fan[attr->index]))
return sprintf(buf, "%d\n",
FAN_PERIOD_TO_RPM(data->fan[attr->index]));
else
return sprintf(buf, "0\n");
}
static ssize_t show_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->max_duty_at_overheat);
}
static ssize_t set_max_duty_at_crit(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
temp = temp && 0xFF;
mutex_lock(&data->lock);
data->max_duty_at_overheat = temp;
reg = i2c_smbus_read_byte_data(client, ADT7473_REG_CFG4);
if (temp)
reg |= ADT7473_CFG4_MAX_DUTY_AT_OVT;
else
reg &= ~ADT7473_CFG4_MAX_DUTY_AT_OVT;
i2c_smbus_write_byte_data(client, ADT7473_REG_CFG4, reg);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[attr->index]);
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM(attr->index), temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_max(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_max[attr->index]);
}
static ssize_t set_pwm_max(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm_max[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_min(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}
static ssize_t set_pwm_min(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
mutex_lock(&data->lock);
data->pwm_min[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_MIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmax(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmax[attr->index]));
}
static ssize_t set_temp_tmax(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmax[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMAX(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_temp_tmin(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
return sprintf(buf, "%d\n", 1000 * decode_temp(
data->temp_twos_complement,
data->temp_tmin[attr->index]));
}
static ssize_t set_temp_tmin(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10) / 1000;
temp = encode_temp(data->temp_twos_complement, temp);
mutex_lock(&data->lock);
data->temp_tmin[attr->index] = temp;
i2c_smbus_write_byte_data(client, ADT7473_REG_TEMP_TMIN(attr->index),
temp);
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
switch (data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT) {
case 3:
return sprintf(buf, "0\n");
case 7:
return sprintf(buf, "1\n");
default:
return sprintf(buf, "2\n");
}
}
static ssize_t set_pwm_enable(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
switch (temp) {
case 0:
temp = 3;
break;
case 1:
temp = 7;
break;
case 2:
/* Enter automatic mode with fans off */
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
int bhvr = data->pwm_behavior[attr->index] >> ADT7473_PWM_BHVR_SHIFT;
switch (bhvr) {
case 3:
case 4:
case 7:
return sprintf(buf, "0\n");
case 0:
case 1:
case 5:
case 6:
return sprintf(buf, "%d\n", bhvr + 1);
case 2:
return sprintf(buf, "4\n");
}
/* shouldn't ever get here */
BUG();
}
static ssize_t set_pwm_auto_temp(struct device *dev,
struct device_attribute *devattr,
const char *buf,
size_t count)
{
u8 reg;
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adt7473_data *data = i2c_get_clientdata(client);
int temp = simple_strtol(buf, NULL, 10);
switch (temp) {
case 1:
case 2:
case 6:
case 7:
temp--;
break;
case 0:
temp = 4;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
reg = i2c_smbus_read_byte_data(client,
ADT7473_REG_PWM_BHVR(attr->index));
reg = (temp << ADT7473_PWM_BHVR_SHIFT) |
(reg & ~ADT7473_PWM_BHVR_MASK);
i2c_smbus_write_byte_data(client, ADT7473_REG_PWM_BHVR(attr->index),
reg);
data->pwm_behavior[attr->index] = reg;
mutex_unlock(&data->lock);
return count;
}
static ssize_t show_alarm(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adt7473_data *data = adt7473_update_device(dev);
if (data->alarm & attr->index)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 0);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_volt_max,
set_volt_max, 1);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 0);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_volt_min,
set_volt_min, 1);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_volt, NULL, 0);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_volt, NULL, 1);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCCP_ALARM);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_VCC_ALARM);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 0);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 1);
static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max,
set_temp_max, 2);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 1);
static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min,
set_temp_min, 2);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R1T_ALARM | ALARM2(ADT7473_R1T_SHORT));
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_LT_ALARM);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL,
ADT7473_R2T_ALARM | ALARM2(ADT7473_R2T_SHORT));
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
set_fan_min, 3);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN1_ALARM));
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN2_ALARM));
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN3_ALARM));
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL,
ALARM2(ADT7473_FAN4_ALARM));
static SENSOR_DEVICE_ATTR(pwm_use_point2_pwm_at_crit, S_IWUSR | S_IRUGO,
show_max_duty_at_crit, set_max_duty_at_crit, 0);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, set_pwm, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm_min, set_pwm_min, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm_max, set_pwm_max, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point1_temp, S_IWUSR | S_IRUGO,
show_temp_tmin, set_temp_tmin, 2);
static SENSOR_DEVICE_ATTR(temp1_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 0);
static SENSOR_DEVICE_ATTR(temp2_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 1);
static SENSOR_DEVICE_ATTR(temp3_auto_point2_temp, S_IWUSR | S_IRUGO,
show_temp_tmax, set_temp_tmax, 2);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 0);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 1);
static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
set_pwm_enable, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR(pwm2_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR(pwm3_auto_channels_temp, S_IWUSR | S_IRUGO,
show_pwm_auto_temp, set_pwm_auto_temp, 2);
static struct attribute *adt7473_attr[] =
{
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm_use_point2_pwm_at_crit.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
NULL
};
static int adt7473_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, adt7473_detect);
}
static int adt7473_detect(struct i2c_adapter *adapter, int address, int kind)
{
struct i2c_client *client;
struct adt7473_data *data;
int err = 0;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
goto exit;
data = kzalloc(sizeof(struct adt7473_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
client = &data->client;
client->addr = address;
client->adapter = adapter;
client->driver = &adt7473_driver;
i2c_set_clientdata(client, data);
mutex_init(&data->lock);
if (kind <= 0) {
int vendor, device, revision;
vendor = i2c_smbus_read_byte_data(client, ADT7473_REG_VENDOR);
if (vendor != ADT7473_VENDOR) {
err = -ENODEV;
goto exit_free;
}
device = i2c_smbus_read_byte_data(client, ADT7473_REG_DEVICE);
if (device != ADT7473_DEVICE) {
err = -ENODEV;
goto exit_free;
}
revision = i2c_smbus_read_byte_data(client,
ADT7473_REG_REVISION);
if (revision != ADT7473_REV_68 && revision != ADT7473_REV_69) {
err = -ENODEV;
goto exit_free;
}
} else
dev_dbg(&adapter->dev, "detection forced\n");
strlcpy(client->name, "adt7473", I2C_NAME_SIZE);
err = i2c_attach_client(client);
if (err)
goto exit_free;
dev_info(&client->dev, "%s chip found\n", client->name);
/* Initialize the ADT7473 chip */
adt7473_init_client(client);
/* Register sysfs hooks */
data->attrs.attrs = adt7473_attr;
err = sysfs_create_group(&client->dev.kobj, &data->attrs);
if (err)
goto exit_detach;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &data->attrs);
exit_detach:
i2c_detach_client(client);
exit_free:
kfree(data);
exit:
return err;
}
static int adt7473_detach_client(struct i2c_client *client)
{
struct adt7473_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &data->attrs);
i2c_detach_client(client);
kfree(data);
return 0;
}
static int __init adt7473_init(void)
{
return i2c_add_driver(&adt7473_driver);
}
static void __exit adt7473_exit(void)
{
i2c_del_driver(&adt7473_driver);
}
MODULE_AUTHOR("Darrick J. Wong <djwong@us.ibm.com>");
MODULE_DESCRIPTION("ADT7473 driver");
MODULE_LICENSE("GPL");
module_init(adt7473_init);
module_exit(adt7473_exit);