OpenCloudOS-Kernel/arch/x86/kernel/amd_iommu_init.c

1573 lines
40 KiB
C

/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <asm/pci-direct.h>
#include <asm/amd_iommu_proto.h>
#include <asm/amd_iommu_types.h>
#include <asm/amd_iommu.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/x86_init.h>
#include <asm/iommu_table.h>
/*
* definitions for the ACPI scanning code
*/
#define IVRS_HEADER_LENGTH 48
#define ACPI_IVHD_TYPE 0x10
#define ACPI_IVMD_TYPE_ALL 0x20
#define ACPI_IVMD_TYPE 0x21
#define ACPI_IVMD_TYPE_RANGE 0x22
#define IVHD_DEV_ALL 0x01
#define IVHD_DEV_SELECT 0x02
#define IVHD_DEV_SELECT_RANGE_START 0x03
#define IVHD_DEV_RANGE_END 0x04
#define IVHD_DEV_ALIAS 0x42
#define IVHD_DEV_ALIAS_RANGE 0x43
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
#define IVHD_FLAG_ISOC_EN_MASK 0x08
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_UNITY_MAP 0x01
#define ACPI_DEVFLAG_INITPASS 0x01
#define ACPI_DEVFLAG_EXTINT 0x02
#define ACPI_DEVFLAG_NMI 0x04
#define ACPI_DEVFLAG_SYSMGT1 0x10
#define ACPI_DEVFLAG_SYSMGT2 0x20
#define ACPI_DEVFLAG_LINT0 0x40
#define ACPI_DEVFLAG_LINT1 0x80
#define ACPI_DEVFLAG_ATSDIS 0x10000000
/*
* ACPI table definitions
*
* These data structures are laid over the table to parse the important values
* out of it.
*/
/*
* structure describing one IOMMU in the ACPI table. Typically followed by one
* or more ivhd_entrys.
*/
struct ivhd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 cap_ptr;
u64 mmio_phys;
u16 pci_seg;
u16 info;
u32 reserved;
} __attribute__((packed));
/*
* A device entry describing which devices a specific IOMMU translates and
* which requestor ids they use.
*/
struct ivhd_entry {
u8 type;
u16 devid;
u8 flags;
u32 ext;
} __attribute__((packed));
/*
* An AMD IOMMU memory definition structure. It defines things like exclusion
* ranges for devices and regions that should be unity mapped.
*/
struct ivmd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 aux;
u64 resv;
u64 range_start;
u64 range_length;
} __attribute__((packed));
bool amd_iommu_dump;
static int __initdata amd_iommu_detected;
static bool __initdata amd_iommu_disabled;
u16 amd_iommu_last_bdf; /* largest PCI device id we have
to handle */
LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
we find in ACPI */
bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
system */
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
int amd_iommus_present;
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
bool amd_iommu_iotlb_sup __read_mostly = true;
/*
* The ACPI table parsing functions set this variable on an error
*/
static int __initdata amd_iommu_init_err;
/*
* List of protection domains - used during resume
*/
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;
/*
* Pointer to the device table which is shared by all AMD IOMMUs
* it is indexed by the PCI device id or the HT unit id and contains
* information about the domain the device belongs to as well as the
* page table root pointer.
*/
struct dev_table_entry *amd_iommu_dev_table;
/*
* The alias table is a driver specific data structure which contains the
* mappings of the PCI device ids to the actual requestor ids on the IOMMU.
* More than one device can share the same requestor id.
*/
u16 *amd_iommu_alias_table;
/*
* The rlookup table is used to find the IOMMU which is responsible
* for a specific device. It is also indexed by the PCI device id.
*/
struct amd_iommu **amd_iommu_rlookup_table;
/*
* AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
* to know which ones are already in use.
*/
unsigned long *amd_iommu_pd_alloc_bitmap;
static u32 dev_table_size; /* size of the device table */
static u32 alias_table_size; /* size of the alias table */
static u32 rlookup_table_size; /* size if the rlookup table */
/*
* This function flushes all internal caches of
* the IOMMU used by this driver.
*/
extern void iommu_flush_all_caches(struct amd_iommu *iommu);
static inline void update_last_devid(u16 devid)
{
if (devid > amd_iommu_last_bdf)
amd_iommu_last_bdf = devid;
}
static inline unsigned long tbl_size(int entry_size)
{
unsigned shift = PAGE_SHIFT +
get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
return 1UL << shift;
}
/* Access to l1 and l2 indexed register spaces */
static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
pci_read_config_dword(iommu->dev, 0xfc, &val);
return val;
}
static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
pci_write_config_dword(iommu->dev, 0xfc, val);
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}
static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf0, address);
pci_read_config_dword(iommu->dev, 0xf4, &val);
return val;
}
static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, val);
}
/****************************************************************************
*
* AMD IOMMU MMIO register space handling functions
*
* These functions are used to program the IOMMU device registers in
* MMIO space required for that driver.
*
****************************************************************************/
/*
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
u64 entry;
if (!iommu->exclusion_start)
return;
entry = start | MMIO_EXCL_ENABLE_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
entry = limit;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
/* Programs the physical address of the device table into the IOMMU hardware */
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->mmio_base == NULL);
entry = virt_to_phys(amd_iommu_dev_table);
entry |= (dev_table_size >> 12) - 1;
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
&entry, sizeof(entry));
}
/* Generic functions to enable/disable certain features of the IOMMU. */
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl |= (1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~(1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
/* Function to enable the hardware */
static void iommu_enable(struct amd_iommu *iommu)
{
static const char * const feat_str[] = {
"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
"IA", "GA", "HE", "PC", NULL
};
int i;
printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx",
dev_name(&iommu->dev->dev), iommu->cap_ptr);
if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
printk(KERN_CONT " extended features: ");
for (i = 0; feat_str[i]; ++i)
if (iommu_feature(iommu, (1ULL << i)))
printk(KERN_CONT " %s", feat_str[i]);
}
printk(KERN_CONT "\n");
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
static void iommu_disable(struct amd_iommu *iommu)
{
/* Disable command buffer */
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
/* Disable event logging and event interrupts */
iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
/* Disable IOMMU hardware itself */
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
}
/*
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
* the system has one.
*/
static u8 * __init iommu_map_mmio_space(u64 address)
{
u8 *ret;
if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
address);
pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
return NULL;
}
ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
if (ret != NULL)
return ret;
release_mem_region(address, MMIO_REGION_LENGTH);
return NULL;
}
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
if (iommu->mmio_base)
iounmap(iommu->mmio_base);
release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}
/****************************************************************************
*
* The functions below belong to the first pass of AMD IOMMU ACPI table
* parsing. In this pass we try to find out the highest device id this
* code has to handle. Upon this information the size of the shared data
* structures is determined later.
*
****************************************************************************/
/*
* This function calculates the length of a given IVHD entry
*/
static inline int ivhd_entry_length(u8 *ivhd)
{
return 0x04 << (*ivhd >> 6);
}
/*
* This function reads the last device id the IOMMU has to handle from the PCI
* capability header for this IOMMU
*/
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
u32 cap;
cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
return 0;
}
/*
* After reading the highest device id from the IOMMU PCI capability header
* this function looks if there is a higher device id defined in the ACPI table
*/
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
u8 *p = (void *)h, *end = (void *)h;
struct ivhd_entry *dev;
p += sizeof(*h);
end += h->length;
find_last_devid_on_pci(PCI_BUS(h->devid),
PCI_SLOT(h->devid),
PCI_FUNC(h->devid),
h->cap_ptr);
while (p < end) {
dev = (struct ivhd_entry *)p;
switch (dev->type) {
case IVHD_DEV_SELECT:
case IVHD_DEV_RANGE_END:
case IVHD_DEV_ALIAS:
case IVHD_DEV_EXT_SELECT:
/* all the above subfield types refer to device ids */
update_last_devid(dev->devid);
break;
default:
break;
}
p += ivhd_entry_length(p);
}
WARN_ON(p != end);
return 0;
}
/*
* Iterate over all IVHD entries in the ACPI table and find the highest device
* id which we need to handle. This is the first of three functions which parse
* the ACPI table. So we check the checksum here.
*/
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
int i;
u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
/*
* Validate checksum here so we don't need to do it when
* we actually parse the table
*/
for (i = 0; i < table->length; ++i)
checksum += p[i];
if (checksum != 0) {
/* ACPI table corrupt */
amd_iommu_init_err = -ENODEV;
return 0;
}
p += IVRS_HEADER_LENGTH;
end += table->length;
while (p < end) {
h = (struct ivhd_header *)p;
switch (h->type) {
case ACPI_IVHD_TYPE:
find_last_devid_from_ivhd(h);
break;
default:
break;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
/****************************************************************************
*
* The following functions belong the the code path which parses the ACPI table
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
* data structures, initialize the device/alias/rlookup table and also
* basically initialize the hardware.
*
****************************************************************************/
/*
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
* write commands to that buffer later and the IOMMU will execute them
* asynchronously
*/
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(CMD_BUFFER_SIZE));
if (cmd_buf == NULL)
return NULL;
iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
return cmd_buf;
}
/*
* This function resets the command buffer if the IOMMU stopped fetching
* commands from it.
*/
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
*/
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->cmd_buf == NULL);
entry = (u64)virt_to_phys(iommu->cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
amd_iommu_reset_cmd_buffer(iommu);
iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
}
static void __init free_command_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->cmd_buf,
get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
}
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(EVT_BUFFER_SIZE));
if (iommu->evt_buf == NULL)
return NULL;
iommu->evt_buf_size = EVT_BUFFER_SIZE;
return iommu->evt_buf;
}
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->evt_buf == NULL);
entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
static void __init free_event_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}
/* sets a specific bit in the device table entry. */
static void set_dev_entry_bit(u16 devid, u8 bit)
{
int i = (bit >> 5) & 0x07;
int _bit = bit & 0x1f;
amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}
static int get_dev_entry_bit(u16 devid, u8 bit)
{
int i = (bit >> 5) & 0x07;
int _bit = bit & 0x1f;
return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
}
void amd_iommu_apply_erratum_63(u16 devid)
{
int sysmgt;
sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
(get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
if (sysmgt == 0x01)
set_dev_entry_bit(devid, DEV_ENTRY_IW);
}
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
amd_iommu_rlookup_table[devid] = iommu;
}
/*
* This function takes the device specific flags read from the ACPI
* table and sets up the device table entry with that information
*/
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
u16 devid, u32 flags, u32 ext_flags)
{
if (flags & ACPI_DEVFLAG_INITPASS)
set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
if (flags & ACPI_DEVFLAG_EXTINT)
set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
if (flags & ACPI_DEVFLAG_NMI)
set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
if (flags & ACPI_DEVFLAG_SYSMGT1)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
if (flags & ACPI_DEVFLAG_SYSMGT2)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
if (flags & ACPI_DEVFLAG_LINT0)
set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
if (flags & ACPI_DEVFLAG_LINT1)
set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
amd_iommu_apply_erratum_63(devid);
set_iommu_for_device(iommu, devid);
}
/*
* Reads the device exclusion range from ACPI and initialize IOMMU with
* it
*/
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
return;
if (iommu) {
/*
* We only can configure exclusion ranges per IOMMU, not
* per device. But we can enable the exclusion range per
* device. This is done here
*/
set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
iommu->exclusion_start = m->range_start;
iommu->exclusion_length = m->range_length;
}
}
/*
* This function reads some important data from the IOMMU PCI space and
* initializes the driver data structure with it. It reads the hardware
* capabilities and the first/last device entries
*/
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
int cap_ptr = iommu->cap_ptr;
u32 range, misc, low, high;
int i, j;
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
&iommu->cap);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
&range);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
&misc);
iommu->first_device = calc_devid(MMIO_GET_BUS(range),
MMIO_GET_FD(range));
iommu->last_device = calc_devid(MMIO_GET_BUS(range),
MMIO_GET_LD(range));
iommu->evt_msi_num = MMIO_MSI_NUM(misc);
if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
amd_iommu_iotlb_sup = false;
/* read extended feature bits */
low = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);
iommu->features = ((u64)high << 32) | low;
if (!is_rd890_iommu(iommu->dev))
return;
/*
* Some rd890 systems may not be fully reconfigured by the BIOS, so
* it's necessary for us to store this information so it can be
* reprogrammed on resume
*/
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
&iommu->stored_addr_lo);
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
&iommu->stored_addr_hi);
/* Low bit locks writes to configuration space */
iommu->stored_addr_lo &= ~1;
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
for (i = 0; i < 0x83; i++)
iommu->stored_l2[i] = iommu_read_l2(iommu, i);
}
/*
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
* initializes the hardware and our data structures with it.
*/
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
struct ivhd_header *h)
{
u8 *p = (u8 *)h;
u8 *end = p, flags = 0;
u16 devid = 0, devid_start = 0, devid_to = 0;
u32 dev_i, ext_flags = 0;
bool alias = false;
struct ivhd_entry *e;
/*
* First save the recommended feature enable bits from ACPI
*/
iommu->acpi_flags = h->flags;
/*
* Done. Now parse the device entries
*/
p += sizeof(struct ivhd_header);
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
switch (e->type) {
case IVHD_DEV_ALL:
DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
" last device %02x:%02x.%x flags: %02x\n",
PCI_BUS(iommu->first_device),
PCI_SLOT(iommu->first_device),
PCI_FUNC(iommu->first_device),
PCI_BUS(iommu->last_device),
PCI_SLOT(iommu->last_device),
PCI_FUNC(iommu->last_device),
e->flags);
for (dev_i = iommu->first_device;
dev_i <= iommu->last_device; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i,
e->flags, 0);
break;
case IVHD_DEV_SELECT:
DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
"flags: %02x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
DUMP_printk(" DEV_SELECT_RANGE_START\t "
"devid: %02x:%02x.%x flags: %02x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
"flags: %02x devid_to: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
amd_iommu_alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
"devid: %02x:%02x.%x flags: %02x "
"devid_to: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
ext_flags = 0;
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
"flags: %02x ext: %08x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
"%02x:%02x.%x flags: %02x ext: %08x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
PCI_BUS(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid));
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias) {
amd_iommu_alias_table[dev_i] = devid_to;
set_dev_entry_from_acpi(iommu,
devid_to, flags, ext_flags);
}
set_dev_entry_from_acpi(iommu, dev_i,
flags, ext_flags);
}
break;
default:
break;
}
p += ivhd_entry_length(p);
}
}
/* Initializes the device->iommu mapping for the driver */
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
u32 i;
for (i = iommu->first_device; i <= iommu->last_device; ++i)
set_iommu_for_device(iommu, i);
return 0;
}
static void __init free_iommu_one(struct amd_iommu *iommu)
{
free_command_buffer(iommu);
free_event_buffer(iommu);
iommu_unmap_mmio_space(iommu);
}
static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
for_each_iommu_safe(iommu, next) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
}
}
/*
* This function clues the initialization function for one IOMMU
* together and also allocates the command buffer and programs the
* hardware. It does NOT enable the IOMMU. This is done afterwards.
*/
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
spin_lock_init(&iommu->lock);
/* Add IOMMU to internal data structures */
list_add_tail(&iommu->list, &amd_iommu_list);
iommu->index = amd_iommus_present++;
if (unlikely(iommu->index >= MAX_IOMMUS)) {
WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
return -ENOSYS;
}
/* Index is fine - add IOMMU to the array */
amd_iommus[iommu->index] = iommu;
/*
* Copy data from ACPI table entry to the iommu struct
*/
iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
if (!iommu->dev)
return 1;
iommu->cap_ptr = h->cap_ptr;
iommu->pci_seg = h->pci_seg;
iommu->mmio_phys = h->mmio_phys;
iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
if (!iommu->mmio_base)
return -ENOMEM;
iommu->cmd_buf = alloc_command_buffer(iommu);
if (!iommu->cmd_buf)
return -ENOMEM;
iommu->evt_buf = alloc_event_buffer(iommu);
if (!iommu->evt_buf)
return -ENOMEM;
iommu->int_enabled = false;
init_iommu_from_pci(iommu);
init_iommu_from_acpi(iommu, h);
init_iommu_devices(iommu);
if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
amd_iommu_np_cache = true;
return pci_enable_device(iommu->dev);
}
/*
* Iterates over all IOMMU entries in the ACPI table, allocates the
* IOMMU structure and initializes it with init_iommu_one()
*/
static int __init init_iommu_all(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
struct amd_iommu *iommu;
int ret;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
h = (struct ivhd_header *)p;
switch (*p) {
case ACPI_IVHD_TYPE:
DUMP_printk("device: %02x:%02x.%01x cap: %04x "
"seg: %d flags: %01x info %04x\n",
PCI_BUS(h->devid), PCI_SLOT(h->devid),
PCI_FUNC(h->devid), h->cap_ptr,
h->pci_seg, h->flags, h->info);
DUMP_printk(" mmio-addr: %016llx\n",
h->mmio_phys);
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL) {
amd_iommu_init_err = -ENOMEM;
return 0;
}
ret = init_iommu_one(iommu, h);
if (ret) {
amd_iommu_init_err = ret;
return 0;
}
break;
default:
break;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
/****************************************************************************
*
* The following functions initialize the MSI interrupts for all IOMMUs
* in the system. Its a bit challenging because there could be multiple
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
* pci_dev.
*
****************************************************************************/
static int iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
if (pci_enable_msi(iommu->dev))
return 1;
r = request_threaded_irq(iommu->dev->irq,
amd_iommu_int_handler,
amd_iommu_int_thread,
0, "AMD-Vi",
iommu->dev);
if (r) {
pci_disable_msi(iommu->dev);
return 1;
}
iommu->int_enabled = true;
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
return 0;
}
static int iommu_init_msi(struct amd_iommu *iommu)
{
if (iommu->int_enabled)
return 0;
if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
return iommu_setup_msi(iommu);
return 1;
}
/****************************************************************************
*
* The next functions belong to the third pass of parsing the ACPI
* table. In this last pass the memory mapping requirements are
* gathered (like exclusion and unity mapping reanges).
*
****************************************************************************/
static void __init free_unity_maps(void)
{
struct unity_map_entry *entry, *next;
list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
list_del(&entry->list);
kfree(entry);
}
}
/* called when we find an exclusion range definition in ACPI */
static int __init init_exclusion_range(struct ivmd_header *m)
{
int i;
switch (m->type) {
case ACPI_IVMD_TYPE:
set_device_exclusion_range(m->devid, m);
break;
case ACPI_IVMD_TYPE_ALL:
for (i = 0; i <= amd_iommu_last_bdf; ++i)
set_device_exclusion_range(i, m);
break;
case ACPI_IVMD_TYPE_RANGE:
for (i = m->devid; i <= m->aux; ++i)
set_device_exclusion_range(i, m);
break;
default:
break;
}
return 0;
}
/* called for unity map ACPI definition */
static int __init init_unity_map_range(struct ivmd_header *m)
{
struct unity_map_entry *e = 0;
char *s;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
return -ENOMEM;
switch (m->type) {
default:
kfree(e);
return 0;
case ACPI_IVMD_TYPE:
s = "IVMD_TYPEi\t\t\t";
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
s = "IVMD_TYPE_ALL\t\t";
e->devid_start = 0;
e->devid_end = amd_iommu_last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
s = "IVMD_TYPE_RANGE\t\t";
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
}
e->address_start = PAGE_ALIGN(m->range_start);
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
" range_start: %016llx range_end: %016llx flags: %x\n", s,
PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
e->address_start, e->address_end, m->flags);
list_add_tail(&e->list, &amd_iommu_unity_map);
return 0;
}
/* iterates over all memory definitions we find in the ACPI table */
static int __init init_memory_definitions(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivmd_header *m;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
m = (struct ivmd_header *)p;
if (m->flags & IVMD_FLAG_EXCL_RANGE)
init_exclusion_range(m);
else if (m->flags & IVMD_FLAG_UNITY_MAP)
init_unity_map_range(m);
p += m->length;
}
return 0;
}
/*
* Init the device table to not allow DMA access for devices and
* suppress all page faults
*/
static void init_device_table(void)
{
u32 devid;
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
set_dev_entry_bit(devid, DEV_ENTRY_VALID);
set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
}
}
static void iommu_init_flags(struct amd_iommu *iommu)
{
iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
/*
* make IOMMU memory accesses cache coherent
*/
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
}
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
{
int i, j;
u32 ioc_feature_control;
struct pci_dev *pdev = NULL;
/* RD890 BIOSes may not have completely reconfigured the iommu */
if (!is_rd890_iommu(iommu->dev))
return;
/*
* First, we need to ensure that the iommu is enabled. This is
* controlled by a register in the northbridge
*/
pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0));
if (!pdev)
return;
/* Select Northbridge indirect register 0x75 and enable writing */
pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
/* Enable the iommu */
if (!(ioc_feature_control & 0x1))
pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
pci_dev_put(pdev);
/* Restore the iommu BAR */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo);
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
iommu->stored_addr_hi);
/* Restore the l1 indirect regs for each of the 6 l1s */
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
/* Restore the l2 indirect regs */
for (i = 0; i < 0x83; i++)
iommu_write_l2(iommu, i, iommu->stored_l2[i]);
/* Lock PCI setup registers */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo | 1);
}
/*
* This function finally enables all IOMMUs found in the system after
* they have been initialized
*/
static void enable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
iommu_disable(iommu);
iommu_init_flags(iommu);
iommu_set_device_table(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_set_exclusion_range(iommu);
iommu_init_msi(iommu);
iommu_enable(iommu);
iommu_flush_all_caches(iommu);
}
}
static void disable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_disable(iommu);
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
*/
static void amd_iommu_resume(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_apply_resume_quirks(iommu);
/* re-load the hardware */
enable_iommus();
/*
* we have to flush after the IOMMUs are enabled because a
* disabled IOMMU will never execute the commands we send
*/
for_each_iommu(iommu)
iommu_flush_all_caches(iommu);
}
static int amd_iommu_suspend(void)
{
/* disable IOMMUs to go out of the way for BIOS */
disable_iommus();
return 0;
}
static struct syscore_ops amd_iommu_syscore_ops = {
.suspend = amd_iommu_suspend,
.resume = amd_iommu_resume,
};
/*
* This is the core init function for AMD IOMMU hardware in the system.
* This function is called from the generic x86 DMA layer initialization
* code.
*
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
* three times:
*
* 1 pass) Find the highest PCI device id the driver has to handle.
* Upon this information the size of the data structures is
* determined that needs to be allocated.
*
* 2 pass) Initialize the data structures just allocated with the
* information in the ACPI table about available AMD IOMMUs
* in the system. It also maps the PCI devices in the
* system to specific IOMMUs
*
* 3 pass) After the basic data structures are allocated and
* initialized we update them with information about memory
* remapping requirements parsed out of the ACPI table in
* this last pass.
*
* After that the hardware is initialized and ready to go. In the last
* step we do some Linux specific things like registering the driver in
* the dma_ops interface and initializing the suspend/resume support
* functions. Finally it prints some information about AMD IOMMUs and
* the driver state and enables the hardware.
*/
static int __init amd_iommu_init(void)
{
int i, ret = 0;
/*
* First parse ACPI tables to find the largest Bus/Dev/Func
* we need to handle. Upon this information the shared data
* structures for the IOMMUs in the system will be allocated
*/
if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
return -ENODEV;
ret = amd_iommu_init_err;
if (ret)
goto out;
dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
ret = -ENOMEM;
/* Device table - directly used by all IOMMUs */
amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(dev_table_size));
if (amd_iommu_dev_table == NULL)
goto out;
/*
* Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
* IOMMU see for that device
*/
amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
get_order(alias_table_size));
if (amd_iommu_alias_table == NULL)
goto free;
/* IOMMU rlookup table - find the IOMMU for a specific device */
amd_iommu_rlookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(rlookup_table_size));
if (amd_iommu_rlookup_table == NULL)
goto free;
amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(MAX_DOMAIN_ID/8));
if (amd_iommu_pd_alloc_bitmap == NULL)
goto free;
/* init the device table */
init_device_table();
/*
* let all alias entries point to itself
*/
for (i = 0; i <= amd_iommu_last_bdf; ++i)
amd_iommu_alias_table[i] = i;
/*
* never allocate domain 0 because its used as the non-allocated and
* error value placeholder
*/
amd_iommu_pd_alloc_bitmap[0] = 1;
spin_lock_init(&amd_iommu_pd_lock);
/*
* now the data structures are allocated and basically initialized
* start the real acpi table scan
*/
ret = -ENODEV;
if (acpi_table_parse("IVRS", init_iommu_all) != 0)
goto free;
if (amd_iommu_init_err) {
ret = amd_iommu_init_err;
goto free;
}
if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
goto free;
if (amd_iommu_init_err) {
ret = amd_iommu_init_err;
goto free;
}
ret = amd_iommu_init_devices();
if (ret)
goto free;
enable_iommus();
if (iommu_pass_through)
ret = amd_iommu_init_passthrough();
else
ret = amd_iommu_init_dma_ops();
if (ret)
goto free_disable;
amd_iommu_init_api();
amd_iommu_init_notifier();
register_syscore_ops(&amd_iommu_syscore_ops);
if (iommu_pass_through)
goto out;
if (amd_iommu_unmap_flush)
printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
else
printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
x86_platform.iommu_shutdown = disable_iommus;
out:
return ret;
free_disable:
disable_iommus();
free:
amd_iommu_uninit_devices();
free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
get_order(MAX_DOMAIN_ID/8));
free_pages((unsigned long)amd_iommu_rlookup_table,
get_order(rlookup_table_size));
free_pages((unsigned long)amd_iommu_alias_table,
get_order(alias_table_size));
free_pages((unsigned long)amd_iommu_dev_table,
get_order(dev_table_size));
free_iommu_all();
free_unity_maps();
#ifdef CONFIG_GART_IOMMU
/*
* We failed to initialize the AMD IOMMU - try fallback to GART
* if possible.
*/
gart_iommu_init();
#endif
goto out;
}
/****************************************************************************
*
* Early detect code. This code runs at IOMMU detection time in the DMA
* layer. It just looks if there is an IVRS ACPI table to detect AMD
* IOMMUs
*
****************************************************************************/
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
return 0;
}
int __init amd_iommu_detect(void)
{
if (no_iommu || (iommu_detected && !gart_iommu_aperture))
return -ENODEV;
if (amd_iommu_disabled)
return -ENODEV;
if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
iommu_detected = 1;
amd_iommu_detected = 1;
x86_init.iommu.iommu_init = amd_iommu_init;
/* Make sure ACS will be enabled */
pci_request_acs();
return 1;
}
return -ENODEV;
}
/****************************************************************************
*
* Parsing functions for the AMD IOMMU specific kernel command line
* options.
*
****************************************************************************/
static int __init parse_amd_iommu_dump(char *str)
{
amd_iommu_dump = true;
return 1;
}
static int __init parse_amd_iommu_options(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "fullflush", 9) == 0)
amd_iommu_unmap_flush = true;
if (strncmp(str, "off", 3) == 0)
amd_iommu_disabled = true;
}
return 1;
}
__setup("amd_iommu_dump", parse_amd_iommu_dump);
__setup("amd_iommu=", parse_amd_iommu_options);
IOMMU_INIT_FINISH(amd_iommu_detect,
gart_iommu_hole_init,
0,
0);