OpenCloudOS-Kernel/drivers/pcmcia/yenta_socket.c

1395 lines
39 KiB
C

/*
* Regular cardbus driver ("yenta_socket")
*
* (C) Copyright 1999, 2000 Linus Torvalds
*
* Changelog:
* Aug 2002: Manfred Spraul <manfred@colorfullife.com>
* Dynamically adjust the size of the bridge resource
*
* May 2003: Dominik Brodowski <linux@brodo.de>
* Merge pci_socket.c and yenta.c into one file
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/ss.h>
#include <pcmcia/cs.h>
#include <asm/io.h>
#include "yenta_socket.h"
#include "i82365.h"
static int disable_clkrun;
module_param(disable_clkrun, bool, 0444);
MODULE_PARM_DESC(disable_clkrun, "If PC card doesn't function properly, please try this option");
static int isa_probe = 1;
module_param(isa_probe, bool, 0444);
MODULE_PARM_DESC(isa_probe, "If set ISA interrupts are probed (default). Set to N to disable probing");
static int pwr_irqs_off;
module_param(pwr_irqs_off, bool, 0644);
MODULE_PARM_DESC(pwr_irqs_off, "Force IRQs off during power-on of slot. Use only when seeing IRQ storms!");
#if 0
#define debug(x,args...) printk(KERN_DEBUG "%s: " x, __func__ , ##args)
#else
#define debug(x,args...)
#endif
/* Don't ask.. */
#define to_cycles(ns) ((ns)/120)
#define to_ns(cycles) ((cycles)*120)
/**
* yenta PCI irq probing.
* currently only used in the TI/EnE initialization code
*/
#ifdef CONFIG_YENTA_TI
static int yenta_probe_cb_irq(struct yenta_socket *socket);
#endif
static unsigned int override_bios;
module_param(override_bios, uint, 0000);
MODULE_PARM_DESC (override_bios, "yenta ignore bios resource allocation");
/*
* Generate easy-to-use ways of reading a cardbus sockets
* regular memory space ("cb_xxx"), configuration space
* ("config_xxx") and compatibility space ("exca_xxxx")
*/
static inline u32 cb_readl(struct yenta_socket *socket, unsigned reg)
{
u32 val = readl(socket->base + reg);
debug("%p %04x %08x\n", socket, reg, val);
return val;
}
static inline void cb_writel(struct yenta_socket *socket, unsigned reg, u32 val)
{
debug("%p %04x %08x\n", socket, reg, val);
writel(val, socket->base + reg);
readl(socket->base + reg); /* avoid problems with PCI write posting */
}
static inline u8 config_readb(struct yenta_socket *socket, unsigned offset)
{
u8 val;
pci_read_config_byte(socket->dev, offset, &val);
debug("%p %04x %02x\n", socket, offset, val);
return val;
}
static inline u16 config_readw(struct yenta_socket *socket, unsigned offset)
{
u16 val;
pci_read_config_word(socket->dev, offset, &val);
debug("%p %04x %04x\n", socket, offset, val);
return val;
}
static inline u32 config_readl(struct yenta_socket *socket, unsigned offset)
{
u32 val;
pci_read_config_dword(socket->dev, offset, &val);
debug("%p %04x %08x\n", socket, offset, val);
return val;
}
static inline void config_writeb(struct yenta_socket *socket, unsigned offset, u8 val)
{
debug("%p %04x %02x\n", socket, offset, val);
pci_write_config_byte(socket->dev, offset, val);
}
static inline void config_writew(struct yenta_socket *socket, unsigned offset, u16 val)
{
debug("%p %04x %04x\n", socket, offset, val);
pci_write_config_word(socket->dev, offset, val);
}
static inline void config_writel(struct yenta_socket *socket, unsigned offset, u32 val)
{
debug("%p %04x %08x\n", socket, offset, val);
pci_write_config_dword(socket->dev, offset, val);
}
static inline u8 exca_readb(struct yenta_socket *socket, unsigned reg)
{
u8 val = readb(socket->base + 0x800 + reg);
debug("%p %04x %02x\n", socket, reg, val);
return val;
}
static inline u8 exca_readw(struct yenta_socket *socket, unsigned reg)
{
u16 val;
val = readb(socket->base + 0x800 + reg);
val |= readb(socket->base + 0x800 + reg + 1) << 8;
debug("%p %04x %04x\n", socket, reg, val);
return val;
}
static inline void exca_writeb(struct yenta_socket *socket, unsigned reg, u8 val)
{
debug("%p %04x %02x\n", socket, reg, val);
writeb(val, socket->base + 0x800 + reg);
readb(socket->base + 0x800 + reg); /* PCI write posting... */
}
static void exca_writew(struct yenta_socket *socket, unsigned reg, u16 val)
{
debug("%p %04x %04x\n", socket, reg, val);
writeb(val, socket->base + 0x800 + reg);
writeb(val >> 8, socket->base + 0x800 + reg + 1);
/* PCI write posting... */
readb(socket->base + 0x800 + reg);
readb(socket->base + 0x800 + reg + 1);
}
static ssize_t show_yenta_registers(struct device *yentadev, struct device_attribute *attr, char *buf)
{
struct pci_dev *dev = to_pci_dev(yentadev);
struct yenta_socket *socket = pci_get_drvdata(dev);
int offset = 0, i;
offset = snprintf(buf, PAGE_SIZE, "CB registers:");
for (i = 0; i < 0x24; i += 4) {
unsigned val;
if (!(i & 15))
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i);
val = cb_readl(socket, i);
offset += snprintf(buf + offset, PAGE_SIZE - offset, " %08x", val);
}
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n\nExCA registers:");
for (i = 0; i < 0x45; i++) {
unsigned char val;
if (!(i & 7)) {
if (i & 8) {
memcpy(buf + offset, " -", 2);
offset += 2;
} else
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i);
}
val = exca_readb(socket, i);
offset += snprintf(buf + offset, PAGE_SIZE - offset, " %02x", val);
}
buf[offset++] = '\n';
return offset;
}
static DEVICE_ATTR(yenta_registers, S_IRUSR, show_yenta_registers, NULL);
/*
* Ugh, mixed-mode cardbus and 16-bit pccard state: things depend
* on what kind of card is inserted..
*/
static int yenta_get_status(struct pcmcia_socket *sock, unsigned int *value)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
unsigned int val;
u32 state = cb_readl(socket, CB_SOCKET_STATE);
val = (state & CB_3VCARD) ? SS_3VCARD : 0;
val |= (state & CB_XVCARD) ? SS_XVCARD : 0;
val |= (state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) ? 0 : SS_PENDING;
val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? SS_PENDING : 0;
if (state & CB_CBCARD) {
val |= SS_CARDBUS;
val |= (state & CB_CARDSTS) ? SS_STSCHG : 0;
val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? 0 : SS_DETECT;
val |= (state & CB_PWRCYCLE) ? SS_POWERON | SS_READY : 0;
} else if (state & CB_16BITCARD) {
u8 status = exca_readb(socket, I365_STATUS);
val |= ((status & I365_CS_DETECT) == I365_CS_DETECT) ? SS_DETECT : 0;
if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) {
val |= (status & I365_CS_STSCHG) ? 0 : SS_STSCHG;
} else {
val |= (status & I365_CS_BVD1) ? 0 : SS_BATDEAD;
val |= (status & I365_CS_BVD2) ? 0 : SS_BATWARN;
}
val |= (status & I365_CS_WRPROT) ? SS_WRPROT : 0;
val |= (status & I365_CS_READY) ? SS_READY : 0;
val |= (status & I365_CS_POWERON) ? SS_POWERON : 0;
}
*value = val;
return 0;
}
static void yenta_set_power(struct yenta_socket *socket, socket_state_t *state)
{
/* some birdges require to use the ExCA registers to power 16bit cards */
if (!(cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) &&
(socket->flags & YENTA_16BIT_POWER_EXCA)) {
u8 reg, old;
reg = old = exca_readb(socket, I365_POWER);
reg &= ~(I365_VCC_MASK | I365_VPP1_MASK | I365_VPP2_MASK);
/* i82365SL-DF style */
if (socket->flags & YENTA_16BIT_POWER_DF) {
switch (state->Vcc) {
case 33: reg |= I365_VCC_3V; break;
case 50: reg |= I365_VCC_5V; break;
default: reg = 0; break;
}
switch (state->Vpp) {
case 33:
case 50: reg |= I365_VPP1_5V; break;
case 120: reg |= I365_VPP1_12V; break;
}
} else {
/* i82365SL-B style */
switch (state->Vcc) {
case 50: reg |= I365_VCC_5V; break;
default: reg = 0; break;
}
switch (state->Vpp) {
case 50: reg |= I365_VPP1_5V | I365_VPP2_5V; break;
case 120: reg |= I365_VPP1_12V | I365_VPP2_12V; break;
}
}
if (reg != old)
exca_writeb(socket, I365_POWER, reg);
} else {
u32 reg = 0; /* CB_SC_STPCLK? */
switch (state->Vcc) {
case 33: reg = CB_SC_VCC_3V; break;
case 50: reg = CB_SC_VCC_5V; break;
default: reg = 0; break;
}
switch (state->Vpp) {
case 33: reg |= CB_SC_VPP_3V; break;
case 50: reg |= CB_SC_VPP_5V; break;
case 120: reg |= CB_SC_VPP_12V; break;
}
if (reg != cb_readl(socket, CB_SOCKET_CONTROL))
cb_writel(socket, CB_SOCKET_CONTROL, reg);
}
}
static int yenta_set_socket(struct pcmcia_socket *sock, socket_state_t *state)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
u16 bridge;
/* if powering down: do it immediately */
if (state->Vcc == 0)
yenta_set_power(socket, state);
socket->io_irq = state->io_irq;
bridge = config_readw(socket, CB_BRIDGE_CONTROL) & ~(CB_BRIDGE_CRST | CB_BRIDGE_INTR);
if (cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) {
u8 intr;
bridge |= (state->flags & SS_RESET) ? CB_BRIDGE_CRST : 0;
/* ISA interrupt control? */
intr = exca_readb(socket, I365_INTCTL);
intr = (intr & ~0xf);
if (!socket->cb_irq) {
intr |= state->io_irq;
bridge |= CB_BRIDGE_INTR;
}
exca_writeb(socket, I365_INTCTL, intr);
} else {
u8 reg;
reg = exca_readb(socket, I365_INTCTL) & (I365_RING_ENA | I365_INTR_ENA);
reg |= (state->flags & SS_RESET) ? 0 : I365_PC_RESET;
reg |= (state->flags & SS_IOCARD) ? I365_PC_IOCARD : 0;
if (state->io_irq != socket->cb_irq) {
reg |= state->io_irq;
bridge |= CB_BRIDGE_INTR;
}
exca_writeb(socket, I365_INTCTL, reg);
reg = exca_readb(socket, I365_POWER) & (I365_VCC_MASK|I365_VPP1_MASK);
reg |= I365_PWR_NORESET;
if (state->flags & SS_PWR_AUTO) reg |= I365_PWR_AUTO;
if (state->flags & SS_OUTPUT_ENA) reg |= I365_PWR_OUT;
if (exca_readb(socket, I365_POWER) != reg)
exca_writeb(socket, I365_POWER, reg);
/* CSC interrupt: no ISA irq for CSC */
reg = I365_CSC_DETECT;
if (state->flags & SS_IOCARD) {
if (state->csc_mask & SS_STSCHG) reg |= I365_CSC_STSCHG;
} else {
if (state->csc_mask & SS_BATDEAD) reg |= I365_CSC_BVD1;
if (state->csc_mask & SS_BATWARN) reg |= I365_CSC_BVD2;
if (state->csc_mask & SS_READY) reg |= I365_CSC_READY;
}
exca_writeb(socket, I365_CSCINT, reg);
exca_readb(socket, I365_CSC);
if(sock->zoom_video)
sock->zoom_video(sock, state->flags & SS_ZVCARD);
}
config_writew(socket, CB_BRIDGE_CONTROL, bridge);
/* Socket event mask: get card insert/remove events.. */
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK);
/* if powering up: do it as the last step when the socket is configured */
if (state->Vcc != 0)
yenta_set_power(socket, state);
return 0;
}
static int yenta_set_io_map(struct pcmcia_socket *sock, struct pccard_io_map *io)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
int map;
unsigned char ioctl, addr, enable;
map = io->map;
if (map > 1)
return -EINVAL;
enable = I365_ENA_IO(map);
addr = exca_readb(socket, I365_ADDRWIN);
/* Disable the window before changing it.. */
if (addr & enable) {
addr &= ~enable;
exca_writeb(socket, I365_ADDRWIN, addr);
}
exca_writew(socket, I365_IO(map)+I365_W_START, io->start);
exca_writew(socket, I365_IO(map)+I365_W_STOP, io->stop);
ioctl = exca_readb(socket, I365_IOCTL) & ~I365_IOCTL_MASK(map);
if (io->flags & MAP_0WS) ioctl |= I365_IOCTL_0WS(map);
if (io->flags & MAP_16BIT) ioctl |= I365_IOCTL_16BIT(map);
if (io->flags & MAP_AUTOSZ) ioctl |= I365_IOCTL_IOCS16(map);
exca_writeb(socket, I365_IOCTL, ioctl);
if (io->flags & MAP_ACTIVE)
exca_writeb(socket, I365_ADDRWIN, addr | enable);
return 0;
}
static int yenta_set_mem_map(struct pcmcia_socket *sock, struct pccard_mem_map *mem)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
struct pci_bus_region region;
int map;
unsigned char addr, enable;
unsigned int start, stop, card_start;
unsigned short word;
pcibios_resource_to_bus(socket->dev, &region, mem->res);
map = mem->map;
start = region.start;
stop = region.end;
card_start = mem->card_start;
if (map > 4 || start > stop || ((start ^ stop) >> 24) ||
(card_start >> 26) || mem->speed > 1000)
return -EINVAL;
enable = I365_ENA_MEM(map);
addr = exca_readb(socket, I365_ADDRWIN);
if (addr & enable) {
addr &= ~enable;
exca_writeb(socket, I365_ADDRWIN, addr);
}
exca_writeb(socket, CB_MEM_PAGE(map), start >> 24);
word = (start >> 12) & 0x0fff;
if (mem->flags & MAP_16BIT)
word |= I365_MEM_16BIT;
if (mem->flags & MAP_0WS)
word |= I365_MEM_0WS;
exca_writew(socket, I365_MEM(map) + I365_W_START, word);
word = (stop >> 12) & 0x0fff;
switch (to_cycles(mem->speed)) {
case 0: break;
case 1: word |= I365_MEM_WS0; break;
case 2: word |= I365_MEM_WS1; break;
default: word |= I365_MEM_WS1 | I365_MEM_WS0; break;
}
exca_writew(socket, I365_MEM(map) + I365_W_STOP, word);
word = ((card_start - start) >> 12) & 0x3fff;
if (mem->flags & MAP_WRPROT)
word |= I365_MEM_WRPROT;
if (mem->flags & MAP_ATTRIB)
word |= I365_MEM_REG;
exca_writew(socket, I365_MEM(map) + I365_W_OFF, word);
if (mem->flags & MAP_ACTIVE)
exca_writeb(socket, I365_ADDRWIN, addr | enable);
return 0;
}
static irqreturn_t yenta_interrupt(int irq, void *dev_id)
{
unsigned int events;
struct yenta_socket *socket = (struct yenta_socket *) dev_id;
u8 csc;
u32 cb_event;
/* Clear interrupt status for the event */
cb_event = cb_readl(socket, CB_SOCKET_EVENT);
cb_writel(socket, CB_SOCKET_EVENT, cb_event);
csc = exca_readb(socket, I365_CSC);
if (!(cb_event || csc))
return IRQ_NONE;
events = (cb_event & (CB_CD1EVENT | CB_CD2EVENT)) ? SS_DETECT : 0 ;
events |= (csc & I365_CSC_DETECT) ? SS_DETECT : 0;
if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) {
events |= (csc & I365_CSC_STSCHG) ? SS_STSCHG : 0;
} else {
events |= (csc & I365_CSC_BVD1) ? SS_BATDEAD : 0;
events |= (csc & I365_CSC_BVD2) ? SS_BATWARN : 0;
events |= (csc & I365_CSC_READY) ? SS_READY : 0;
}
if (events)
pcmcia_parse_events(&socket->socket, events);
return IRQ_HANDLED;
}
static void yenta_interrupt_wrapper(unsigned long data)
{
struct yenta_socket *socket = (struct yenta_socket *) data;
yenta_interrupt(0, (void *)socket);
socket->poll_timer.expires = jiffies + HZ;
add_timer(&socket->poll_timer);
}
static void yenta_clear_maps(struct yenta_socket *socket)
{
int i;
struct resource res = { .start = 0, .end = 0x0fff };
pccard_io_map io = { 0, 0, 0, 0, 1 };
pccard_mem_map mem = { .res = &res, };
yenta_set_socket(&socket->socket, &dead_socket);
for (i = 0; i < 2; i++) {
io.map = i;
yenta_set_io_map(&socket->socket, &io);
}
for (i = 0; i < 5; i++) {
mem.map = i;
yenta_set_mem_map(&socket->socket, &mem);
}
}
/* redoes voltage interrogation if required */
static void yenta_interrogate(struct yenta_socket *socket)
{
u32 state;
state = cb_readl(socket, CB_SOCKET_STATE);
if (!(state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) ||
(state & (CB_CDETECT1 | CB_CDETECT2 | CB_NOTACARD | CB_BADVCCREQ)) ||
((state & (CB_16BITCARD | CB_CBCARD)) == (CB_16BITCARD | CB_CBCARD)))
cb_writel(socket, CB_SOCKET_FORCE, CB_CVSTEST);
}
/* Called at resume and initialization events */
static int yenta_sock_init(struct pcmcia_socket *sock)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
exca_writeb(socket, I365_GBLCTL, 0x00);
exca_writeb(socket, I365_GENCTL, 0x00);
/* Redo card voltage interrogation */
yenta_interrogate(socket);
yenta_clear_maps(socket);
if (socket->type && socket->type->sock_init)
socket->type->sock_init(socket);
/* Re-enable CSC interrupts */
cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK);
return 0;
}
static int yenta_sock_suspend(struct pcmcia_socket *sock)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
/* Disable CSC interrupts */
cb_writel(socket, CB_SOCKET_MASK, 0x0);
return 0;
}
/*
* Use an adaptive allocation for the memory resource,
* sometimes the memory behind pci bridges is limited:
* 1/8 of the size of the io window of the parent.
* max 4 MB, min 16 kB. We try very hard to not get below
* the "ACC" values, though.
*/
#define BRIDGE_MEM_MAX 4*1024*1024
#define BRIDGE_MEM_ACC 128*1024
#define BRIDGE_MEM_MIN 16*1024
#define BRIDGE_IO_MAX 512
#define BRIDGE_IO_ACC 256
#define BRIDGE_IO_MIN 32
#ifndef PCIBIOS_MIN_CARDBUS_IO
#define PCIBIOS_MIN_CARDBUS_IO PCIBIOS_MIN_IO
#endif
static int yenta_search_one_res(struct resource *root, struct resource *res,
u32 min)
{
u32 align, size, start, end;
if (res->flags & IORESOURCE_IO) {
align = 1024;
size = BRIDGE_IO_MAX;
start = PCIBIOS_MIN_CARDBUS_IO;
end = ~0U;
} else {
unsigned long avail = root->end - root->start;
int i;
size = BRIDGE_MEM_MAX;
if (size > avail/8) {
size=(avail+1)/8;
/* round size down to next power of 2 */
i = 0;
while ((size /= 2) != 0)
i++;
size = 1 << i;
}
if (size < min)
size = min;
align = size;
start = PCIBIOS_MIN_MEM;
end = ~0U;
}
do {
if (allocate_resource(root, res, size, start, end, align,
NULL, NULL)==0) {
return 1;
}
size = size/2;
align = size;
} while (size >= min);
return 0;
}
static int yenta_search_res(struct yenta_socket *socket, struct resource *res,
u32 min)
{
int i;
for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
struct resource * root = socket->dev->bus->resource[i];
if (!root)
continue;
if ((res->flags ^ root->flags) &
(IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH))
continue; /* Wrong type */
if (yenta_search_one_res(root, res, min))
return 1;
}
return 0;
}
static int yenta_allocate_res(struct yenta_socket *socket, int nr, unsigned type, int addr_start, int addr_end)
{
struct resource *root, *res;
struct pci_bus_region region;
unsigned mask;
res = socket->dev->resource + PCI_BRIDGE_RESOURCES + nr;
/* Already allocated? */
if (res->parent)
return 0;
/* The granularity of the memory limit is 4kB, on IO it's 4 bytes */
mask = ~0xfff;
if (type & IORESOURCE_IO)
mask = ~3;
res->name = socket->dev->subordinate->name;
res->flags = type;
region.start = config_readl(socket, addr_start) & mask;
region.end = config_readl(socket, addr_end) | ~mask;
if (region.start && region.end > region.start && !override_bios) {
pcibios_bus_to_resource(socket->dev, res, &region);
root = pci_find_parent_resource(socket->dev, res);
if (root && (request_resource(root, res) == 0))
return 0;
printk(KERN_INFO "yenta %s: Preassigned resource %d busy or not available, reconfiguring...\n",
pci_name(socket->dev), nr);
}
if (type & IORESOURCE_IO) {
if ((yenta_search_res(socket, res, BRIDGE_IO_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_IO_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_IO_MIN)))
return 1;
} else {
if (type & IORESOURCE_PREFETCH) {
if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_MIN)))
return 1;
/* Approximating prefetchable by non-prefetchable */
res->flags = IORESOURCE_MEM;
}
if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_MIN)))
return 1;
}
printk(KERN_INFO "yenta %s: no resource of type %x available, trying to continue...\n",
pci_name(socket->dev), type);
res->start = res->end = res->flags = 0;
return 0;
}
/*
* Allocate the bridge mappings for the device..
*/
static void yenta_allocate_resources(struct yenta_socket *socket)
{
int program = 0;
program += yenta_allocate_res(socket, 0, IORESOURCE_IO,
PCI_CB_IO_BASE_0, PCI_CB_IO_LIMIT_0);
program += yenta_allocate_res(socket, 1, IORESOURCE_IO,
PCI_CB_IO_BASE_1, PCI_CB_IO_LIMIT_1);
program += yenta_allocate_res(socket, 2, IORESOURCE_MEM|IORESOURCE_PREFETCH,
PCI_CB_MEMORY_BASE_0, PCI_CB_MEMORY_LIMIT_0);
program += yenta_allocate_res(socket, 3, IORESOURCE_MEM,
PCI_CB_MEMORY_BASE_1, PCI_CB_MEMORY_LIMIT_1);
if (program)
pci_setup_cardbus(socket->dev->subordinate);
}
/*
* Free the bridge mappings for the device..
*/
static void yenta_free_resources(struct yenta_socket *socket)
{
int i;
for (i=0;i<4;i++) {
struct resource *res;
res = socket->dev->resource + PCI_BRIDGE_RESOURCES + i;
if (res->start != 0 && res->end != 0)
release_resource(res);
res->start = res->end = res->flags = 0;
}
}
/*
* Close it down - release our resources and go home..
*/
static void yenta_close(struct pci_dev *dev)
{
struct yenta_socket *sock = pci_get_drvdata(dev);
/* Remove the register attributes */
device_remove_file(&dev->dev, &dev_attr_yenta_registers);
/* we don't want a dying socket registered */
pcmcia_unregister_socket(&sock->socket);
/* Disable all events so we don't die in an IRQ storm */
cb_writel(sock, CB_SOCKET_MASK, 0x0);
exca_writeb(sock, I365_CSCINT, 0);
if (sock->cb_irq)
free_irq(sock->cb_irq, sock);
else
del_timer_sync(&sock->poll_timer);
if (sock->base)
iounmap(sock->base);
yenta_free_resources(sock);
pci_release_regions(dev);
pci_disable_device(dev);
pci_set_drvdata(dev, NULL);
}
static struct pccard_operations yenta_socket_operations = {
.init = yenta_sock_init,
.suspend = yenta_sock_suspend,
.get_status = yenta_get_status,
.set_socket = yenta_set_socket,
.set_io_map = yenta_set_io_map,
.set_mem_map = yenta_set_mem_map,
};
#ifdef CONFIG_YENTA_TI
#include "ti113x.h"
#endif
#ifdef CONFIG_YENTA_RICOH
#include "ricoh.h"
#endif
#ifdef CONFIG_YENTA_TOSHIBA
#include "topic.h"
#endif
#ifdef CONFIG_YENTA_O2
#include "o2micro.h"
#endif
enum {
CARDBUS_TYPE_DEFAULT = -1,
CARDBUS_TYPE_TI,
CARDBUS_TYPE_TI113X,
CARDBUS_TYPE_TI12XX,
CARDBUS_TYPE_TI1250,
CARDBUS_TYPE_RICOH,
CARDBUS_TYPE_TOPIC95,
CARDBUS_TYPE_TOPIC97,
CARDBUS_TYPE_O2MICRO,
CARDBUS_TYPE_ENE,
};
/*
* Different cardbus controllers have slightly different
* initialization sequences etc details. List them here..
*/
static struct cardbus_type cardbus_type[] = {
#ifdef CONFIG_YENTA_TI
[CARDBUS_TYPE_TI] = {
.override = ti_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI113X] = {
.override = ti113x_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI12XX] = {
.override = ti12xx_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI1250] = {
.override = ti1250_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
#endif
#ifdef CONFIG_YENTA_RICOH
[CARDBUS_TYPE_RICOH] = {
.override = ricoh_override,
.save_state = ricoh_save_state,
.restore_state = ricoh_restore_state,
},
#endif
#ifdef CONFIG_YENTA_TOSHIBA
[CARDBUS_TYPE_TOPIC95] = {
.override = topic95_override,
},
[CARDBUS_TYPE_TOPIC97] = {
.override = topic97_override,
},
#endif
#ifdef CONFIG_YENTA_O2
[CARDBUS_TYPE_O2MICRO] = {
.override = o2micro_override,
.restore_state = o2micro_restore_state,
},
#endif
#ifdef CONFIG_YENTA_TI
[CARDBUS_TYPE_ENE] = {
.override = ene_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
#endif
};
/*
* Only probe "regular" interrupts, don't
* touch dangerous spots like the mouse irq,
* because there are mice that apparently
* get really confused if they get fondled
* too intimately.
*
* Default to 11, 10, 9, 7, 6, 5, 4, 3.
*/
static u32 isa_interrupts = 0x0ef8;
static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mask)
{
int i;
unsigned long val;
u32 mask;
/*
* Probe for usable interrupts using the force
* register to generate bogus card status events.
*/
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK);
exca_writeb(socket, I365_CSCINT, 0);
val = probe_irq_on() & isa_irq_mask;
for (i = 1; i < 16; i++) {
if (!((val >> i) & 1))
continue;
exca_writeb(socket, I365_CSCINT, I365_CSC_STSCHG | (i << 4));
cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS);
udelay(100);
cb_writel(socket, CB_SOCKET_EVENT, -1);
}
cb_writel(socket, CB_SOCKET_MASK, 0);
exca_writeb(socket, I365_CSCINT, 0);
mask = probe_irq_mask(val) & 0xffff;
return mask;
}
/**
* yenta PCI irq probing.
* currently only used in the TI/EnE initialization code
*/
#ifdef CONFIG_YENTA_TI
/* interrupt handler, only used during probing */
static irqreturn_t yenta_probe_handler(int irq, void *dev_id)
{
struct yenta_socket *socket = (struct yenta_socket *) dev_id;
u8 csc;
u32 cb_event;
/* Clear interrupt status for the event */
cb_event = cb_readl(socket, CB_SOCKET_EVENT);
cb_writel(socket, CB_SOCKET_EVENT, -1);
csc = exca_readb(socket, I365_CSC);
if (cb_event || csc) {
socket->probe_status = 1;
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* probes the PCI interrupt, use only on override functions */
static int yenta_probe_cb_irq(struct yenta_socket *socket)
{
if (!socket->cb_irq)
return -1;
socket->probe_status = 0;
if (request_irq(socket->cb_irq, yenta_probe_handler, IRQF_SHARED, "yenta", socket)) {
printk(KERN_WARNING "Yenta: request_irq() in yenta_probe_cb_irq() failed!\n");
return -1;
}
/* generate interrupt, wait */
exca_writeb(socket, I365_CSCINT, I365_CSC_STSCHG);
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK);
cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS);
msleep(100);
/* disable interrupts */
cb_writel(socket, CB_SOCKET_MASK, 0);
exca_writeb(socket, I365_CSCINT, 0);
cb_writel(socket, CB_SOCKET_EVENT, -1);
exca_readb(socket, I365_CSC);
free_irq(socket->cb_irq, socket);
return (int) socket->probe_status;
}
#endif /* CONFIG_YENTA_TI */
/*
* Set static data that doesn't need re-initializing..
*/
static void yenta_get_socket_capabilities(struct yenta_socket *socket, u32 isa_irq_mask)
{
socket->socket.pci_irq = socket->cb_irq;
if (isa_probe)
socket->socket.irq_mask = yenta_probe_irq(socket, isa_irq_mask);
else
socket->socket.irq_mask = 0;
printk(KERN_INFO "Yenta: ISA IRQ mask 0x%04x, PCI irq %d\n",
socket->socket.irq_mask, socket->cb_irq);
}
/*
* Initialize the standard cardbus registers
*/
static void yenta_config_init(struct yenta_socket *socket)
{
u16 bridge;
struct pci_dev *dev = socket->dev;
struct pci_bus_region region;
pcibios_resource_to_bus(socket->dev, &region, &dev->resource[0]);
config_writel(socket, CB_LEGACY_MODE_BASE, 0);
config_writel(socket, PCI_BASE_ADDRESS_0, region.start);
config_writew(socket, PCI_COMMAND,
PCI_COMMAND_IO |
PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER |
PCI_COMMAND_WAIT);
/* MAGIC NUMBERS! Fixme */
config_writeb(socket, PCI_CACHE_LINE_SIZE, L1_CACHE_BYTES / 4);
config_writeb(socket, PCI_LATENCY_TIMER, 168);
config_writel(socket, PCI_PRIMARY_BUS,
(176 << 24) | /* sec. latency timer */
(dev->subordinate->subordinate << 16) | /* subordinate bus */
(dev->subordinate->secondary << 8) | /* secondary bus */
dev->subordinate->primary); /* primary bus */
/*
* Set up the bridging state:
* - enable write posting.
* - memory window 0 prefetchable, window 1 non-prefetchable
* - PCI interrupts enabled if a PCI interrupt exists..
*/
bridge = config_readw(socket, CB_BRIDGE_CONTROL);
bridge &= ~(CB_BRIDGE_CRST | CB_BRIDGE_PREFETCH1 | CB_BRIDGE_ISAEN | CB_BRIDGE_VGAEN);
bridge |= CB_BRIDGE_PREFETCH0 | CB_BRIDGE_POSTEN;
config_writew(socket, CB_BRIDGE_CONTROL, bridge);
}
/**
* yenta_fixup_parent_bridge - Fix subordinate bus# of the parent bridge
* @cardbus_bridge: The PCI bus which the CardBus bridge bridges to
*
* Checks if devices on the bus which the CardBus bridge bridges to would be
* invisible during PCI scans because of a misconfigured subordinate number
* of the parent brige - some BIOSes seem to be too lazy to set it right.
* Does the fixup carefully by checking how far it can go without conflicts.
* See http://bugzilla.kernel.org/show_bug.cgi?id=2944 for more information.
*/
static void yenta_fixup_parent_bridge(struct pci_bus *cardbus_bridge)
{
struct list_head *tmp;
unsigned char upper_limit;
/*
* We only check and fix the parent bridge: All systems which need
* this fixup that have been reviewed are laptops and the only bridge
* which needed fixing was the parent bridge of the CardBus bridge:
*/
struct pci_bus *bridge_to_fix = cardbus_bridge->parent;
/* Check bus numbers are already set up correctly: */
if (bridge_to_fix->subordinate >= cardbus_bridge->subordinate)
return; /* The subordinate number is ok, nothing to do */
if (!bridge_to_fix->parent)
return; /* Root bridges are ok */
/* stay within the limits of the bus range of the parent: */
upper_limit = bridge_to_fix->parent->subordinate;
/* check the bus ranges of all silbling bridges to prevent overlap */
list_for_each(tmp, &bridge_to_fix->parent->children) {
struct pci_bus * silbling = pci_bus_b(tmp);
/*
* If the silbling has a higher secondary bus number
* and it's secondary is equal or smaller than our
* current upper limit, set the new upper limit to
* the bus number below the silbling's range:
*/
if (silbling->secondary > bridge_to_fix->subordinate
&& silbling->secondary <= upper_limit)
upper_limit = silbling->secondary - 1;
}
/* Show that the wanted subordinate number is not possible: */
if (cardbus_bridge->subordinate > upper_limit)
printk(KERN_WARNING "Yenta: Upper limit for fixing this "
"bridge's parent bridge: #%02x\n", upper_limit);
/* If we have room to increase the bridge's subordinate number, */
if (bridge_to_fix->subordinate < upper_limit) {
/* use the highest number of the hidden bus, within limits */
unsigned char subordinate_to_assign =
min(cardbus_bridge->subordinate, upper_limit);
printk(KERN_INFO "Yenta: Raising subordinate bus# of parent "
"bus (#%02x) from #%02x to #%02x\n",
bridge_to_fix->number,
bridge_to_fix->subordinate, subordinate_to_assign);
/* Save the new subordinate in the bus struct of the bridge */
bridge_to_fix->subordinate = subordinate_to_assign;
/* and update the PCI config space with the new subordinate */
pci_write_config_byte(bridge_to_fix->self,
PCI_SUBORDINATE_BUS, bridge_to_fix->subordinate);
}
}
/*
* Initialize a cardbus controller. Make sure we have a usable
* interrupt, and that we can map the cardbus area. Fill in the
* socket information structure..
*/
static int __devinit yenta_probe (struct pci_dev *dev, const struct pci_device_id *id)
{
struct yenta_socket *socket;
int ret;
/*
* If we failed to assign proper bus numbers for this cardbus
* controller during PCI probe, its subordinate pci_bus is NULL.
* Bail out if so.
*/
if (!dev->subordinate) {
printk(KERN_ERR "Yenta: no bus associated with %s! "
"(try 'pci=assign-busses')\n", pci_name(dev));
return -ENODEV;
}
socket = kzalloc(sizeof(struct yenta_socket), GFP_KERNEL);
if (!socket)
return -ENOMEM;
/* prepare pcmcia_socket */
socket->socket.ops = &yenta_socket_operations;
socket->socket.resource_ops = &pccard_nonstatic_ops;
socket->socket.dev.parent = &dev->dev;
socket->socket.driver_data = socket;
socket->socket.owner = THIS_MODULE;
socket->socket.features = SS_CAP_PAGE_REGS | SS_CAP_PCCARD;
socket->socket.map_size = 0x1000;
socket->socket.cb_dev = dev;
/* prepare struct yenta_socket */
socket->dev = dev;
pci_set_drvdata(dev, socket);
/*
* Do some basic sanity checking..
*/
if (pci_enable_device(dev)) {
ret = -EBUSY;
goto free;
}
ret = pci_request_regions(dev, "yenta_socket");
if (ret)
goto disable;
if (!pci_resource_start(dev, 0)) {
printk(KERN_ERR "No cardbus resource!\n");
ret = -ENODEV;
goto release;
}
/*
* Ok, start setup.. Map the cardbus registers,
* and request the IRQ.
*/
socket->base = ioremap(pci_resource_start(dev, 0), 0x1000);
if (!socket->base) {
ret = -ENOMEM;
goto release;
}
/*
* report the subsystem vendor and device for help debugging
* the irq stuff...
*/
printk(KERN_INFO "Yenta: CardBus bridge found at %s [%04x:%04x]\n",
pci_name(dev), dev->subsystem_vendor, dev->subsystem_device);
yenta_config_init(socket);
/* Disable all events */
cb_writel(socket, CB_SOCKET_MASK, 0x0);
/* Set up the bridge regions.. */
yenta_allocate_resources(socket);
socket->cb_irq = dev->irq;
/* Do we have special options for the device? */
if (id->driver_data != CARDBUS_TYPE_DEFAULT &&
id->driver_data < ARRAY_SIZE(cardbus_type)) {
socket->type = &cardbus_type[id->driver_data];
ret = socket->type->override(socket);
if (ret < 0)
goto unmap;
}
/* We must finish initialization here */
if (!socket->cb_irq || request_irq(socket->cb_irq, yenta_interrupt, IRQF_SHARED, "yenta", socket)) {
/* No IRQ or request_irq failed. Poll */
socket->cb_irq = 0; /* But zero is a valid IRQ number. */
init_timer(&socket->poll_timer);
socket->poll_timer.function = yenta_interrupt_wrapper;
socket->poll_timer.data = (unsigned long)socket;
socket->poll_timer.expires = jiffies + HZ;
add_timer(&socket->poll_timer);
printk(KERN_INFO "Yenta: no PCI IRQ, CardBus support disabled for this socket.\n"
KERN_INFO "Yenta: check your BIOS CardBus, BIOS IRQ or ACPI settings.\n");
} else {
socket->socket.features |= SS_CAP_CARDBUS;
}
/* Figure out what the dang thing can do for the PCMCIA layer... */
yenta_interrogate(socket);
yenta_get_socket_capabilities(socket, isa_interrupts);
printk(KERN_INFO "Socket status: %08x\n", cb_readl(socket, CB_SOCKET_STATE));
yenta_fixup_parent_bridge(dev->subordinate);
/* Register it with the pcmcia layer.. */
ret = pcmcia_register_socket(&socket->socket);
if (ret == 0) {
/* Add the yenta register attributes */
ret = device_create_file(&dev->dev, &dev_attr_yenta_registers);
if (ret == 0)
goto out;
/* error path... */
pcmcia_unregister_socket(&socket->socket);
}
unmap:
iounmap(socket->base);
release:
pci_release_regions(dev);
disable:
pci_disable_device(dev);
free:
kfree(socket);
out:
return ret;
}
#ifdef CONFIG_PM
static int yenta_dev_suspend (struct pci_dev *dev, pm_message_t state)
{
struct yenta_socket *socket = pci_get_drvdata(dev);
int ret;
ret = pcmcia_socket_dev_suspend(&dev->dev, state);
if (socket) {
if (socket->type && socket->type->save_state)
socket->type->save_state(socket);
/* FIXME: pci_save_state needs to have a better interface */
pci_save_state(dev);
pci_read_config_dword(dev, 16*4, &socket->saved_state[0]);
pci_read_config_dword(dev, 17*4, &socket->saved_state[1]);
pci_disable_device(dev);
/*
* Some laptops (IBM T22) do not like us putting the Cardbus
* bridge into D3. At a guess, some other laptop will
* probably require this, so leave it commented out for now.
*/
/* pci_set_power_state(dev, 3); */
}
return ret;
}
static int yenta_dev_resume (struct pci_dev *dev)
{
struct yenta_socket *socket = pci_get_drvdata(dev);
if (socket) {
int rc;
pci_set_power_state(dev, 0);
/* FIXME: pci_restore_state needs to have a better interface */
pci_restore_state(dev);
pci_write_config_dword(dev, 16*4, socket->saved_state[0]);
pci_write_config_dword(dev, 17*4, socket->saved_state[1]);
rc = pci_enable_device(dev);
if (rc)
return rc;
pci_set_master(dev);
if (socket->type && socket->type->restore_state)
socket->type->restore_state(socket);
}
return pcmcia_socket_dev_resume(&dev->dev);
}
#endif
#define CB_ID(vend,dev,type) \
{ \
.vendor = vend, \
.device = dev, \
.subvendor = PCI_ANY_ID, \
.subdevice = PCI_ANY_ID, \
.class = PCI_CLASS_BRIDGE_CARDBUS << 8, \
.class_mask = ~0, \
.driver_data = CARDBUS_TYPE_##type, \
}
static struct pci_device_id yenta_table [] = {
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1031, TI),
/*
* TBD: Check if these TI variants can use more
* advanced overrides instead. (I can't get the
* data sheets for these devices. --rmk)
*/
#ifdef CONFIG_YENTA_TI
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1210, TI),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1130, TI113X),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1131, TI113X),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1211, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1220, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1221, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1225, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251A, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251B, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1420, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1450, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1451A, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1520, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1620, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4410, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4450, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4451, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4520, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1250, TI1250),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1410, TI1250),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX21_XX11, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X515, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX12, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X420, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X620, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7410, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7610, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_710, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_712, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_720, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_722, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1211, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1225, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1410, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1420, ENE),
#endif /* CONFIG_YENTA_TI */
#ifdef CONFIG_YENTA_RICOH
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C465, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C466, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C475, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C476, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C478, RICOH),
#endif
#ifdef CONFIG_YENTA_TOSHIBA
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC95, TOPIC95),
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC97, TOPIC97),
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC100, TOPIC97),
#endif
#ifdef CONFIG_YENTA_O2
CB_ID(PCI_VENDOR_ID_O2, PCI_ANY_ID, O2MICRO),
#endif
/* match any cardbus bridge */
CB_ID(PCI_ANY_ID, PCI_ANY_ID, DEFAULT),
{ /* all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, yenta_table);
static struct pci_driver yenta_cardbus_driver = {
.name = "yenta_cardbus",
.id_table = yenta_table,
.probe = yenta_probe,
.remove = __devexit_p(yenta_close),
#ifdef CONFIG_PM
.suspend = yenta_dev_suspend,
.resume = yenta_dev_resume,
#endif
};
static int __init yenta_socket_init(void)
{
return pci_register_driver (&yenta_cardbus_driver);
}
static void __exit yenta_socket_exit (void)
{
pci_unregister_driver (&yenta_cardbus_driver);
}
module_init(yenta_socket_init);
module_exit(yenta_socket_exit);
MODULE_LICENSE("GPL");