2254 lines
56 KiB
C
2254 lines
56 KiB
C
/*
|
|
* Performance event support - powerpc architecture code
|
|
*
|
|
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/code-patching.h>
|
|
|
|
#define BHRB_MAX_ENTRIES 32
|
|
#define BHRB_TARGET 0x0000000000000002
|
|
#define BHRB_PREDICTION 0x0000000000000001
|
|
#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
|
|
|
|
struct cpu_hw_events {
|
|
int n_events;
|
|
int n_percpu;
|
|
int disabled;
|
|
int n_added;
|
|
int n_limited;
|
|
u8 pmcs_enabled;
|
|
struct perf_event *event[MAX_HWEVENTS];
|
|
u64 events[MAX_HWEVENTS];
|
|
unsigned int flags[MAX_HWEVENTS];
|
|
/*
|
|
* The order of the MMCR array is:
|
|
* - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
|
|
* - 32-bit, MMCR0, MMCR1, MMCR2
|
|
*/
|
|
unsigned long mmcr[4];
|
|
struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
|
|
u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
|
|
u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
|
|
unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
|
|
unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
|
|
|
|
unsigned int txn_flags;
|
|
int n_txn_start;
|
|
|
|
/* BHRB bits */
|
|
u64 bhrb_filter; /* BHRB HW branch filter */
|
|
unsigned int bhrb_users;
|
|
void *bhrb_context;
|
|
struct perf_branch_stack bhrb_stack;
|
|
struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
|
|
u64 ic_init;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
|
|
|
|
static struct power_pmu *ppmu;
|
|
|
|
/*
|
|
* Normally, to ignore kernel events we set the FCS (freeze counters
|
|
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
|
|
* hypervisor bit set in the MSR, or if we are running on a processor
|
|
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
|
|
* then we need to use the FCHV bit to ignore kernel events.
|
|
*/
|
|
static unsigned int freeze_events_kernel = MMCR0_FCS;
|
|
|
|
/*
|
|
* 32-bit doesn't have MMCRA but does have an MMCR2,
|
|
* and a few other names are different.
|
|
*/
|
|
#ifdef CONFIG_PPC32
|
|
|
|
#define MMCR0_FCHV 0
|
|
#define MMCR0_PMCjCE MMCR0_PMCnCE
|
|
#define MMCR0_FC56 0
|
|
#define MMCR0_PMAO 0
|
|
#define MMCR0_EBE 0
|
|
#define MMCR0_BHRBA 0
|
|
#define MMCR0_PMCC 0
|
|
#define MMCR0_PMCC_U6 0
|
|
|
|
#define SPRN_MMCRA SPRN_MMCR2
|
|
#define MMCRA_SAMPLE_ENABLE 0
|
|
|
|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
|
|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void perf_read_regs(struct pt_regs *regs)
|
|
{
|
|
regs->result = 0;
|
|
}
|
|
static inline int perf_intr_is_nmi(struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int siar_valid(struct pt_regs *regs)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static bool is_ebb_event(struct perf_event *event) { return false; }
|
|
static int ebb_event_check(struct perf_event *event) { return 0; }
|
|
static void ebb_event_add(struct perf_event *event) { }
|
|
static void ebb_switch_out(unsigned long mmcr0) { }
|
|
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
|
|
{
|
|
return cpuhw->mmcr[0];
|
|
}
|
|
|
|
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
|
|
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
|
|
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
|
|
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
|
|
static void pmao_restore_workaround(bool ebb) { }
|
|
static bool use_ic(u64 event)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_PPC32 */
|
|
|
|
static bool regs_use_siar(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* When we take a performance monitor exception the regs are setup
|
|
* using perf_read_regs() which overloads some fields, in particular
|
|
* regs->result to tell us whether to use SIAR.
|
|
*
|
|
* However if the regs are from another exception, eg. a syscall, then
|
|
* they have not been setup using perf_read_regs() and so regs->result
|
|
* is something random.
|
|
*/
|
|
return ((TRAP(regs) == 0xf00) && regs->result);
|
|
}
|
|
|
|
/*
|
|
* Things that are specific to 64-bit implementations.
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
|
|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
|
|
if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
|
|
unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
|
|
if (slot > 1)
|
|
return 4 * (slot - 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The user wants a data address recorded.
|
|
* If we're not doing instruction sampling, give them the SDAR
|
|
* (sampled data address). If we are doing instruction sampling, then
|
|
* only give them the SDAR if it corresponds to the instruction
|
|
* pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
|
|
* [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
|
|
*/
|
|
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
bool sdar_valid;
|
|
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
sdar_valid = regs->dar & SIER_SDAR_VALID;
|
|
else {
|
|
unsigned long sdsync;
|
|
|
|
if (ppmu->flags & PPMU_SIAR_VALID)
|
|
sdsync = POWER7P_MMCRA_SDAR_VALID;
|
|
else if (ppmu->flags & PPMU_ALT_SIPR)
|
|
sdsync = POWER6_MMCRA_SDSYNC;
|
|
else if (ppmu->flags & PPMU_NO_SIAR)
|
|
sdsync = MMCRA_SAMPLE_ENABLE;
|
|
else
|
|
sdsync = MMCRA_SDSYNC;
|
|
|
|
sdar_valid = mmcra & sdsync;
|
|
}
|
|
|
|
if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
|
|
*addrp = mfspr(SPRN_SDAR);
|
|
}
|
|
|
|
static bool regs_sihv(struct pt_regs *regs)
|
|
{
|
|
unsigned long sihv = MMCRA_SIHV;
|
|
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
return !!(regs->dar & SIER_SIHV);
|
|
|
|
if (ppmu->flags & PPMU_ALT_SIPR)
|
|
sihv = POWER6_MMCRA_SIHV;
|
|
|
|
return !!(regs->dsisr & sihv);
|
|
}
|
|
|
|
static bool regs_sipr(struct pt_regs *regs)
|
|
{
|
|
unsigned long sipr = MMCRA_SIPR;
|
|
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
return !!(regs->dar & SIER_SIPR);
|
|
|
|
if (ppmu->flags & PPMU_ALT_SIPR)
|
|
sipr = POWER6_MMCRA_SIPR;
|
|
|
|
return !!(regs->dsisr & sipr);
|
|
}
|
|
|
|
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
|
|
{
|
|
if (regs->msr & MSR_PR)
|
|
return PERF_RECORD_MISC_USER;
|
|
if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
|
|
return PERF_RECORD_MISC_HYPERVISOR;
|
|
return PERF_RECORD_MISC_KERNEL;
|
|
}
|
|
|
|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
|
|
{
|
|
bool use_siar = regs_use_siar(regs);
|
|
|
|
if (!use_siar)
|
|
return perf_flags_from_msr(regs);
|
|
|
|
/*
|
|
* If we don't have flags in MMCRA, rather than using
|
|
* the MSR, we intuit the flags from the address in
|
|
* SIAR which should give slightly more reliable
|
|
* results
|
|
*/
|
|
if (ppmu->flags & PPMU_NO_SIPR) {
|
|
unsigned long siar = mfspr(SPRN_SIAR);
|
|
if (is_kernel_addr(siar))
|
|
return PERF_RECORD_MISC_KERNEL;
|
|
return PERF_RECORD_MISC_USER;
|
|
}
|
|
|
|
/* PR has priority over HV, so order below is important */
|
|
if (regs_sipr(regs))
|
|
return PERF_RECORD_MISC_USER;
|
|
|
|
if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
|
|
return PERF_RECORD_MISC_HYPERVISOR;
|
|
|
|
return PERF_RECORD_MISC_KERNEL;
|
|
}
|
|
|
|
/*
|
|
* Overload regs->dsisr to store MMCRA so we only need to read it once
|
|
* on each interrupt.
|
|
* Overload regs->dar to store SIER if we have it.
|
|
* Overload regs->result to specify whether we should use the MSR (result
|
|
* is zero) or the SIAR (result is non zero).
|
|
*/
|
|
static inline void perf_read_regs(struct pt_regs *regs)
|
|
{
|
|
unsigned long mmcra = mfspr(SPRN_MMCRA);
|
|
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
|
|
int use_siar;
|
|
|
|
regs->dsisr = mmcra;
|
|
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
regs->dar = mfspr(SPRN_SIER);
|
|
|
|
/*
|
|
* If this isn't a PMU exception (eg a software event) the SIAR is
|
|
* not valid. Use pt_regs.
|
|
*
|
|
* If it is a marked event use the SIAR.
|
|
*
|
|
* If the PMU doesn't update the SIAR for non marked events use
|
|
* pt_regs.
|
|
*
|
|
* If the PMU has HV/PR flags then check to see if they
|
|
* place the exception in userspace. If so, use pt_regs. In
|
|
* continuous sampling mode the SIAR and the PMU exception are
|
|
* not synchronised, so they may be many instructions apart.
|
|
* This can result in confusing backtraces. We still want
|
|
* hypervisor samples as well as samples in the kernel with
|
|
* interrupts off hence the userspace check.
|
|
*/
|
|
if (TRAP(regs) != 0xf00)
|
|
use_siar = 0;
|
|
else if ((ppmu->flags & PPMU_NO_SIAR))
|
|
use_siar = 0;
|
|
else if (marked)
|
|
use_siar = 1;
|
|
else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
|
|
use_siar = 0;
|
|
else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
|
|
use_siar = 0;
|
|
else
|
|
use_siar = 1;
|
|
|
|
regs->result = use_siar;
|
|
}
|
|
|
|
/*
|
|
* If interrupts were soft-disabled when a PMU interrupt occurs, treat
|
|
* it as an NMI.
|
|
*/
|
|
static inline int perf_intr_is_nmi(struct pt_regs *regs)
|
|
{
|
|
return (regs->softe & IRQS_DISABLED);
|
|
}
|
|
|
|
/*
|
|
* On processors like P7+ that have the SIAR-Valid bit, marked instructions
|
|
* must be sampled only if the SIAR-valid bit is set.
|
|
*
|
|
* For unmarked instructions and for processors that don't have the SIAR-Valid
|
|
* bit, assume that SIAR is valid.
|
|
*/
|
|
static inline int siar_valid(struct pt_regs *regs)
|
|
{
|
|
unsigned long mmcra = regs->dsisr;
|
|
int marked = mmcra & MMCRA_SAMPLE_ENABLE;
|
|
|
|
if (marked) {
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
return regs->dar & SIER_SIAR_VALID;
|
|
|
|
if (ppmu->flags & PPMU_SIAR_VALID)
|
|
return mmcra & POWER7P_MMCRA_SIAR_VALID;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Reset all possible BHRB entries */
|
|
static void power_pmu_bhrb_reset(void)
|
|
{
|
|
asm volatile(PPC_CLRBHRB);
|
|
}
|
|
|
|
static void power_pmu_bhrb_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!ppmu->bhrb_nr)
|
|
return;
|
|
|
|
/* Clear BHRB if we changed task context to avoid data leaks */
|
|
if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
|
|
power_pmu_bhrb_reset();
|
|
cpuhw->bhrb_context = event->ctx;
|
|
}
|
|
cpuhw->bhrb_users++;
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
}
|
|
|
|
static void power_pmu_bhrb_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!ppmu->bhrb_nr)
|
|
return;
|
|
|
|
WARN_ON_ONCE(!cpuhw->bhrb_users);
|
|
cpuhw->bhrb_users--;
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
|
|
if (!cpuhw->disabled && !cpuhw->bhrb_users) {
|
|
/* BHRB cannot be turned off when other
|
|
* events are active on the PMU.
|
|
*/
|
|
|
|
/* avoid stale pointer */
|
|
cpuhw->bhrb_context = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from ctxsw to prevent one process's branch entries to
|
|
* mingle with the other process's entries during context switch.
|
|
*/
|
|
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
if (!ppmu->bhrb_nr)
|
|
return;
|
|
|
|
if (sched_in)
|
|
power_pmu_bhrb_reset();
|
|
}
|
|
/* Calculate the to address for a branch */
|
|
static __u64 power_pmu_bhrb_to(u64 addr)
|
|
{
|
|
unsigned int instr;
|
|
int ret;
|
|
__u64 target;
|
|
|
|
if (is_kernel_addr(addr)) {
|
|
if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
|
|
return 0;
|
|
|
|
return branch_target(&instr);
|
|
}
|
|
|
|
/* Userspace: need copy instruction here then translate it */
|
|
pagefault_disable();
|
|
ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
|
|
if (ret) {
|
|
pagefault_enable();
|
|
return 0;
|
|
}
|
|
pagefault_enable();
|
|
|
|
target = branch_target(&instr);
|
|
if ((!target) || (instr & BRANCH_ABSOLUTE))
|
|
return target;
|
|
|
|
/* Translate relative branch target from kernel to user address */
|
|
return target - (unsigned long)&instr + addr;
|
|
}
|
|
|
|
/* Processing BHRB entries */
|
|
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
|
|
{
|
|
u64 val;
|
|
u64 addr;
|
|
int r_index, u_index, pred;
|
|
|
|
r_index = 0;
|
|
u_index = 0;
|
|
while (r_index < ppmu->bhrb_nr) {
|
|
/* Assembly read function */
|
|
val = read_bhrb(r_index++);
|
|
if (!val)
|
|
/* Terminal marker: End of valid BHRB entries */
|
|
break;
|
|
else {
|
|
addr = val & BHRB_EA;
|
|
pred = val & BHRB_PREDICTION;
|
|
|
|
if (!addr)
|
|
/* invalid entry */
|
|
continue;
|
|
|
|
/* Branches are read most recent first (ie. mfbhrb 0 is
|
|
* the most recent branch).
|
|
* There are two types of valid entries:
|
|
* 1) a target entry which is the to address of a
|
|
* computed goto like a blr,bctr,btar. The next
|
|
* entry read from the bhrb will be branch
|
|
* corresponding to this target (ie. the actual
|
|
* blr/bctr/btar instruction).
|
|
* 2) a from address which is an actual branch. If a
|
|
* target entry proceeds this, then this is the
|
|
* matching branch for that target. If this is not
|
|
* following a target entry, then this is a branch
|
|
* where the target is given as an immediate field
|
|
* in the instruction (ie. an i or b form branch).
|
|
* In this case we need to read the instruction from
|
|
* memory to determine the target/to address.
|
|
*/
|
|
|
|
if (val & BHRB_TARGET) {
|
|
/* Target branches use two entries
|
|
* (ie. computed gotos/XL form)
|
|
*/
|
|
cpuhw->bhrb_entries[u_index].to = addr;
|
|
cpuhw->bhrb_entries[u_index].mispred = pred;
|
|
cpuhw->bhrb_entries[u_index].predicted = ~pred;
|
|
|
|
/* Get from address in next entry */
|
|
val = read_bhrb(r_index++);
|
|
addr = val & BHRB_EA;
|
|
if (val & BHRB_TARGET) {
|
|
/* Shouldn't have two targets in a
|
|
row.. Reset index and try again */
|
|
r_index--;
|
|
addr = 0;
|
|
}
|
|
cpuhw->bhrb_entries[u_index].from = addr;
|
|
} else {
|
|
/* Branches to immediate field
|
|
(ie I or B form) */
|
|
cpuhw->bhrb_entries[u_index].from = addr;
|
|
cpuhw->bhrb_entries[u_index].to =
|
|
power_pmu_bhrb_to(addr);
|
|
cpuhw->bhrb_entries[u_index].mispred = pred;
|
|
cpuhw->bhrb_entries[u_index].predicted = ~pred;
|
|
}
|
|
u_index++;
|
|
|
|
}
|
|
}
|
|
cpuhw->bhrb_stack.nr = u_index;
|
|
return;
|
|
}
|
|
|
|
static bool is_ebb_event(struct perf_event *event)
|
|
{
|
|
/*
|
|
* This could be a per-PMU callback, but we'd rather avoid the cost. We
|
|
* check that the PMU supports EBB, meaning those that don't can still
|
|
* use bit 63 of the event code for something else if they wish.
|
|
*/
|
|
return (ppmu->flags & PPMU_ARCH_207S) &&
|
|
((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
|
|
}
|
|
|
|
static int ebb_event_check(struct perf_event *event)
|
|
{
|
|
struct perf_event *leader = event->group_leader;
|
|
|
|
/* Event and group leader must agree on EBB */
|
|
if (is_ebb_event(leader) != is_ebb_event(event))
|
|
return -EINVAL;
|
|
|
|
if (is_ebb_event(event)) {
|
|
if (!(event->attach_state & PERF_ATTACH_TASK))
|
|
return -EINVAL;
|
|
|
|
if (!leader->attr.pinned || !leader->attr.exclusive)
|
|
return -EINVAL;
|
|
|
|
if (event->attr.freq ||
|
|
event->attr.inherit ||
|
|
event->attr.sample_type ||
|
|
event->attr.sample_period ||
|
|
event->attr.enable_on_exec)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ebb_event_add(struct perf_event *event)
|
|
{
|
|
if (!is_ebb_event(event) || current->thread.used_ebb)
|
|
return;
|
|
|
|
/*
|
|
* IFF this is the first time we've added an EBB event, set
|
|
* PMXE in the user MMCR0 so we can detect when it's cleared by
|
|
* userspace. We need this so that we can context switch while
|
|
* userspace is in the EBB handler (where PMXE is 0).
|
|
*/
|
|
current->thread.used_ebb = 1;
|
|
current->thread.mmcr0 |= MMCR0_PMXE;
|
|
}
|
|
|
|
static void ebb_switch_out(unsigned long mmcr0)
|
|
{
|
|
if (!(mmcr0 & MMCR0_EBE))
|
|
return;
|
|
|
|
current->thread.siar = mfspr(SPRN_SIAR);
|
|
current->thread.sier = mfspr(SPRN_SIER);
|
|
current->thread.sdar = mfspr(SPRN_SDAR);
|
|
current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
|
|
current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
|
|
}
|
|
|
|
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
|
|
{
|
|
unsigned long mmcr0 = cpuhw->mmcr[0];
|
|
|
|
if (!ebb)
|
|
goto out;
|
|
|
|
/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
|
|
mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
|
|
|
|
/*
|
|
* Add any bits from the user MMCR0, FC or PMAO. This is compatible
|
|
* with pmao_restore_workaround() because we may add PMAO but we never
|
|
* clear it here.
|
|
*/
|
|
mmcr0 |= current->thread.mmcr0;
|
|
|
|
/*
|
|
* Be careful not to set PMXE if userspace had it cleared. This is also
|
|
* compatible with pmao_restore_workaround() because it has already
|
|
* cleared PMXE and we leave PMAO alone.
|
|
*/
|
|
if (!(current->thread.mmcr0 & MMCR0_PMXE))
|
|
mmcr0 &= ~MMCR0_PMXE;
|
|
|
|
mtspr(SPRN_SIAR, current->thread.siar);
|
|
mtspr(SPRN_SIER, current->thread.sier);
|
|
mtspr(SPRN_SDAR, current->thread.sdar);
|
|
|
|
/*
|
|
* Merge the kernel & user values of MMCR2. The semantics we implement
|
|
* are that the user MMCR2 can set bits, ie. cause counters to freeze,
|
|
* but not clear bits. If a task wants to be able to clear bits, ie.
|
|
* unfreeze counters, it should not set exclude_xxx in its events and
|
|
* instead manage the MMCR2 entirely by itself.
|
|
*/
|
|
mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
|
|
out:
|
|
return mmcr0;
|
|
}
|
|
|
|
static void pmao_restore_workaround(bool ebb)
|
|
{
|
|
unsigned pmcs[6];
|
|
|
|
if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
|
|
return;
|
|
|
|
/*
|
|
* On POWER8E there is a hardware defect which affects the PMU context
|
|
* switch logic, ie. power_pmu_disable/enable().
|
|
*
|
|
* When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
|
|
* by the hardware. Sometime later the actual PMU exception is
|
|
* delivered.
|
|
*
|
|
* If we context switch, or simply disable/enable, the PMU prior to the
|
|
* exception arriving, the exception will be lost when we clear PMAO.
|
|
*
|
|
* When we reenable the PMU, we will write the saved MMCR0 with PMAO
|
|
* set, and this _should_ generate an exception. However because of the
|
|
* defect no exception is generated when we write PMAO, and we get
|
|
* stuck with no counters counting but no exception delivered.
|
|
*
|
|
* The workaround is to detect this case and tweak the hardware to
|
|
* create another pending PMU exception.
|
|
*
|
|
* We do that by setting up PMC6 (cycles) for an imminent overflow and
|
|
* enabling the PMU. That causes a new exception to be generated in the
|
|
* chip, but we don't take it yet because we have interrupts hard
|
|
* disabled. We then write back the PMU state as we want it to be seen
|
|
* by the exception handler. When we reenable interrupts the exception
|
|
* handler will be called and see the correct state.
|
|
*
|
|
* The logic is the same for EBB, except that the exception is gated by
|
|
* us having interrupts hard disabled as well as the fact that we are
|
|
* not in userspace. The exception is finally delivered when we return
|
|
* to userspace.
|
|
*/
|
|
|
|
/* Only if PMAO is set and PMAO_SYNC is clear */
|
|
if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
|
|
return;
|
|
|
|
/* If we're doing EBB, only if BESCR[GE] is set */
|
|
if (ebb && !(current->thread.bescr & BESCR_GE))
|
|
return;
|
|
|
|
/*
|
|
* We are already soft-disabled in power_pmu_enable(). We need to hard
|
|
* disable to actually prevent the PMU exception from firing.
|
|
*/
|
|
hard_irq_disable();
|
|
|
|
/*
|
|
* This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
|
|
* Using read/write_pmc() in a for loop adds 12 function calls and
|
|
* almost doubles our code size.
|
|
*/
|
|
pmcs[0] = mfspr(SPRN_PMC1);
|
|
pmcs[1] = mfspr(SPRN_PMC2);
|
|
pmcs[2] = mfspr(SPRN_PMC3);
|
|
pmcs[3] = mfspr(SPRN_PMC4);
|
|
pmcs[4] = mfspr(SPRN_PMC5);
|
|
pmcs[5] = mfspr(SPRN_PMC6);
|
|
|
|
/* Ensure all freeze bits are unset */
|
|
mtspr(SPRN_MMCR2, 0);
|
|
|
|
/* Set up PMC6 to overflow in one cycle */
|
|
mtspr(SPRN_PMC6, 0x7FFFFFFE);
|
|
|
|
/* Enable exceptions and unfreeze PMC6 */
|
|
mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
|
|
|
|
/* Now we need to refreeze and restore the PMCs */
|
|
mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
|
|
|
|
mtspr(SPRN_PMC1, pmcs[0]);
|
|
mtspr(SPRN_PMC2, pmcs[1]);
|
|
mtspr(SPRN_PMC3, pmcs[2]);
|
|
mtspr(SPRN_PMC4, pmcs[3]);
|
|
mtspr(SPRN_PMC5, pmcs[4]);
|
|
mtspr(SPRN_PMC6, pmcs[5]);
|
|
}
|
|
|
|
static bool use_ic(u64 event)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
|
|
(event == 0x200f2 || event == 0x300f2))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
static void perf_event_interrupt(struct pt_regs *regs);
|
|
|
|
/*
|
|
* Read one performance monitor counter (PMC).
|
|
*/
|
|
static unsigned long read_pmc(int idx)
|
|
{
|
|
unsigned long val;
|
|
|
|
switch (idx) {
|
|
case 1:
|
|
val = mfspr(SPRN_PMC1);
|
|
break;
|
|
case 2:
|
|
val = mfspr(SPRN_PMC2);
|
|
break;
|
|
case 3:
|
|
val = mfspr(SPRN_PMC3);
|
|
break;
|
|
case 4:
|
|
val = mfspr(SPRN_PMC4);
|
|
break;
|
|
case 5:
|
|
val = mfspr(SPRN_PMC5);
|
|
break;
|
|
case 6:
|
|
val = mfspr(SPRN_PMC6);
|
|
break;
|
|
#ifdef CONFIG_PPC64
|
|
case 7:
|
|
val = mfspr(SPRN_PMC7);
|
|
break;
|
|
case 8:
|
|
val = mfspr(SPRN_PMC8);
|
|
break;
|
|
#endif /* CONFIG_PPC64 */
|
|
default:
|
|
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write one PMC.
|
|
*/
|
|
static void write_pmc(int idx, unsigned long val)
|
|
{
|
|
switch (idx) {
|
|
case 1:
|
|
mtspr(SPRN_PMC1, val);
|
|
break;
|
|
case 2:
|
|
mtspr(SPRN_PMC2, val);
|
|
break;
|
|
case 3:
|
|
mtspr(SPRN_PMC3, val);
|
|
break;
|
|
case 4:
|
|
mtspr(SPRN_PMC4, val);
|
|
break;
|
|
case 5:
|
|
mtspr(SPRN_PMC5, val);
|
|
break;
|
|
case 6:
|
|
mtspr(SPRN_PMC6, val);
|
|
break;
|
|
#ifdef CONFIG_PPC64
|
|
case 7:
|
|
mtspr(SPRN_PMC7, val);
|
|
break;
|
|
case 8:
|
|
mtspr(SPRN_PMC8, val);
|
|
break;
|
|
#endif /* CONFIG_PPC64 */
|
|
default:
|
|
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
|
|
}
|
|
}
|
|
|
|
/* Called from sysrq_handle_showregs() */
|
|
void perf_event_print_debug(void)
|
|
{
|
|
unsigned long sdar, sier, flags;
|
|
u32 pmcs[MAX_HWEVENTS];
|
|
int i;
|
|
|
|
if (!ppmu) {
|
|
pr_info("Performance monitor hardware not registered.\n");
|
|
return;
|
|
}
|
|
|
|
if (!ppmu->n_counter)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
|
|
smp_processor_id(), ppmu->name, ppmu->n_counter);
|
|
|
|
for (i = 0; i < ppmu->n_counter; i++)
|
|
pmcs[i] = read_pmc(i + 1);
|
|
|
|
for (; i < MAX_HWEVENTS; i++)
|
|
pmcs[i] = 0xdeadbeef;
|
|
|
|
pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
|
|
pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
|
|
|
|
if (ppmu->n_counter > 4)
|
|
pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
|
|
pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
|
|
|
|
pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
|
|
mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
|
|
|
|
sdar = sier = 0;
|
|
#ifdef CONFIG_PPC64
|
|
sdar = mfspr(SPRN_SDAR);
|
|
|
|
if (ppmu->flags & PPMU_HAS_SIER)
|
|
sier = mfspr(SPRN_SIER);
|
|
|
|
if (ppmu->flags & PPMU_ARCH_207S) {
|
|
pr_info("MMCR2: %016lx EBBHR: %016lx\n",
|
|
mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
|
|
pr_info("EBBRR: %016lx BESCR: %016lx\n",
|
|
mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
|
|
}
|
|
#endif
|
|
pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
|
|
mfspr(SPRN_SIAR), sdar, sier);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Check if a set of events can all go on the PMU at once.
|
|
* If they can't, this will look at alternative codes for the events
|
|
* and see if any combination of alternative codes is feasible.
|
|
* The feasible set is returned in event_id[].
|
|
*/
|
|
static int power_check_constraints(struct cpu_hw_events *cpuhw,
|
|
u64 event_id[], unsigned int cflags[],
|
|
int n_ev)
|
|
{
|
|
unsigned long mask, value, nv;
|
|
unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
|
|
int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
|
|
int i, j;
|
|
unsigned long addf = ppmu->add_fields;
|
|
unsigned long tadd = ppmu->test_adder;
|
|
|
|
if (n_ev > ppmu->n_counter)
|
|
return -1;
|
|
|
|
/* First see if the events will go on as-is */
|
|
for (i = 0; i < n_ev; ++i) {
|
|
if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
|
|
&& !ppmu->limited_pmc_event(event_id[i])) {
|
|
ppmu->get_alternatives(event_id[i], cflags[i],
|
|
cpuhw->alternatives[i]);
|
|
event_id[i] = cpuhw->alternatives[i][0];
|
|
}
|
|
if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
|
|
&cpuhw->avalues[i][0]))
|
|
return -1;
|
|
}
|
|
value = mask = 0;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
nv = (value | cpuhw->avalues[i][0]) +
|
|
(value & cpuhw->avalues[i][0] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) != 0 ||
|
|
(((nv + tadd) ^ cpuhw->avalues[i][0]) &
|
|
cpuhw->amasks[i][0]) != 0)
|
|
break;
|
|
value = nv;
|
|
mask |= cpuhw->amasks[i][0];
|
|
}
|
|
if (i == n_ev)
|
|
return 0; /* all OK */
|
|
|
|
/* doesn't work, gather alternatives... */
|
|
if (!ppmu->get_alternatives)
|
|
return -1;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
choice[i] = 0;
|
|
n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
|
|
cpuhw->alternatives[i]);
|
|
for (j = 1; j < n_alt[i]; ++j)
|
|
ppmu->get_constraint(cpuhw->alternatives[i][j],
|
|
&cpuhw->amasks[i][j],
|
|
&cpuhw->avalues[i][j]);
|
|
}
|
|
|
|
/* enumerate all possibilities and see if any will work */
|
|
i = 0;
|
|
j = -1;
|
|
value = mask = nv = 0;
|
|
while (i < n_ev) {
|
|
if (j >= 0) {
|
|
/* we're backtracking, restore context */
|
|
value = svalues[i];
|
|
mask = smasks[i];
|
|
j = choice[i];
|
|
}
|
|
/*
|
|
* See if any alternative k for event_id i,
|
|
* where k > j, will satisfy the constraints.
|
|
*/
|
|
while (++j < n_alt[i]) {
|
|
nv = (value | cpuhw->avalues[i][j]) +
|
|
(value & cpuhw->avalues[i][j] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) == 0 &&
|
|
(((nv + tadd) ^ cpuhw->avalues[i][j])
|
|
& cpuhw->amasks[i][j]) == 0)
|
|
break;
|
|
}
|
|
if (j >= n_alt[i]) {
|
|
/*
|
|
* No feasible alternative, backtrack
|
|
* to event_id i-1 and continue enumerating its
|
|
* alternatives from where we got up to.
|
|
*/
|
|
if (--i < 0)
|
|
return -1;
|
|
} else {
|
|
/*
|
|
* Found a feasible alternative for event_id i,
|
|
* remember where we got up to with this event_id,
|
|
* go on to the next event_id, and start with
|
|
* the first alternative for it.
|
|
*/
|
|
choice[i] = j;
|
|
svalues[i] = value;
|
|
smasks[i] = mask;
|
|
value = nv;
|
|
mask |= cpuhw->amasks[i][j];
|
|
++i;
|
|
j = -1;
|
|
}
|
|
}
|
|
|
|
/* OK, we have a feasible combination, tell the caller the solution */
|
|
for (i = 0; i < n_ev; ++i)
|
|
event_id[i] = cpuhw->alternatives[i][choice[i]];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if newly-added events have consistent settings for
|
|
* exclude_{user,kernel,hv} with each other and any previously
|
|
* added events.
|
|
*/
|
|
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
|
|
int n_prev, int n_new)
|
|
{
|
|
int eu = 0, ek = 0, eh = 0;
|
|
int i, n, first;
|
|
struct perf_event *event;
|
|
|
|
/*
|
|
* If the PMU we're on supports per event exclude settings then we
|
|
* don't need to do any of this logic. NB. This assumes no PMU has both
|
|
* per event exclude and limited PMCs.
|
|
*/
|
|
if (ppmu->flags & PPMU_ARCH_207S)
|
|
return 0;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
first = 1;
|
|
for (i = 0; i < n; ++i) {
|
|
if (cflags[i] & PPMU_LIMITED_PMC_OK) {
|
|
cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
|
|
continue;
|
|
}
|
|
event = ctrs[i];
|
|
if (first) {
|
|
eu = event->attr.exclude_user;
|
|
ek = event->attr.exclude_kernel;
|
|
eh = event->attr.exclude_hv;
|
|
first = 0;
|
|
} else if (event->attr.exclude_user != eu ||
|
|
event->attr.exclude_kernel != ek ||
|
|
event->attr.exclude_hv != eh) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
if (eu || ek || eh)
|
|
for (i = 0; i < n; ++i)
|
|
if (cflags[i] & PPMU_LIMITED_PMC_OK)
|
|
cflags[i] |= PPMU_LIMITED_PMC_REQD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 check_and_compute_delta(u64 prev, u64 val)
|
|
{
|
|
u64 delta = (val - prev) & 0xfffffffful;
|
|
|
|
/*
|
|
* POWER7 can roll back counter values, if the new value is smaller
|
|
* than the previous value it will cause the delta and the counter to
|
|
* have bogus values unless we rolled a counter over. If a coutner is
|
|
* rolled back, it will be smaller, but within 256, which is the maximum
|
|
* number of events to rollback at once. If we detect a rollback
|
|
* return 0. This can lead to a small lack of precision in the
|
|
* counters.
|
|
*/
|
|
if (prev > val && (prev - val) < 256)
|
|
delta = 0;
|
|
|
|
return delta;
|
|
}
|
|
|
|
static void power_pmu_read(struct perf_event *event)
|
|
{
|
|
s64 val, delta, prev;
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (event->hw.state & PERF_HES_STOPPED)
|
|
return;
|
|
|
|
if (!event->hw.idx)
|
|
return;
|
|
|
|
if (is_ebb_event(event)) {
|
|
val = read_pmc(event->hw.idx);
|
|
if (use_ic(event->attr.config)) {
|
|
val = mfspr(SPRN_IC);
|
|
if (val > cpuhw->ic_init)
|
|
val = val - cpuhw->ic_init;
|
|
else
|
|
val = val + (0 - cpuhw->ic_init);
|
|
}
|
|
local64_set(&event->hw.prev_count, val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Performance monitor interrupts come even when interrupts
|
|
* are soft-disabled, as long as interrupts are hard-enabled.
|
|
* Therefore we treat them like NMIs.
|
|
*/
|
|
do {
|
|
prev = local64_read(&event->hw.prev_count);
|
|
barrier();
|
|
val = read_pmc(event->hw.idx);
|
|
if (use_ic(event->attr.config)) {
|
|
val = mfspr(SPRN_IC);
|
|
if (val > cpuhw->ic_init)
|
|
val = val - cpuhw->ic_init;
|
|
else
|
|
val = val + (0 - cpuhw->ic_init);
|
|
}
|
|
delta = check_and_compute_delta(prev, val);
|
|
if (!delta)
|
|
return;
|
|
} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
|
|
|
|
local64_add(delta, &event->count);
|
|
|
|
/*
|
|
* A number of places program the PMC with (0x80000000 - period_left).
|
|
* We never want period_left to be less than 1 because we will program
|
|
* the PMC with a value >= 0x800000000 and an edge detected PMC will
|
|
* roll around to 0 before taking an exception. We have seen this
|
|
* on POWER8.
|
|
*
|
|
* To fix this, clamp the minimum value of period_left to 1.
|
|
*/
|
|
do {
|
|
prev = local64_read(&event->hw.period_left);
|
|
val = prev - delta;
|
|
if (val < 1)
|
|
val = 1;
|
|
} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
|
|
}
|
|
|
|
/*
|
|
* On some machines, PMC5 and PMC6 can't be written, don't respect
|
|
* the freeze conditions, and don't generate interrupts. This tells
|
|
* us if `event' is using such a PMC.
|
|
*/
|
|
static int is_limited_pmc(int pmcnum)
|
|
{
|
|
return (ppmu->flags & PPMU_LIMITED_PMC5_6)
|
|
&& (pmcnum == 5 || pmcnum == 6);
|
|
}
|
|
|
|
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
|
|
unsigned long pmc5, unsigned long pmc6)
|
|
{
|
|
struct perf_event *event;
|
|
u64 val, prev, delta;
|
|
int i;
|
|
|
|
for (i = 0; i < cpuhw->n_limited; ++i) {
|
|
event = cpuhw->limited_counter[i];
|
|
if (!event->hw.idx)
|
|
continue;
|
|
val = (event->hw.idx == 5) ? pmc5 : pmc6;
|
|
prev = local64_read(&event->hw.prev_count);
|
|
event->hw.idx = 0;
|
|
delta = check_and_compute_delta(prev, val);
|
|
if (delta)
|
|
local64_add(delta, &event->count);
|
|
}
|
|
}
|
|
|
|
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
|
|
unsigned long pmc5, unsigned long pmc6)
|
|
{
|
|
struct perf_event *event;
|
|
u64 val, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < cpuhw->n_limited; ++i) {
|
|
event = cpuhw->limited_counter[i];
|
|
event->hw.idx = cpuhw->limited_hwidx[i];
|
|
val = (event->hw.idx == 5) ? pmc5 : pmc6;
|
|
prev = local64_read(&event->hw.prev_count);
|
|
if (check_and_compute_delta(prev, val))
|
|
local64_set(&event->hw.prev_count, val);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since limited events don't respect the freeze conditions, we
|
|
* have to read them immediately after freezing or unfreezing the
|
|
* other events. We try to keep the values from the limited
|
|
* events as consistent as possible by keeping the delay (in
|
|
* cycles and instructions) between freezing/unfreezing and reading
|
|
* the limited events as small and consistent as possible.
|
|
* Therefore, if any limited events are in use, we read them
|
|
* both, and always in the same order, to minimize variability,
|
|
* and do it inside the same asm that writes MMCR0.
|
|
*/
|
|
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
|
|
{
|
|
unsigned long pmc5, pmc6;
|
|
|
|
if (!cpuhw->n_limited) {
|
|
mtspr(SPRN_MMCR0, mmcr0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write MMCR0, then read PMC5 and PMC6 immediately.
|
|
* To ensure we don't get a performance monitor interrupt
|
|
* between writing MMCR0 and freezing/thawing the limited
|
|
* events, we first write MMCR0 with the event overflow
|
|
* interrupt enable bits turned off.
|
|
*/
|
|
asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
|
|
: "=&r" (pmc5), "=&r" (pmc6)
|
|
: "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
|
|
"i" (SPRN_MMCR0),
|
|
"i" (SPRN_PMC5), "i" (SPRN_PMC6));
|
|
|
|
if (mmcr0 & MMCR0_FC)
|
|
freeze_limited_counters(cpuhw, pmc5, pmc6);
|
|
else
|
|
thaw_limited_counters(cpuhw, pmc5, pmc6);
|
|
|
|
/*
|
|
* Write the full MMCR0 including the event overflow interrupt
|
|
* enable bits, if necessary.
|
|
*/
|
|
if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
mtspr(SPRN_MMCR0, mmcr0);
|
|
}
|
|
|
|
/*
|
|
* Disable all events to prevent PMU interrupts and to allow
|
|
* events to be added or removed.
|
|
*/
|
|
static void power_pmu_disable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw;
|
|
unsigned long flags, mmcr0, val;
|
|
|
|
if (!ppmu)
|
|
return;
|
|
local_irq_save(flags);
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!cpuhw->disabled) {
|
|
/*
|
|
* Check if we ever enabled the PMU on this cpu.
|
|
*/
|
|
if (!cpuhw->pmcs_enabled) {
|
|
ppc_enable_pmcs();
|
|
cpuhw->pmcs_enabled = 1;
|
|
}
|
|
|
|
/*
|
|
* Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
|
|
*/
|
|
val = mmcr0 = mfspr(SPRN_MMCR0);
|
|
val |= MMCR0_FC;
|
|
val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
|
|
MMCR0_FC56);
|
|
|
|
/*
|
|
* The barrier is to make sure the mtspr has been
|
|
* executed and the PMU has frozen the events etc.
|
|
* before we return.
|
|
*/
|
|
write_mmcr0(cpuhw, val);
|
|
mb();
|
|
|
|
/*
|
|
* Disable instruction sampling if it was enabled
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mtspr(SPRN_MMCRA,
|
|
cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mb();
|
|
}
|
|
|
|
cpuhw->disabled = 1;
|
|
cpuhw->n_added = 0;
|
|
|
|
ebb_switch_out(mmcr0);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Re-enable all events if disable == 0.
|
|
* If we were previously disabled and events were added, then
|
|
* put the new config on the PMU.
|
|
*/
|
|
static void power_pmu_enable(struct pmu *pmu)
|
|
{
|
|
struct perf_event *event;
|
|
struct cpu_hw_events *cpuhw;
|
|
unsigned long flags;
|
|
long i;
|
|
unsigned long val, mmcr0;
|
|
s64 left;
|
|
unsigned int hwc_index[MAX_HWEVENTS];
|
|
int n_lim;
|
|
int idx;
|
|
bool ebb;
|
|
|
|
if (!ppmu)
|
|
return;
|
|
local_irq_save(flags);
|
|
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
if (!cpuhw->disabled)
|
|
goto out;
|
|
|
|
if (cpuhw->n_events == 0) {
|
|
ppc_set_pmu_inuse(0);
|
|
goto out;
|
|
}
|
|
|
|
cpuhw->disabled = 0;
|
|
|
|
/*
|
|
* EBB requires an exclusive group and all events must have the EBB
|
|
* flag set, or not set, so we can just check a single event. Also we
|
|
* know we have at least one event.
|
|
*/
|
|
ebb = is_ebb_event(cpuhw->event[0]);
|
|
|
|
/*
|
|
* If we didn't change anything, or only removed events,
|
|
* no need to recalculate MMCR* settings and reset the PMCs.
|
|
* Just reenable the PMU with the current MMCR* settings
|
|
* (possibly updated for removal of events).
|
|
*/
|
|
if (!cpuhw->n_added) {
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
goto out_enable;
|
|
}
|
|
|
|
/*
|
|
* Clear all MMCR settings and recompute them for the new set of events.
|
|
*/
|
|
memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
|
|
|
|
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
|
|
cpuhw->mmcr, cpuhw->event)) {
|
|
/* shouldn't ever get here */
|
|
printk(KERN_ERR "oops compute_mmcr failed\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!(ppmu->flags & PPMU_ARCH_207S)) {
|
|
/*
|
|
* Add in MMCR0 freeze bits corresponding to the attr.exclude_*
|
|
* bits for the first event. We have already checked that all
|
|
* events have the same value for these bits as the first event.
|
|
*/
|
|
event = cpuhw->event[0];
|
|
if (event->attr.exclude_user)
|
|
cpuhw->mmcr[0] |= MMCR0_FCP;
|
|
if (event->attr.exclude_kernel)
|
|
cpuhw->mmcr[0] |= freeze_events_kernel;
|
|
if (event->attr.exclude_hv)
|
|
cpuhw->mmcr[0] |= MMCR0_FCHV;
|
|
}
|
|
|
|
/*
|
|
* Write the new configuration to MMCR* with the freeze
|
|
* bit set and set the hardware events to their initial values.
|
|
* Then unfreeze the events.
|
|
*/
|
|
ppc_set_pmu_inuse(1);
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
| MMCR0_FC);
|
|
if (ppmu->flags & PPMU_ARCH_207S)
|
|
mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
|
|
|
|
/*
|
|
* Read off any pre-existing events that need to move
|
|
* to another PMC.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_events; ++i) {
|
|
event = cpuhw->event[i];
|
|
if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
|
|
power_pmu_read(event);
|
|
write_pmc(event->hw.idx, 0);
|
|
event->hw.idx = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the PMCs for all the new and moved events.
|
|
*/
|
|
cpuhw->n_limited = n_lim = 0;
|
|
for (i = 0; i < cpuhw->n_events; ++i) {
|
|
event = cpuhw->event[i];
|
|
if (event->hw.idx)
|
|
continue;
|
|
idx = hwc_index[i] + 1;
|
|
if (is_limited_pmc(idx)) {
|
|
cpuhw->limited_counter[n_lim] = event;
|
|
cpuhw->limited_hwidx[n_lim] = idx;
|
|
++n_lim;
|
|
continue;
|
|
}
|
|
|
|
if (ebb)
|
|
val = local64_read(&event->hw.prev_count);
|
|
else {
|
|
val = 0;
|
|
if (event->hw.sample_period) {
|
|
left = local64_read(&event->hw.period_left);
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
local64_set(&event->hw.prev_count, val);
|
|
}
|
|
|
|
event->hw.idx = idx;
|
|
if (event->hw.state & PERF_HES_STOPPED)
|
|
val = 0;
|
|
write_pmc(idx, val);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
cpuhw->n_limited = n_lim;
|
|
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
|
|
|
|
out_enable:
|
|
pmao_restore_workaround(ebb);
|
|
|
|
mmcr0 = ebb_switch_in(ebb, cpuhw);
|
|
|
|
mb();
|
|
if (cpuhw->bhrb_users)
|
|
ppmu->config_bhrb(cpuhw->bhrb_filter);
|
|
|
|
write_mmcr0(cpuhw, mmcr0);
|
|
|
|
/*
|
|
* Enable instruction sampling if necessary
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mb();
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
|
}
|
|
|
|
out:
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int collect_events(struct perf_event *group, int max_count,
|
|
struct perf_event *ctrs[], u64 *events,
|
|
unsigned int *flags)
|
|
{
|
|
int n = 0;
|
|
struct perf_event *event;
|
|
|
|
if (group->pmu->task_ctx_nr == perf_hw_context) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = group;
|
|
flags[n] = group->hw.event_base;
|
|
events[n++] = group->hw.config;
|
|
}
|
|
list_for_each_entry(event, &group->sibling_list, group_entry) {
|
|
if (event->pmu->task_ctx_nr == perf_hw_context &&
|
|
event->state != PERF_EVENT_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = event;
|
|
flags[n] = event->hw.event_base;
|
|
events[n++] = event->hw.config;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Add a event to the PMU.
|
|
* If all events are not already frozen, then we disable and
|
|
* re-enable the PMU in order to get hw_perf_enable to do the
|
|
* actual work of reconfiguring the PMU.
|
|
*/
|
|
static int power_pmu_add(struct perf_event *event, int ef_flags)
|
|
{
|
|
struct cpu_hw_events *cpuhw;
|
|
unsigned long flags;
|
|
int n0;
|
|
int ret = -EAGAIN;
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
/*
|
|
* Add the event to the list (if there is room)
|
|
* and check whether the total set is still feasible.
|
|
*/
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
n0 = cpuhw->n_events;
|
|
if (n0 >= ppmu->n_counter)
|
|
goto out;
|
|
cpuhw->event[n0] = event;
|
|
cpuhw->events[n0] = event->hw.config;
|
|
cpuhw->flags[n0] = event->hw.event_base;
|
|
|
|
/*
|
|
* This event may have been disabled/stopped in record_and_restart()
|
|
* because we exceeded the ->event_limit. If re-starting the event,
|
|
* clear the ->hw.state (STOPPED and UPTODATE flags), so the user
|
|
* notification is re-enabled.
|
|
*/
|
|
if (!(ef_flags & PERF_EF_START))
|
|
event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
else
|
|
event->hw.state = 0;
|
|
|
|
/*
|
|
* If group events scheduling transaction was started,
|
|
* skip the schedulability test here, it will be performed
|
|
* at commit time(->commit_txn) as a whole
|
|
*/
|
|
if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
|
|
goto nocheck;
|
|
|
|
if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
|
|
goto out;
|
|
if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
|
|
goto out;
|
|
event->hw.config = cpuhw->events[n0];
|
|
|
|
nocheck:
|
|
ebb_event_add(event);
|
|
|
|
++cpuhw->n_events;
|
|
++cpuhw->n_added;
|
|
|
|
ret = 0;
|
|
out:
|
|
if (has_branch_stack(event)) {
|
|
power_pmu_bhrb_enable(event);
|
|
cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
|
|
event->attr.branch_sample_type);
|
|
}
|
|
|
|
/*
|
|
* Workaround for POWER9 DD1 to use the Instruction Counter
|
|
* register value for instruction counting
|
|
*/
|
|
if (use_ic(event->attr.config))
|
|
cpuhw->ic_init = mfspr(SPRN_IC);
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a event from the PMU.
|
|
*/
|
|
static void power_pmu_del(struct perf_event *event, int ef_flags)
|
|
{
|
|
struct cpu_hw_events *cpuhw;
|
|
long i;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
power_pmu_read(event);
|
|
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
for (i = 0; i < cpuhw->n_events; ++i) {
|
|
if (event == cpuhw->event[i]) {
|
|
while (++i < cpuhw->n_events) {
|
|
cpuhw->event[i-1] = cpuhw->event[i];
|
|
cpuhw->events[i-1] = cpuhw->events[i];
|
|
cpuhw->flags[i-1] = cpuhw->flags[i];
|
|
}
|
|
--cpuhw->n_events;
|
|
ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
|
|
if (event->hw.idx) {
|
|
write_pmc(event->hw.idx, 0);
|
|
event->hw.idx = 0;
|
|
}
|
|
perf_event_update_userpage(event);
|
|
break;
|
|
}
|
|
}
|
|
for (i = 0; i < cpuhw->n_limited; ++i)
|
|
if (event == cpuhw->limited_counter[i])
|
|
break;
|
|
if (i < cpuhw->n_limited) {
|
|
while (++i < cpuhw->n_limited) {
|
|
cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
|
|
cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
|
|
}
|
|
--cpuhw->n_limited;
|
|
}
|
|
if (cpuhw->n_events == 0) {
|
|
/* disable exceptions if no events are running */
|
|
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
|
|
}
|
|
|
|
if (has_branch_stack(event))
|
|
power_pmu_bhrb_disable(event);
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* POWER-PMU does not support disabling individual counters, hence
|
|
* program their cycle counter to their max value and ignore the interrupts.
|
|
*/
|
|
|
|
static void power_pmu_start(struct perf_event *event, int ef_flags)
|
|
{
|
|
unsigned long flags;
|
|
s64 left;
|
|
unsigned long val;
|
|
|
|
if (!event->hw.idx || !event->hw.sample_period)
|
|
return;
|
|
|
|
if (!(event->hw.state & PERF_HES_STOPPED))
|
|
return;
|
|
|
|
if (ef_flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
event->hw.state = 0;
|
|
left = local64_read(&event->hw.period_left);
|
|
|
|
val = 0;
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
|
|
write_pmc(event->hw.idx, val);
|
|
|
|
perf_event_update_userpage(event);
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void power_pmu_stop(struct perf_event *event, int ef_flags)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!event->hw.idx || !event->hw.sample_period)
|
|
return;
|
|
|
|
if (event->hw.state & PERF_HES_STOPPED)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
power_pmu_read(event);
|
|
event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
write_pmc(event->hw.idx, 0);
|
|
|
|
perf_event_update_userpage(event);
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Start group events scheduling transaction
|
|
* Set the flag to make pmu::enable() not perform the
|
|
* schedulability test, it will be performed at commit time
|
|
*
|
|
* We only support PERF_PMU_TXN_ADD transactions. Save the
|
|
* transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
|
|
* transactions.
|
|
*/
|
|
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
|
|
{
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
|
|
|
|
cpuhw->txn_flags = txn_flags;
|
|
if (txn_flags & ~PERF_PMU_TXN_ADD)
|
|
return;
|
|
|
|
perf_pmu_disable(pmu);
|
|
cpuhw->n_txn_start = cpuhw->n_events;
|
|
}
|
|
|
|
/*
|
|
* Stop group events scheduling transaction
|
|
* Clear the flag and pmu::enable() will perform the
|
|
* schedulability test.
|
|
*/
|
|
static void power_pmu_cancel_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
unsigned int txn_flags;
|
|
|
|
WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
|
|
|
|
txn_flags = cpuhw->txn_flags;
|
|
cpuhw->txn_flags = 0;
|
|
if (txn_flags & ~PERF_PMU_TXN_ADD)
|
|
return;
|
|
|
|
perf_pmu_enable(pmu);
|
|
}
|
|
|
|
/*
|
|
* Commit group events scheduling transaction
|
|
* Perform the group schedulability test as a whole
|
|
* Return 0 if success
|
|
*/
|
|
static int power_pmu_commit_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw;
|
|
long i, n;
|
|
|
|
if (!ppmu)
|
|
return -EAGAIN;
|
|
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
|
|
|
|
if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
|
|
cpuhw->txn_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
n = cpuhw->n_events;
|
|
if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
|
|
return -EAGAIN;
|
|
i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
|
|
if (i < 0)
|
|
return -EAGAIN;
|
|
|
|
for (i = cpuhw->n_txn_start; i < n; ++i)
|
|
cpuhw->event[i]->hw.config = cpuhw->events[i];
|
|
|
|
cpuhw->txn_flags = 0;
|
|
perf_pmu_enable(pmu);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if we might be able to put event on a limited PMC,
|
|
* or 0 if not.
|
|
* A event can only go on a limited PMC if it counts something
|
|
* that a limited PMC can count, doesn't require interrupts, and
|
|
* doesn't exclude any processor mode.
|
|
*/
|
|
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
|
|
unsigned int flags)
|
|
{
|
|
int n;
|
|
u64 alt[MAX_EVENT_ALTERNATIVES];
|
|
|
|
if (event->attr.exclude_user
|
|
|| event->attr.exclude_kernel
|
|
|| event->attr.exclude_hv
|
|
|| event->attr.sample_period)
|
|
return 0;
|
|
|
|
if (ppmu->limited_pmc_event(ev))
|
|
return 1;
|
|
|
|
/*
|
|
* The requested event_id isn't on a limited PMC already;
|
|
* see if any alternative code goes on a limited PMC.
|
|
*/
|
|
if (!ppmu->get_alternatives)
|
|
return 0;
|
|
|
|
flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
|
|
n = ppmu->get_alternatives(ev, flags, alt);
|
|
|
|
return n > 0;
|
|
}
|
|
|
|
/*
|
|
* Find an alternative event_id that goes on a normal PMC, if possible,
|
|
* and return the event_id code, or 0 if there is no such alternative.
|
|
* (Note: event_id code 0 is "don't count" on all machines.)
|
|
*/
|
|
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
|
|
{
|
|
u64 alt[MAX_EVENT_ALTERNATIVES];
|
|
int n;
|
|
|
|
flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
|
|
n = ppmu->get_alternatives(ev, flags, alt);
|
|
if (!n)
|
|
return 0;
|
|
return alt[0];
|
|
}
|
|
|
|
/* Number of perf_events counting hardware events */
|
|
static atomic_t num_events;
|
|
/* Used to avoid races in calling reserve/release_pmc_hardware */
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
/*
|
|
* Release the PMU if this is the last perf_event.
|
|
*/
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
if (!atomic_add_unless(&num_events, -1, 1)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_dec_return(&num_events) == 0)
|
|
release_pmc_hardware();
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate a generic cache event_id config to a raw event_id code.
|
|
*/
|
|
static int hw_perf_cache_event(u64 config, u64 *eventp)
|
|
{
|
|
unsigned long type, op, result;
|
|
int ev;
|
|
|
|
if (!ppmu->cache_events)
|
|
return -EINVAL;
|
|
|
|
/* unpack config */
|
|
type = config & 0xff;
|
|
op = (config >> 8) & 0xff;
|
|
result = (config >> 16) & 0xff;
|
|
|
|
if (type >= PERF_COUNT_HW_CACHE_MAX ||
|
|
op >= PERF_COUNT_HW_CACHE_OP_MAX ||
|
|
result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ev = (*ppmu->cache_events)[type][op][result];
|
|
if (ev == 0)
|
|
return -EOPNOTSUPP;
|
|
if (ev == -1)
|
|
return -EINVAL;
|
|
*eventp = ev;
|
|
return 0;
|
|
}
|
|
|
|
static int power_pmu_event_init(struct perf_event *event)
|
|
{
|
|
u64 ev;
|
|
unsigned long flags;
|
|
struct perf_event *ctrs[MAX_HWEVENTS];
|
|
u64 events[MAX_HWEVENTS];
|
|
unsigned int cflags[MAX_HWEVENTS];
|
|
int n;
|
|
int err;
|
|
struct cpu_hw_events *cpuhw;
|
|
|
|
if (!ppmu)
|
|
return -ENOENT;
|
|
|
|
if (has_branch_stack(event)) {
|
|
/* PMU has BHRB enabled */
|
|
if (!(ppmu->flags & PPMU_ARCH_207S))
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
ev = event->attr.config;
|
|
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
|
|
return -EOPNOTSUPP;
|
|
ev = ppmu->generic_events[ev];
|
|
break;
|
|
case PERF_TYPE_HW_CACHE:
|
|
err = hw_perf_cache_event(event->attr.config, &ev);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
case PERF_TYPE_RAW:
|
|
ev = event->attr.config;
|
|
break;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
event->hw.config_base = ev;
|
|
event->hw.idx = 0;
|
|
|
|
/*
|
|
* If we are not running on a hypervisor, force the
|
|
* exclude_hv bit to 0 so that we don't care what
|
|
* the user set it to.
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR))
|
|
event->attr.exclude_hv = 0;
|
|
|
|
/*
|
|
* If this is a per-task event, then we can use
|
|
* PM_RUN_* events interchangeably with their non RUN_*
|
|
* equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
|
|
* XXX we should check if the task is an idle task.
|
|
*/
|
|
flags = 0;
|
|
if (event->attach_state & PERF_ATTACH_TASK)
|
|
flags |= PPMU_ONLY_COUNT_RUN;
|
|
|
|
/*
|
|
* If this machine has limited events, check whether this
|
|
* event_id could go on a limited event.
|
|
*/
|
|
if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
|
|
if (can_go_on_limited_pmc(event, ev, flags)) {
|
|
flags |= PPMU_LIMITED_PMC_OK;
|
|
} else if (ppmu->limited_pmc_event(ev)) {
|
|
/*
|
|
* The requested event_id is on a limited PMC,
|
|
* but we can't use a limited PMC; see if any
|
|
* alternative goes on a normal PMC.
|
|
*/
|
|
ev = normal_pmc_alternative(ev, flags);
|
|
if (!ev)
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Extra checks for EBB */
|
|
err = ebb_event_check(event);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* If this is in a group, check if it can go on with all the
|
|
* other hardware events in the group. We assume the event
|
|
* hasn't been linked into its leader's sibling list at this point.
|
|
*/
|
|
n = 0;
|
|
if (event->group_leader != event) {
|
|
n = collect_events(event->group_leader, ppmu->n_counter - 1,
|
|
ctrs, events, cflags);
|
|
if (n < 0)
|
|
return -EINVAL;
|
|
}
|
|
events[n] = ev;
|
|
ctrs[n] = event;
|
|
cflags[n] = flags;
|
|
if (check_excludes(ctrs, cflags, n, 1))
|
|
return -EINVAL;
|
|
|
|
cpuhw = &get_cpu_var(cpu_hw_events);
|
|
err = power_check_constraints(cpuhw, events, cflags, n + 1);
|
|
|
|
if (has_branch_stack(event)) {
|
|
cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
|
|
event->attr.branch_sample_type);
|
|
|
|
if (cpuhw->bhrb_filter == -1) {
|
|
put_cpu_var(cpu_hw_events);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
put_cpu_var(cpu_hw_events);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
event->hw.config = events[n];
|
|
event->hw.event_base = cflags[n];
|
|
event->hw.last_period = event->hw.sample_period;
|
|
local64_set(&event->hw.period_left, event->hw.last_period);
|
|
|
|
/*
|
|
* For EBB events we just context switch the PMC value, we don't do any
|
|
* of the sample_period logic. We use hw.prev_count for this.
|
|
*/
|
|
if (is_ebb_event(event))
|
|
local64_set(&event->hw.prev_count, 0);
|
|
|
|
/*
|
|
* See if we need to reserve the PMU.
|
|
* If no events are currently in use, then we have to take a
|
|
* mutex to ensure that we don't race with another task doing
|
|
* reserve_pmc_hardware or release_pmc_hardware.
|
|
*/
|
|
err = 0;
|
|
if (!atomic_inc_not_zero(&num_events)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_read(&num_events) == 0 &&
|
|
reserve_pmc_hardware(perf_event_interrupt))
|
|
err = -EBUSY;
|
|
else
|
|
atomic_inc(&num_events);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int power_pmu_event_idx(struct perf_event *event)
|
|
{
|
|
return event->hw.idx;
|
|
}
|
|
|
|
ssize_t power_events_sysfs_show(struct device *dev,
|
|
struct device_attribute *attr, char *page)
|
|
{
|
|
struct perf_pmu_events_attr *pmu_attr;
|
|
|
|
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
|
|
|
|
return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
|
|
}
|
|
|
|
static struct pmu power_pmu = {
|
|
.pmu_enable = power_pmu_enable,
|
|
.pmu_disable = power_pmu_disable,
|
|
.event_init = power_pmu_event_init,
|
|
.add = power_pmu_add,
|
|
.del = power_pmu_del,
|
|
.start = power_pmu_start,
|
|
.stop = power_pmu_stop,
|
|
.read = power_pmu_read,
|
|
.start_txn = power_pmu_start_txn,
|
|
.cancel_txn = power_pmu_cancel_txn,
|
|
.commit_txn = power_pmu_commit_txn,
|
|
.event_idx = power_pmu_event_idx,
|
|
.sched_task = power_pmu_sched_task,
|
|
};
|
|
|
|
/*
|
|
* A counter has overflowed; update its count and record
|
|
* things if requested. Note that interrupts are hard-disabled
|
|
* here so there is no possibility of being interrupted.
|
|
*/
|
|
static void record_and_restart(struct perf_event *event, unsigned long val,
|
|
struct pt_regs *regs)
|
|
{
|
|
u64 period = event->hw.sample_period;
|
|
s64 prev, delta, left;
|
|
int record = 0;
|
|
|
|
if (event->hw.state & PERF_HES_STOPPED) {
|
|
write_pmc(event->hw.idx, 0);
|
|
return;
|
|
}
|
|
|
|
/* we don't have to worry about interrupts here */
|
|
prev = local64_read(&event->hw.prev_count);
|
|
delta = check_and_compute_delta(prev, val);
|
|
local64_add(delta, &event->count);
|
|
|
|
/*
|
|
* See if the total period for this event has expired,
|
|
* and update for the next period.
|
|
*/
|
|
val = 0;
|
|
left = local64_read(&event->hw.period_left) - delta;
|
|
if (delta == 0)
|
|
left++;
|
|
if (period) {
|
|
if (left <= 0) {
|
|
left += period;
|
|
if (left <= 0)
|
|
left = period;
|
|
record = siar_valid(regs);
|
|
event->hw.last_period = event->hw.sample_period;
|
|
}
|
|
if (left < 0x80000000LL)
|
|
val = 0x80000000LL - left;
|
|
}
|
|
|
|
write_pmc(event->hw.idx, val);
|
|
local64_set(&event->hw.prev_count, val);
|
|
local64_set(&event->hw.period_left, left);
|
|
perf_event_update_userpage(event);
|
|
|
|
/*
|
|
* Finally record data if requested.
|
|
*/
|
|
if (record) {
|
|
struct perf_sample_data data;
|
|
|
|
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
|
|
|
|
if (event->attr.sample_type &
|
|
(PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
|
|
perf_get_data_addr(regs, &data.addr);
|
|
|
|
if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
|
|
struct cpu_hw_events *cpuhw;
|
|
cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
power_pmu_bhrb_read(cpuhw);
|
|
data.br_stack = &cpuhw->bhrb_stack;
|
|
}
|
|
|
|
if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
|
|
ppmu->get_mem_data_src)
|
|
ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
|
|
|
|
if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
|
|
ppmu->get_mem_weight)
|
|
ppmu->get_mem_weight(&data.weight);
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
power_pmu_stop(event, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called from generic code to get the misc flags (i.e. processor mode)
|
|
* for an event_id.
|
|
*/
|
|
unsigned long perf_misc_flags(struct pt_regs *regs)
|
|
{
|
|
u32 flags = perf_get_misc_flags(regs);
|
|
|
|
if (flags)
|
|
return flags;
|
|
return user_mode(regs) ? PERF_RECORD_MISC_USER :
|
|
PERF_RECORD_MISC_KERNEL;
|
|
}
|
|
|
|
/*
|
|
* Called from generic code to get the instruction pointer
|
|
* for an event_id.
|
|
*/
|
|
unsigned long perf_instruction_pointer(struct pt_regs *regs)
|
|
{
|
|
bool use_siar = regs_use_siar(regs);
|
|
|
|
if (use_siar && siar_valid(regs))
|
|
return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
|
|
else if (use_siar)
|
|
return 0; // no valid instruction pointer
|
|
else
|
|
return regs->nip;
|
|
}
|
|
|
|
static bool pmc_overflow_power7(unsigned long val)
|
|
{
|
|
/*
|
|
* Events on POWER7 can roll back if a speculative event doesn't
|
|
* eventually complete. Unfortunately in some rare cases they will
|
|
* raise a performance monitor exception. We need to catch this to
|
|
* ensure we reset the PMC. In all cases the PMC will be 256 or less
|
|
* cycles from overflow.
|
|
*
|
|
* We only do this if the first pass fails to find any overflowing
|
|
* PMCs because a user might set a period of less than 256 and we
|
|
* don't want to mistakenly reset them.
|
|
*/
|
|
if ((0x80000000 - val) <= 256)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pmc_overflow(unsigned long val)
|
|
{
|
|
if ((int)val < 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Performance monitor interrupt stuff
|
|
*/
|
|
static void perf_event_interrupt(struct pt_regs *regs)
|
|
{
|
|
int i, j;
|
|
struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_event *event;
|
|
unsigned long val[8];
|
|
int found, active;
|
|
int nmi;
|
|
|
|
if (cpuhw->n_limited)
|
|
freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
|
|
mfspr(SPRN_PMC6));
|
|
|
|
perf_read_regs(regs);
|
|
|
|
nmi = perf_intr_is_nmi(regs);
|
|
if (nmi)
|
|
nmi_enter();
|
|
else
|
|
irq_enter();
|
|
|
|
/* Read all the PMCs since we'll need them a bunch of times */
|
|
for (i = 0; i < ppmu->n_counter; ++i)
|
|
val[i] = read_pmc(i + 1);
|
|
|
|
/* Try to find what caused the IRQ */
|
|
found = 0;
|
|
for (i = 0; i < ppmu->n_counter; ++i) {
|
|
if (!pmc_overflow(val[i]))
|
|
continue;
|
|
if (is_limited_pmc(i + 1))
|
|
continue; /* these won't generate IRQs */
|
|
/*
|
|
* We've found one that's overflowed. For active
|
|
* counters we need to log this. For inactive
|
|
* counters, we need to reset it anyway
|
|
*/
|
|
found = 1;
|
|
active = 0;
|
|
for (j = 0; j < cpuhw->n_events; ++j) {
|
|
event = cpuhw->event[j];
|
|
if (event->hw.idx == (i + 1)) {
|
|
active = 1;
|
|
record_and_restart(event, val[i], regs);
|
|
break;
|
|
}
|
|
}
|
|
if (!active)
|
|
/* reset non active counters that have overflowed */
|
|
write_pmc(i + 1, 0);
|
|
}
|
|
if (!found && pvr_version_is(PVR_POWER7)) {
|
|
/* check active counters for special buggy p7 overflow */
|
|
for (i = 0; i < cpuhw->n_events; ++i) {
|
|
event = cpuhw->event[i];
|
|
if (!event->hw.idx || is_limited_pmc(event->hw.idx))
|
|
continue;
|
|
if (pmc_overflow_power7(val[event->hw.idx - 1])) {
|
|
/* event has overflowed in a buggy way*/
|
|
found = 1;
|
|
record_and_restart(event,
|
|
val[event->hw.idx - 1],
|
|
regs);
|
|
}
|
|
}
|
|
}
|
|
if (!found && !nmi && printk_ratelimit())
|
|
printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
|
|
|
|
/*
|
|
* Reset MMCR0 to its normal value. This will set PMXE and
|
|
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
|
|
* and thus allow interrupts to occur again.
|
|
* XXX might want to use MSR.PM to keep the events frozen until
|
|
* we get back out of this interrupt.
|
|
*/
|
|
write_mmcr0(cpuhw, cpuhw->mmcr[0]);
|
|
|
|
if (nmi)
|
|
nmi_exit();
|
|
else
|
|
irq_exit();
|
|
}
|
|
|
|
static int power_pmu_prepare_cpu(unsigned int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (ppmu) {
|
|
memset(cpuhw, 0, sizeof(*cpuhw));
|
|
cpuhw->mmcr[0] = MMCR0_FC;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int register_power_pmu(struct power_pmu *pmu)
|
|
{
|
|
if (ppmu)
|
|
return -EBUSY; /* something's already registered */
|
|
|
|
ppmu = pmu;
|
|
pr_info("%s performance monitor hardware support registered\n",
|
|
pmu->name);
|
|
|
|
power_pmu.attr_groups = ppmu->attr_groups;
|
|
|
|
#ifdef MSR_HV
|
|
/*
|
|
* Use FCHV to ignore kernel events if MSR.HV is set.
|
|
*/
|
|
if (mfmsr() & MSR_HV)
|
|
freeze_events_kernel = MMCR0_FCHV;
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
|
|
cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
|
|
power_pmu_prepare_cpu, NULL);
|
|
return 0;
|
|
}
|