OpenCloudOS-Kernel/drivers/infiniband/hw/hfi1/qp.c

967 lines
25 KiB
C

/*
* Copyright(c) 2015 - 2020 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/err.h>
#include <linux/vmalloc.h>
#include <linux/hash.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <rdma/rdma_vt.h>
#include <rdma/rdmavt_qp.h>
#include <rdma/ib_verbs.h>
#include "hfi.h"
#include "qp.h"
#include "trace.h"
#include "verbs_txreq.h"
unsigned int hfi1_qp_table_size = 256;
module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
MODULE_PARM_DESC(qp_table_size, "QP table size");
static void flush_tx_list(struct rvt_qp *qp);
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait_work *wait,
struct sdma_txreq *stx,
unsigned int seq,
bool pkts_sent);
static void iowait_wakeup(struct iowait *wait, int reason);
static void iowait_sdma_drained(struct iowait *wait);
static void qp_pio_drain(struct rvt_qp *qp);
const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
[IB_WR_RDMA_WRITE] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_RDMA_READ] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC,
},
[IB_WR_ATOMIC_CMP_AND_SWP] = {
.length = sizeof(struct ib_atomic_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
},
[IB_WR_ATOMIC_FETCH_AND_ADD] = {
.length = sizeof(struct ib_atomic_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
},
[IB_WR_RDMA_WRITE_WITH_IMM] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_SEND] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_SEND_WITH_IMM] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
},
[IB_WR_REG_MR] = {
.length = sizeof(struct ib_reg_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
.flags = RVT_OPERATION_LOCAL,
},
[IB_WR_LOCAL_INV] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
.flags = RVT_OPERATION_LOCAL,
},
[IB_WR_SEND_WITH_INV] = {
.length = sizeof(struct ib_send_wr),
.qpt_support = BIT(IB_QPT_RC),
},
[IB_WR_OPFN] = {
.length = sizeof(struct ib_atomic_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_USE_RESERVE,
},
[IB_WR_TID_RDMA_WRITE] = {
.length = sizeof(struct ib_rdma_wr),
.qpt_support = BIT(IB_QPT_RC),
.flags = RVT_OPERATION_IGN_RNR_CNT,
},
};
static void flush_list_head(struct list_head *l)
{
while (!list_empty(l)) {
struct sdma_txreq *tx;
tx = list_first_entry(
l,
struct sdma_txreq,
list);
list_del_init(&tx->list);
hfi1_put_txreq(
container_of(tx, struct verbs_txreq, txreq));
}
}
static void flush_tx_list(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
}
static void flush_iowait(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
unsigned long flags;
seqlock_t *lock = priv->s_iowait.lock;
if (!lock)
return;
write_seqlock_irqsave(lock, flags);
if (!list_empty(&priv->s_iowait.list)) {
list_del_init(&priv->s_iowait.list);
priv->s_iowait.lock = NULL;
rvt_put_qp(qp);
}
write_sequnlock_irqrestore(lock, flags);
}
/**
* This function is what we would push to the core layer if we wanted to be a
* "first class citizen". Instead we hide this here and rely on Verbs ULPs
* to blindly pass the MTU enum value from the PathRecord to us.
*/
static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
{
/* Constraining 10KB packets to 8KB packets */
if (mtu == (enum ib_mtu)OPA_MTU_10240)
mtu = (enum ib_mtu)OPA_MTU_8192;
return opa_mtu_enum_to_int((enum opa_mtu)mtu);
}
int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct ib_qp *ibqp = &qp->ibqp;
struct hfi1_ibdev *dev = to_idev(ibqp->device);
struct hfi1_devdata *dd = dd_from_dev(dev);
u8 sc;
if (attr_mask & IB_QP_AV) {
sc = ah_to_sc(ibqp->device, &attr->ah_attr);
if (sc == 0xf)
return -EINVAL;
if (!qp_to_sdma_engine(qp, sc) &&
dd->flags & HFI1_HAS_SEND_DMA)
return -EINVAL;
if (!qp_to_send_context(qp, sc))
return -EINVAL;
}
if (attr_mask & IB_QP_ALT_PATH) {
sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
if (sc == 0xf)
return -EINVAL;
if (!qp_to_sdma_engine(qp, sc) &&
dd->flags & HFI1_HAS_SEND_DMA)
return -EINVAL;
if (!qp_to_send_context(qp, sc))
return -EINVAL;
}
return 0;
}
/*
* qp_set_16b - Set the hdr_type based on whether the slid or the
* dlid in the connection is extended. Only applicable for RC and UC
* QPs. UD QPs determine this on the fly from the ah in the wqe
*/
static inline void qp_set_16b(struct rvt_qp *qp)
{
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
struct hfi1_qp_priv *priv = qp->priv;
/* Update ah_attr to account for extended LIDs */
hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
/* Create 32 bit LIDs */
hfi1_make_opa_lid(&qp->remote_ah_attr);
if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
return;
ibp = to_iport(qp->ibqp.device, qp->port_num);
ppd = ppd_from_ibp(ibp);
priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
}
void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct ib_qp *ibqp = &qp->ibqp;
struct hfi1_qp_priv *priv = qp->priv;
if (attr_mask & IB_QP_AV) {
priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
qp_set_16b(qp);
}
if (attr_mask & IB_QP_PATH_MIG_STATE &&
attr->path_mig_state == IB_MIG_MIGRATED &&
qp->s_mig_state == IB_MIG_ARMED) {
qp->s_flags |= HFI1_S_AHG_CLEAR;
priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
qp_set_16b(qp);
}
opfn_qp_init(qp, attr, attr_mask);
}
/**
* hfi1_setup_wqe - set up the wqe
* @qp - The qp
* @wqe - The built wqe
* @call_send - Determine if the send should be posted or scheduled.
*
* Perform setup of the wqe. This is called
* prior to inserting the wqe into the ring but after
* the wqe has been setup by RDMAVT. This function
* allows the driver the opportunity to perform
* validation and additional setup of the wqe.
*
* Returns 0 on success, -EINVAL on failure
*
*/
int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct rvt_ah *ah;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
hfi1_setup_tid_rdma_wqe(qp, wqe);
/* fall through */
case IB_QPT_UC:
if (wqe->length > 0x80000000U)
return -EINVAL;
if (wqe->length > qp->pmtu)
*call_send = false;
break;
case IB_QPT_SMI:
/*
* SM packets should exclusively use VL15 and their SL is
* ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
* is created, SL is 0 in most cases and as a result some
* fields (vl and pmtu) in ah may not be set correctly,
* depending on the SL2SC and SC2VL tables at the time.
*/
ppd = ppd_from_ibp(ibp);
dd = dd_from_ppd(ppd);
if (wqe->length > dd->vld[15].mtu)
return -EINVAL;
break;
case IB_QPT_GSI:
case IB_QPT_UD:
ah = rvt_get_swqe_ah(wqe);
if (wqe->length > (1 << ah->log_pmtu))
return -EINVAL;
if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
return -EINVAL;
default:
break;
}
/*
* System latency between send and schedule is large enough that
* forcing call_send to true for piothreshold packets is necessary.
*/
if (wqe->length <= piothreshold)
*call_send = true;
return 0;
}
/**
* _hfi1_schedule_send - schedule progress
* @qp: the QP
*
* This schedules qp progress w/o regard to the s_flags.
*
* It is only used in the post send, which doesn't hold
* the s_lock.
*/
bool _hfi1_schedule_send(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_devdata *dd = ppd->dd;
if (dd->flags & HFI1_SHUTDOWN)
return true;
return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
priv->s_sde ?
priv->s_sde->cpu :
cpumask_first(cpumask_of_node(dd->node)));
}
static void qp_pio_drain(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
if (!priv->s_sendcontext)
return;
while (iowait_pio_pending(&priv->s_iowait)) {
write_seqlock_irq(&priv->s_sendcontext->waitlock);
hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
write_sequnlock_irq(&priv->s_sendcontext->waitlock);
iowait_pio_drain(&priv->s_iowait);
write_seqlock_irq(&priv->s_sendcontext->waitlock);
hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
write_sequnlock_irq(&priv->s_sendcontext->waitlock);
}
}
/**
* hfi1_schedule_send - schedule progress
* @qp: the QP
*
* This schedules qp progress and caller should hold
* the s_lock.
* @return true if the first leg is scheduled;
* false if the first leg is not scheduled.
*/
bool hfi1_schedule_send(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
if (hfi1_send_ok(qp)) {
_hfi1_schedule_send(qp);
return true;
}
if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
IOWAIT_PENDING_IB);
return false;
}
static void hfi1_qp_schedule(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
bool ret;
if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
ret = hfi1_schedule_send(qp);
if (ret)
iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
}
if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
ret = hfi1_schedule_tid_send(qp);
if (ret)
iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
}
}
void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
{
unsigned long flags;
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_flags & flag) {
qp->s_flags &= ~flag;
trace_hfi1_qpwakeup(qp, flag);
hfi1_qp_schedule(qp);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify hfi1_destroy_qp() if it is waiting. */
rvt_put_qp(qp);
}
void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
{
struct hfi1_qp_priv *priv = qp->priv;
if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
qp->s_flags &= ~RVT_S_BUSY;
/*
* If we are sending a first-leg packet from the second leg,
* we need to clear the busy flag from priv->s_flags to
* avoid a race condition when the qp wakes up before
* the call to hfi1_verbs_send() returns to the second
* leg. In that case, the second leg will terminate without
* being re-scheduled, resulting in failure to send TID RDMA
* WRITE DATA and TID RDMA ACK packets.
*/
if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
RVT_S_BUSY);
iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
}
} else {
priv->s_flags &= ~RVT_S_BUSY;
}
}
static int iowait_sleep(
struct sdma_engine *sde,
struct iowait_work *wait,
struct sdma_txreq *stx,
uint seq,
bool pkts_sent)
{
struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
struct rvt_qp *qp;
struct hfi1_qp_priv *priv;
unsigned long flags;
int ret = 0;
qp = tx->qp;
priv = qp->priv;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
/*
* If we couldn't queue the DMA request, save the info
* and try again later rather than destroying the
* buffer and undoing the side effects of the copy.
*/
/* Make a common routine? */
list_add_tail(&stx->list, &wait->tx_head);
write_seqlock(&sde->waitlock);
if (sdma_progress(sde, seq, stx))
goto eagain;
if (list_empty(&priv->s_iowait.list)) {
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
ibp->rvp.n_dmawait++;
qp->s_flags |= RVT_S_WAIT_DMA_DESC;
iowait_get_priority(&priv->s_iowait);
iowait_queue(pkts_sent, &priv->s_iowait,
&sde->dmawait);
priv->s_iowait.lock = &sde->waitlock;
trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
rvt_get_qp(qp);
}
write_sequnlock(&sde->waitlock);
hfi1_qp_unbusy(qp, wait);
spin_unlock_irqrestore(&qp->s_lock, flags);
ret = -EBUSY;
} else {
spin_unlock_irqrestore(&qp->s_lock, flags);
hfi1_put_txreq(tx);
}
return ret;
eagain:
write_sequnlock(&sde->waitlock);
spin_unlock_irqrestore(&qp->s_lock, flags);
list_del_init(&stx->list);
return -EAGAIN;
}
static void iowait_wakeup(struct iowait *wait, int reason)
{
struct rvt_qp *qp = iowait_to_qp(wait);
WARN_ON(reason != SDMA_AVAIL_REASON);
hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
}
static void iowait_sdma_drained(struct iowait *wait)
{
struct rvt_qp *qp = iowait_to_qp(wait);
unsigned long flags;
/*
* This happens when the send engine notes
* a QP in the error state and cannot
* do the flush work until that QP's
* sdma work has finished.
*/
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_flags & RVT_S_WAIT_DMA) {
qp->s_flags &= ~RVT_S_WAIT_DMA;
hfi1_schedule_send(qp);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
}
static void hfi1_init_priority(struct iowait *w)
{
struct rvt_qp *qp = iowait_to_qp(w);
struct hfi1_qp_priv *priv = qp->priv;
if (qp->s_flags & RVT_S_ACK_PENDING)
w->priority++;
if (priv->s_flags & RVT_S_ACK_PENDING)
w->priority++;
}
/**
* qp_to_sdma_engine - map a qp to a send engine
* @qp: the QP
* @sc5: the 5 bit sc
*
* Return:
* A send engine for the qp or NULL for SMI type qp.
*/
struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
struct sdma_engine *sde;
if (!(dd->flags & HFI1_HAS_SEND_DMA))
return NULL;
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
return NULL;
default:
break;
}
sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
return sde;
}
/*
* qp_to_send_context - map a qp to a send context
* @qp: the QP
* @sc5: the 5 bit sc
*
* Return:
* A send context for the qp
*/
struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
{
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
/* SMA packets to VL15 */
return dd->vld[15].sc;
default:
break;
}
return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
sc5);
}
static const char * const qp_type_str[] = {
"SMI", "GSI", "RC", "UC", "UD",
};
static int qp_idle(struct rvt_qp *qp)
{
return
qp->s_last == qp->s_acked &&
qp->s_acked == qp->s_cur &&
qp->s_cur == qp->s_tail &&
qp->s_tail == qp->s_head;
}
/**
* qp_iter_print - print the qp information to seq_file
* @s: the seq_file to emit the qp information on
* @iter: the iterator for the qp hash list
*/
void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
{
struct rvt_swqe *wqe;
struct rvt_qp *qp = iter->qp;
struct hfi1_qp_priv *priv = qp->priv;
struct sdma_engine *sde;
struct send_context *send_context;
struct rvt_ack_entry *e = NULL;
struct rvt_srq *srq = qp->ibqp.srq ?
ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
sde = qp_to_sdma_engine(qp, priv->s_sc);
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
send_context = qp_to_send_context(qp, priv->s_sc);
if (qp->s_ack_queue)
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
seq_printf(s,
"N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
iter->n,
qp_idle(qp) ? "I" : "B",
qp->ibqp.qp_num,
atomic_read(&qp->refcount),
qp_type_str[qp->ibqp.qp_type],
qp->state,
wqe ? wqe->wr.opcode : 0,
qp->s_flags,
iowait_sdma_pending(&priv->s_iowait),
iowait_pio_pending(&priv->s_iowait),
!list_empty(&priv->s_iowait.list),
qp->timeout,
wqe ? wqe->ssn : 0,
qp->s_lsn,
qp->s_last_psn,
qp->s_psn, qp->s_next_psn,
qp->s_sending_psn, qp->s_sending_hpsn,
qp->r_psn,
qp->s_last, qp->s_acked, qp->s_cur,
qp->s_tail, qp->s_head, qp->s_size,
qp->s_avail,
/* ack_queue ring pointers, size */
qp->s_tail_ack_queue, qp->r_head_ack_queue,
rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
/* remote QP info */
qp->remote_qpn,
rdma_ah_get_dlid(&qp->remote_ah_attr),
rdma_ah_get_sl(&qp->remote_ah_attr),
qp->pmtu,
qp->s_retry,
qp->s_retry_cnt,
qp->s_rnr_retry_cnt,
qp->s_rnr_retry,
sde,
sde ? sde->this_idx : 0,
send_context,
send_context ? send_context->sw_index : 0,
ib_cq_head(qp->ibqp.send_cq),
ib_cq_tail(qp->ibqp.send_cq),
qp->pid,
qp->s_state,
qp->s_ack_state,
/* ack queue information */
e ? e->opcode : 0,
e ? e->psn : 0,
e ? e->lpsn : 0,
qp->r_min_rnr_timer,
srq ? "SRQ" : "RQ",
srq ? srq->rq.size : qp->r_rq.size
);
}
void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv;
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
if (!priv)
return ERR_PTR(-ENOMEM);
priv->owner = qp;
priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
rdi->dparms.node);
if (!priv->s_ahg) {
kfree(priv);
return ERR_PTR(-ENOMEM);
}
iowait_init(
&priv->s_iowait,
1,
_hfi1_do_send,
_hfi1_do_tid_send,
iowait_sleep,
iowait_wakeup,
iowait_sdma_drained,
hfi1_init_priority);
/* Init to a value to start the running average correctly */
priv->s_running_pkt_size = piothreshold / 2;
return priv;
}
void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
hfi1_qp_priv_tid_free(rdi, qp);
kfree(priv->s_ahg);
kfree(priv);
}
unsigned free_all_qps(struct rvt_dev_info *rdi)
{
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
int n;
unsigned qp_inuse = 0;
for (n = 0; n < dd->num_pports; n++) {
struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
rcu_read_lock();
if (rcu_dereference(ibp->rvp.qp[0]))
qp_inuse++;
if (rcu_dereference(ibp->rvp.qp[1]))
qp_inuse++;
rcu_read_unlock();
}
return qp_inuse;
}
void flush_qp_waiters(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
flush_iowait(qp);
hfi1_tid_rdma_flush_wait(qp);
}
void stop_send_queue(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
iowait_cancel_work(&priv->s_iowait);
if (cancel_work_sync(&priv->tid_rdma.trigger_work))
rvt_put_qp(qp);
}
void quiesce_qp(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
hfi1_del_tid_reap_timer(qp);
hfi1_del_tid_retry_timer(qp);
iowait_sdma_drain(&priv->s_iowait);
qp_pio_drain(qp);
flush_tx_list(qp);
}
void notify_qp_reset(struct rvt_qp *qp)
{
hfi1_qp_kern_exp_rcv_clear_all(qp);
qp->r_adefered = 0;
clear_ahg(qp);
/* Clear any OPFN state */
if (qp->ibqp.qp_type == IB_QPT_RC)
opfn_conn_error(qp);
}
/*
* Switch to alternate path.
* The QP s_lock should be held and interrupts disabled.
*/
void hfi1_migrate_qp(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
struct ib_event ev;
qp->s_mig_state = IB_MIG_MIGRATED;
qp->remote_ah_attr = qp->alt_ah_attr;
qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
qp->s_pkey_index = qp->s_alt_pkey_index;
qp->s_flags |= HFI1_S_AHG_CLEAR;
priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
qp_set_16b(qp);
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_PATH_MIG;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
int mtu_to_path_mtu(u32 mtu)
{
return mtu_to_enum(mtu, OPA_MTU_8192);
}
u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
{
u32 mtu;
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
struct hfi1_ibport *ibp;
u8 sc, vl;
ibp = &dd->pport[qp->port_num - 1].ibport_data;
sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
vl = sc_to_vlt(dd, sc);
mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
if (vl < PER_VL_SEND_CONTEXTS)
mtu = min_t(u32, mtu, dd->vld[vl].mtu);
return mtu;
}
int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
struct ib_qp_attr *attr)
{
int mtu, pidx = qp->port_num - 1;
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
if (mtu == -1)
return -1; /* values less than 0 are error */
if (mtu > dd->pport[pidx].ibmtu)
return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
else
return attr->path_mtu;
}
void notify_error_qp(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
seqlock_t *lock = priv->s_iowait.lock;
if (lock) {
write_seqlock(lock);
if (!list_empty(&priv->s_iowait.list) &&
!(qp->s_flags & RVT_S_BUSY) &&
!(priv->s_flags & RVT_S_BUSY)) {
qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
list_del_init(&priv->s_iowait.list);
priv->s_iowait.lock = NULL;
rvt_put_qp(qp);
}
write_sequnlock(lock);
}
if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
qp->s_hdrwords = 0;
if (qp->s_rdma_mr) {
rvt_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
flush_tx_list(qp);
}
}
/**
* hfi1_qp_iter_cb - callback for iterator
* @qp - the qp
* @v - the sl in low bits of v
*
* This is called from the iterator callback to work
* on an individual qp.
*/
static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
{
int lastwqe;
struct ib_event ev;
struct hfi1_ibport *ibp =
to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u8 sl = (u8)v;
if (qp->port_num != ppd->port ||
(qp->ibqp.qp_type != IB_QPT_UC &&
qp->ibqp.qp_type != IB_QPT_RC) ||
rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
return;
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
if (lastwqe) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
/**
* hfi1_error_port_qps - put a port's RC/UC qps into error state
* @ibp: the ibport.
* @sl: the service level.
*
* This function places all RC/UC qps with a given service level into error
* state. It is generally called to force upper lay apps to abandon stale qps
* after an sl->sc mapping change.
*/
void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
}