OpenCloudOS-Kernel/drivers/dma/idxd/irq.c

400 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/dmaengine.h>
#include <uapi/linux/idxd.h>
#include "../dmaengine.h"
#include "idxd.h"
#include "registers.h"
enum irq_work_type {
IRQ_WORK_NORMAL = 0,
IRQ_WORK_PROCESS_FAULT,
};
struct idxd_fault {
struct work_struct work;
u64 addr;
struct idxd_device *idxd;
};
static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
enum irq_work_type wtype,
int *processed, u64 data);
static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
enum irq_work_type wtype,
int *processed, u64 data);
static void idxd_device_reinit(struct work_struct *work)
{
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
struct device *dev = &idxd->pdev->dev;
int rc, i;
idxd_device_reset(idxd);
rc = idxd_device_config(idxd);
if (rc < 0)
goto out;
rc = idxd_device_enable(idxd);
if (rc < 0)
goto out;
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = &idxd->wqs[i];
if (wq->state == IDXD_WQ_ENABLED) {
rc = idxd_wq_enable(wq);
if (rc < 0) {
dev_warn(dev, "Unable to re-enable wq %s\n",
dev_name(&wq->conf_dev));
}
}
}
return;
out:
idxd_device_wqs_clear_state(idxd);
}
static void idxd_device_fault_work(struct work_struct *work)
{
struct idxd_fault *fault = container_of(work, struct idxd_fault, work);
struct idxd_irq_entry *ie;
int i;
int processed;
int irqcnt = fault->idxd->num_wq_irqs + 1;
for (i = 1; i < irqcnt; i++) {
ie = &fault->idxd->irq_entries[i];
irq_process_work_list(ie, IRQ_WORK_PROCESS_FAULT,
&processed, fault->addr);
if (processed)
break;
irq_process_pending_llist(ie, IRQ_WORK_PROCESS_FAULT,
&processed, fault->addr);
if (processed)
break;
}
kfree(fault);
}
static int idxd_device_schedule_fault_process(struct idxd_device *idxd,
u64 fault_addr)
{
struct idxd_fault *fault;
fault = kmalloc(sizeof(*fault), GFP_ATOMIC);
if (!fault)
return -ENOMEM;
fault->addr = fault_addr;
fault->idxd = idxd;
INIT_WORK(&fault->work, idxd_device_fault_work);
queue_work(idxd->wq, &fault->work);
return 0;
}
irqreturn_t idxd_irq_handler(int vec, void *data)
{
struct idxd_irq_entry *irq_entry = data;
struct idxd_device *idxd = irq_entry->idxd;
idxd_mask_msix_vector(idxd, irq_entry->id);
return IRQ_WAKE_THREAD;
}
static int process_misc_interrupts(struct idxd_device *idxd, u32 cause)
{
struct device *dev = &idxd->pdev->dev;
union gensts_reg gensts;
u32 val = 0;
int i;
bool err = false;
if (cause & IDXD_INTC_ERR) {
spin_lock_bh(&idxd->dev_lock);
for (i = 0; i < 4; i++)
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
IDXD_SWERR_OFFSET + i * sizeof(u64));
iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
int id = idxd->sw_err.wq_idx;
struct idxd_wq *wq = &idxd->wqs[id];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->idxd_cdev.err_queue);
} else {
int i;
for (i = 0; i < idxd->max_wqs; i++) {
struct idxd_wq *wq = &idxd->wqs[i];
if (wq->type == IDXD_WQT_USER)
wake_up_interruptible(&wq->idxd_cdev.err_queue);
}
}
spin_unlock_bh(&idxd->dev_lock);
val |= IDXD_INTC_ERR;
for (i = 0; i < 4; i++)
dev_warn(dev, "err[%d]: %#16.16llx\n",
i, idxd->sw_err.bits[i]);
err = true;
}
if (cause & IDXD_INTC_CMD) {
val |= IDXD_INTC_CMD;
complete(idxd->cmd_done);
}
if (cause & IDXD_INTC_OCCUPY) {
/* Driver does not utilize occupancy interrupt */
val |= IDXD_INTC_OCCUPY;
}
if (cause & IDXD_INTC_PERFMON_OVFL) {
/*
* Driver does not utilize perfmon counter overflow interrupt
* yet.
*/
val |= IDXD_INTC_PERFMON_OVFL;
}
val ^= cause;
if (val)
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
val);
if (!err)
return 0;
/*
* This case should rarely happen and typically is due to software
* programming error by the driver.
*/
if (idxd->sw_err.valid &&
idxd->sw_err.desc_valid &&
idxd->sw_err.fault_addr)
idxd_device_schedule_fault_process(idxd, idxd->sw_err.fault_addr);
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
idxd->state = IDXD_DEV_HALTED;
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
/*
* If we need a software reset, we will throw the work
* on a system workqueue in order to allow interrupts
* for the device command completions.
*/
INIT_WORK(&idxd->work, idxd_device_reinit);
queue_work(idxd->wq, &idxd->work);
} else {
spin_lock_bh(&idxd->dev_lock);
idxd_device_wqs_clear_state(idxd);
dev_err(&idxd->pdev->dev,
"idxd halted, need %s.\n",
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
"FLR" : "system reset");
spin_unlock_bh(&idxd->dev_lock);
return -ENXIO;
}
}
return 0;
}
irqreturn_t idxd_misc_thread(int vec, void *data)
{
struct idxd_irq_entry *irq_entry = data;
struct idxd_device *idxd = irq_entry->idxd;
int rc;
u32 cause;
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (cause)
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
while (cause) {
rc = process_misc_interrupts(idxd, cause);
if (rc < 0)
break;
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
if (cause)
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
}
idxd_unmask_msix_vector(idxd, irq_entry->id);
return IRQ_HANDLED;
}
static inline bool match_fault(struct idxd_desc *desc, u64 fault_addr)
{
/*
* Completion address can be bad as well. Check fault address match for descriptor
* and completion address.
*/
if ((u64)desc->hw == fault_addr || (u64)desc->completion == fault_addr) {
struct idxd_device *idxd = desc->wq->idxd;
struct device *dev = &idxd->pdev->dev;
dev_warn(dev, "desc with fault address: %#llx\n", fault_addr);
return true;
}
return false;
}
static inline void complete_desc(struct idxd_desc *desc, enum idxd_complete_type reason)
{
idxd_dma_complete_txd(desc, reason);
idxd_free_desc(desc->wq, desc);
}
static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
enum irq_work_type wtype,
int *processed, u64 data)
{
struct idxd_desc *desc, *t;
struct llist_node *head;
int queued = 0;
unsigned long flags;
enum idxd_complete_type reason;
*processed = 0;
head = llist_del_all(&irq_entry->pending_llist);
if (!head)
goto out;
if (wtype == IRQ_WORK_NORMAL)
reason = IDXD_COMPLETE_NORMAL;
else
reason = IDXD_COMPLETE_DEV_FAIL;
llist_for_each_entry_safe(desc, t, head, llnode) {
if (desc->completion->status) {
if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
match_fault(desc, data);
complete_desc(desc, reason);
(*processed)++;
} else {
spin_lock_irqsave(&irq_entry->list_lock, flags);
list_add_tail(&desc->list,
&irq_entry->work_list);
spin_unlock_irqrestore(&irq_entry->list_lock, flags);
queued++;
}
}
out:
return queued;
}
static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
enum irq_work_type wtype,
int *processed, u64 data)
{
int queued = 0;
unsigned long flags;
LIST_HEAD(flist);
struct idxd_desc *desc, *n;
enum idxd_complete_type reason;
*processed = 0;
if (wtype == IRQ_WORK_NORMAL)
reason = IDXD_COMPLETE_NORMAL;
else
reason = IDXD_COMPLETE_DEV_FAIL;
/*
* This lock protects list corruption from access of list outside of the irq handler
* thread.
*/
spin_lock_irqsave(&irq_entry->list_lock, flags);
if (list_empty(&irq_entry->work_list)) {
spin_unlock_irqrestore(&irq_entry->list_lock, flags);
return 0;
}
list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
if (desc->completion->status) {
list_del(&desc->list);
(*processed)++;
list_add_tail(&desc->list, &flist);
} else {
queued++;
}
}
spin_unlock_irqrestore(&irq_entry->list_lock, flags);
list_for_each_entry(desc, &flist, list) {
if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
match_fault(desc, data);
complete_desc(desc, reason);
}
return queued;
}
static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
{
int rc, processed, total = 0;
/*
* There are two lists we are processing. The pending_llist is where
* submmiter adds all the submitted descriptor after sending it to
* the workqueue. It's a lockless singly linked list. The work_list
* is the common linux double linked list. We are in a scenario of
* multiple producers and a single consumer. The producers are all
* the kernel submitters of descriptors, and the consumer is the
* kernel irq handler thread for the msix vector when using threaded
* irq. To work with the restrictions of llist to remain lockless,
* we are doing the following steps:
* 1. Iterate through the work_list and process any completed
* descriptor. Delete the completed entries during iteration.
* 2. llist_del_all() from the pending list.
* 3. Iterate through the llist that was deleted from the pending list
* and process the completed entries.
* 4. If the entry is still waiting on hardware, list_add_tail() to
* the work_list.
* 5. Repeat until no more descriptors.
*/
do {
rc = irq_process_work_list(irq_entry, IRQ_WORK_NORMAL,
&processed, 0);
total += processed;
if (rc != 0)
continue;
rc = irq_process_pending_llist(irq_entry, IRQ_WORK_NORMAL,
&processed, 0);
total += processed;
} while (rc != 0);
return total;
}
irqreturn_t idxd_wq_thread(int irq, void *data)
{
struct idxd_irq_entry *irq_entry = data;
int processed;
processed = idxd_desc_process(irq_entry);
idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
if (processed == 0)
return IRQ_NONE;
return IRQ_HANDLED;
}