3268 lines
93 KiB
C
3268 lines
93 KiB
C
/*
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
*
|
|
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/export.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/tcp.h>
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
#include <net/busy_poll.h>
|
|
#endif /* CONFIG_NET_RX_BUSY_POLL */
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
#include <scsi/fc/fc_fcoe.h>
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
#include "cxgb4.h"
|
|
#include "t4_regs.h"
|
|
#include "t4_values.h"
|
|
#include "t4_msg.h"
|
|
#include "t4fw_api.h"
|
|
|
|
/*
|
|
* Rx buffer size. We use largish buffers if possible but settle for single
|
|
* pages under memory shortage.
|
|
*/
|
|
#if PAGE_SHIFT >= 16
|
|
# define FL_PG_ORDER 0
|
|
#else
|
|
# define FL_PG_ORDER (16 - PAGE_SHIFT)
|
|
#endif
|
|
|
|
/* RX_PULL_LEN should be <= RX_COPY_THRES */
|
|
#define RX_COPY_THRES 256
|
|
#define RX_PULL_LEN 128
|
|
|
|
/*
|
|
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
|
|
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
|
|
*/
|
|
#define RX_PKT_SKB_LEN 512
|
|
|
|
/*
|
|
* Max number of Tx descriptors we clean up at a time. Should be modest as
|
|
* freeing skbs isn't cheap and it happens while holding locks. We just need
|
|
* to free packets faster than they arrive, we eventually catch up and keep
|
|
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
|
|
*/
|
|
#define MAX_TX_RECLAIM 16
|
|
|
|
/*
|
|
* Max number of Rx buffers we replenish at a time. Again keep this modest,
|
|
* allocating buffers isn't cheap either.
|
|
*/
|
|
#define MAX_RX_REFILL 16U
|
|
|
|
/*
|
|
* Period of the Rx queue check timer. This timer is infrequent as it has
|
|
* something to do only when the system experiences severe memory shortage.
|
|
*/
|
|
#define RX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
/*
|
|
* Period of the Tx queue check timer.
|
|
*/
|
|
#define TX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
/*
|
|
* Max number of Tx descriptors to be reclaimed by the Tx timer.
|
|
*/
|
|
#define MAX_TIMER_TX_RECLAIM 100
|
|
|
|
/*
|
|
* Timer index used when backing off due to memory shortage.
|
|
*/
|
|
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
|
|
|
|
/*
|
|
* Suspend an Ethernet Tx queue with fewer available descriptors than this.
|
|
* This is the same as calc_tx_descs() for a TSO packet with
|
|
* nr_frags == MAX_SKB_FRAGS.
|
|
*/
|
|
#define ETHTXQ_STOP_THRES \
|
|
(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
|
|
|
|
/*
|
|
* Suspension threshold for non-Ethernet Tx queues. We require enough room
|
|
* for a full sized WR.
|
|
*/
|
|
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
|
|
|
|
/*
|
|
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
|
|
* into a WR.
|
|
*/
|
|
#define MAX_IMM_TX_PKT_LEN 256
|
|
|
|
/*
|
|
* Max size of a WR sent through a control Tx queue.
|
|
*/
|
|
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
|
|
|
|
struct tx_sw_desc { /* SW state per Tx descriptor */
|
|
struct sk_buff *skb;
|
|
struct ulptx_sgl *sgl;
|
|
};
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
struct page *page;
|
|
dma_addr_t dma_addr;
|
|
};
|
|
|
|
/*
|
|
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
|
|
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
|
|
* We could easily support more but there doesn't seem to be much need for
|
|
* that ...
|
|
*/
|
|
#define FL_MTU_SMALL 1500
|
|
#define FL_MTU_LARGE 9000
|
|
|
|
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
|
|
unsigned int mtu)
|
|
{
|
|
struct sge *s = &adapter->sge;
|
|
|
|
return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
|
|
}
|
|
|
|
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
|
|
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
|
|
|
|
/*
|
|
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
|
|
* these to specify the buffer size as an index into the SGE Free List Buffer
|
|
* Size register array. We also use bit 4, when the buffer has been unmapped
|
|
* for DMA, but this is of course never sent to the hardware and is only used
|
|
* to prevent double unmappings. All of the above requires that the Free List
|
|
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
|
|
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
|
|
* Free List Buffer alignment is 32 bytes, this works out for us ...
|
|
*/
|
|
enum {
|
|
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
|
|
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
|
|
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
|
|
|
|
/*
|
|
* XXX We shouldn't depend on being able to use these indices.
|
|
* XXX Especially when some other Master PF has initialized the
|
|
* XXX adapter or we use the Firmware Configuration File. We
|
|
* XXX should really search through the Host Buffer Size register
|
|
* XXX array for the appropriately sized buffer indices.
|
|
*/
|
|
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
|
|
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
|
|
|
|
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
|
|
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
|
|
};
|
|
|
|
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
|
|
#define MIN_NAPI_WORK 1
|
|
|
|
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
|
|
{
|
|
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
|
|
}
|
|
|
|
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
|
|
{
|
|
return !(d->dma_addr & RX_UNMAPPED_BUF);
|
|
}
|
|
|
|
/**
|
|
* txq_avail - return the number of available slots in a Tx queue
|
|
* @q: the Tx queue
|
|
*
|
|
* Returns the number of descriptors in a Tx queue available to write new
|
|
* packets.
|
|
*/
|
|
static inline unsigned int txq_avail(const struct sge_txq *q)
|
|
{
|
|
return q->size - 1 - q->in_use;
|
|
}
|
|
|
|
/**
|
|
* fl_cap - return the capacity of a free-buffer list
|
|
* @fl: the FL
|
|
*
|
|
* Returns the capacity of a free-buffer list. The capacity is less than
|
|
* the size because one descriptor needs to be left unpopulated, otherwise
|
|
* HW will think the FL is empty.
|
|
*/
|
|
static inline unsigned int fl_cap(const struct sge_fl *fl)
|
|
{
|
|
return fl->size - 8; /* 1 descriptor = 8 buffers */
|
|
}
|
|
|
|
/**
|
|
* fl_starving - return whether a Free List is starving.
|
|
* @adapter: pointer to the adapter
|
|
* @fl: the Free List
|
|
*
|
|
* Tests specified Free List to see whether the number of buffers
|
|
* available to the hardware has falled below our "starvation"
|
|
* threshold.
|
|
*/
|
|
static inline bool fl_starving(const struct adapter *adapter,
|
|
const struct sge_fl *fl)
|
|
{
|
|
const struct sge *s = &adapter->sge;
|
|
|
|
return fl->avail - fl->pend_cred <= s->fl_starve_thres;
|
|
}
|
|
|
|
static int map_skb(struct device *dev, const struct sk_buff *skb,
|
|
dma_addr_t *addr)
|
|
{
|
|
const skb_frag_t *fp, *end;
|
|
const struct skb_shared_info *si;
|
|
|
|
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, *addr))
|
|
goto out_err;
|
|
|
|
si = skb_shinfo(skb);
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
for (fp = si->frags; fp < end; fp++) {
|
|
*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, *addr))
|
|
goto unwind;
|
|
}
|
|
return 0;
|
|
|
|
unwind:
|
|
while (fp-- > si->frags)
|
|
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
|
|
out_err:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
|
|
const dma_addr_t *addr)
|
|
{
|
|
const skb_frag_t *fp, *end;
|
|
const struct skb_shared_info *si;
|
|
|
|
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
si = skb_shinfo(skb);
|
|
end = &si->frags[si->nr_frags];
|
|
for (fp = si->frags; fp < end; fp++)
|
|
dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
|
|
}
|
|
|
|
/**
|
|
* deferred_unmap_destructor - unmap a packet when it is freed
|
|
* @skb: the packet
|
|
*
|
|
* This is the packet destructor used for Tx packets that need to remain
|
|
* mapped until they are freed rather than until their Tx descriptors are
|
|
* freed.
|
|
*/
|
|
static void deferred_unmap_destructor(struct sk_buff *skb)
|
|
{
|
|
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
|
|
}
|
|
#endif
|
|
|
|
static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
|
|
const struct ulptx_sgl *sgl, const struct sge_txq *q)
|
|
{
|
|
const struct ulptx_sge_pair *p;
|
|
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
|
|
|
|
if (likely(skb_headlen(skb)))
|
|
dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
DMA_TO_DEVICE);
|
|
else {
|
|
dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
DMA_TO_DEVICE);
|
|
nfrags--;
|
|
}
|
|
|
|
/*
|
|
* the complexity below is because of the possibility of a wrap-around
|
|
* in the middle of an SGL
|
|
*/
|
|
for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
|
|
if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
|
|
unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
p++;
|
|
} else if ((u8 *)p == (u8 *)q->stat) {
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
goto unmap;
|
|
} else if ((u8 *)p + 8 == (u8 *)q->stat) {
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
dma_unmap_page(dev, be64_to_cpu(addr[1]),
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
p = (const struct ulptx_sge_pair *)&addr[2];
|
|
} else {
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
p = (const struct ulptx_sge_pair *)&addr[1];
|
|
}
|
|
}
|
|
if (nfrags) {
|
|
__be64 addr;
|
|
|
|
if ((u8 *)p == (u8 *)q->stat)
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
|
|
*(const __be64 *)q->desc;
|
|
dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* free_tx_desc - reclaims Tx descriptors and their buffers
|
|
* @adapter: the adapter
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
* @n: the number of descriptors to reclaim
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
*
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
*/
|
|
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
|
|
unsigned int n, bool unmap)
|
|
{
|
|
struct tx_sw_desc *d;
|
|
unsigned int cidx = q->cidx;
|
|
struct device *dev = adap->pdev_dev;
|
|
|
|
d = &q->sdesc[cidx];
|
|
while (n--) {
|
|
if (d->skb) { /* an SGL is present */
|
|
if (unmap)
|
|
unmap_sgl(dev, d->skb, d->sgl, q);
|
|
dev_consume_skb_any(d->skb);
|
|
d->skb = NULL;
|
|
}
|
|
++d;
|
|
if (++cidx == q->size) {
|
|
cidx = 0;
|
|
d = q->sdesc;
|
|
}
|
|
}
|
|
q->cidx = cidx;
|
|
}
|
|
|
|
/*
|
|
* Return the number of reclaimable descriptors in a Tx queue.
|
|
*/
|
|
static inline int reclaimable(const struct sge_txq *q)
|
|
{
|
|
int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
|
|
hw_cidx -= q->cidx;
|
|
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
|
|
}
|
|
|
|
/**
|
|
* reclaim_completed_tx - reclaims completed Tx descriptors
|
|
* @adap: the adapter
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
*
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
* queue locked.
|
|
*/
|
|
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
|
|
bool unmap)
|
|
{
|
|
int avail = reclaimable(q);
|
|
|
|
if (avail) {
|
|
/*
|
|
* Limit the amount of clean up work we do at a time to keep
|
|
* the Tx lock hold time O(1).
|
|
*/
|
|
if (avail > MAX_TX_RECLAIM)
|
|
avail = MAX_TX_RECLAIM;
|
|
|
|
free_tx_desc(adap, q, avail, unmap);
|
|
q->in_use -= avail;
|
|
}
|
|
}
|
|
|
|
static inline int get_buf_size(struct adapter *adapter,
|
|
const struct rx_sw_desc *d)
|
|
{
|
|
struct sge *s = &adapter->sge;
|
|
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
|
|
int buf_size;
|
|
|
|
switch (rx_buf_size_idx) {
|
|
case RX_SMALL_PG_BUF:
|
|
buf_size = PAGE_SIZE;
|
|
break;
|
|
|
|
case RX_LARGE_PG_BUF:
|
|
buf_size = PAGE_SIZE << s->fl_pg_order;
|
|
break;
|
|
|
|
case RX_SMALL_MTU_BUF:
|
|
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
|
|
break;
|
|
|
|
case RX_LARGE_MTU_BUF:
|
|
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
|
|
return buf_size;
|
|
}
|
|
|
|
/**
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
* @adap: the adapter
|
|
* @q: the SGE free list to free buffers from
|
|
* @n: how many buffers to free
|
|
*
|
|
* Release the next @n buffers on an SGE free-buffer Rx queue. The
|
|
* buffers must be made inaccessible to HW before calling this function.
|
|
*/
|
|
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
|
|
{
|
|
while (n--) {
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
if (is_buf_mapped(d))
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
|
get_buf_size(adap, d),
|
|
PCI_DMA_FROMDEVICE);
|
|
put_page(d->page);
|
|
d->page = NULL;
|
|
if (++q->cidx == q->size)
|
|
q->cidx = 0;
|
|
q->avail--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
|
|
* @adap: the adapter
|
|
* @q: the SGE free list
|
|
*
|
|
* Unmap the current buffer on an SGE free-buffer Rx queue. The
|
|
* buffer must be made inaccessible to HW before calling this function.
|
|
*
|
|
* This is similar to @free_rx_bufs above but does not free the buffer.
|
|
* Do note that the FL still loses any further access to the buffer.
|
|
*/
|
|
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
|
|
{
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
if (is_buf_mapped(d))
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
|
get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
|
|
d->page = NULL;
|
|
if (++q->cidx == q->size)
|
|
q->cidx = 0;
|
|
q->avail--;
|
|
}
|
|
|
|
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
|
|
{
|
|
if (q->pend_cred >= 8) {
|
|
u32 val = adap->params.arch.sge_fl_db;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
val |= PIDX_V(q->pend_cred / 8);
|
|
else
|
|
val |= PIDX_T5_V(q->pend_cred / 8);
|
|
|
|
/* Make sure all memory writes to the Free List queue are
|
|
* committed before we tell the hardware about them.
|
|
*/
|
|
wmb();
|
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use
|
|
* the old doorbell mechanism; otherwise use the new BAR2
|
|
* mechanism.
|
|
*/
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
val | QID_V(q->cntxt_id));
|
|
} else {
|
|
writel(val | QID_V(q->bar2_qid),
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
|
|
|
/* This Write memory Barrier will force the write to
|
|
* the User Doorbell area to be flushed.
|
|
*/
|
|
wmb();
|
|
}
|
|
q->pend_cred &= 7;
|
|
}
|
|
}
|
|
|
|
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
|
|
dma_addr_t mapping)
|
|
{
|
|
sd->page = pg;
|
|
sd->dma_addr = mapping; /* includes size low bits */
|
|
}
|
|
|
|
/**
|
|
* refill_fl - refill an SGE Rx buffer ring
|
|
* @adap: the adapter
|
|
* @q: the ring to refill
|
|
* @n: the number of new buffers to allocate
|
|
* @gfp: the gfp flags for the allocations
|
|
*
|
|
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
|
|
* allocated with the supplied gfp flags. The caller must assure that
|
|
* @n does not exceed the queue's capacity. If afterwards the queue is
|
|
* found critically low mark it as starving in the bitmap of starving FLs.
|
|
*
|
|
* Returns the number of buffers allocated.
|
|
*/
|
|
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
|
|
gfp_t gfp)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
struct page *pg;
|
|
dma_addr_t mapping;
|
|
unsigned int cred = q->avail;
|
|
__be64 *d = &q->desc[q->pidx];
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
|
int node;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
|
|
goto out;
|
|
#endif
|
|
|
|
gfp |= __GFP_NOWARN;
|
|
node = dev_to_node(adap->pdev_dev);
|
|
|
|
if (s->fl_pg_order == 0)
|
|
goto alloc_small_pages;
|
|
|
|
/*
|
|
* Prefer large buffers
|
|
*/
|
|
while (n) {
|
|
pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
|
|
if (unlikely(!pg)) {
|
|
q->large_alloc_failed++;
|
|
break; /* fall back to single pages */
|
|
}
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0,
|
|
PAGE_SIZE << s->fl_pg_order,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
|
__free_pages(pg, s->fl_pg_order);
|
|
q->mapping_err++;
|
|
goto out; /* do not try small pages for this error */
|
|
}
|
|
mapping |= RX_LARGE_PG_BUF;
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
sd++;
|
|
|
|
q->avail++;
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
sd = q->sdesc;
|
|
d = q->desc;
|
|
}
|
|
n--;
|
|
}
|
|
|
|
alloc_small_pages:
|
|
while (n--) {
|
|
pg = alloc_pages_node(node, gfp, 0);
|
|
if (unlikely(!pg)) {
|
|
q->alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
|
put_page(pg);
|
|
q->mapping_err++;
|
|
goto out;
|
|
}
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
sd++;
|
|
|
|
q->avail++;
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
sd = q->sdesc;
|
|
d = q->desc;
|
|
}
|
|
}
|
|
|
|
out: cred = q->avail - cred;
|
|
q->pend_cred += cred;
|
|
ring_fl_db(adap, q);
|
|
|
|
if (unlikely(fl_starving(adap, q))) {
|
|
smp_wmb();
|
|
q->low++;
|
|
set_bit(q->cntxt_id - adap->sge.egr_start,
|
|
adap->sge.starving_fl);
|
|
}
|
|
|
|
return cred;
|
|
}
|
|
|
|
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
|
|
{
|
|
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
|
|
GFP_ATOMIC);
|
|
}
|
|
|
|
/**
|
|
* alloc_ring - allocate resources for an SGE descriptor ring
|
|
* @dev: the PCI device's core device
|
|
* @nelem: the number of descriptors
|
|
* @elem_size: the size of each descriptor
|
|
* @sw_size: the size of the SW state associated with each ring element
|
|
* @phys: the physical address of the allocated ring
|
|
* @metadata: address of the array holding the SW state for the ring
|
|
* @stat_size: extra space in HW ring for status information
|
|
* @node: preferred node for memory allocations
|
|
*
|
|
* Allocates resources for an SGE descriptor ring, such as Tx queues,
|
|
* free buffer lists, or response queues. Each SGE ring requires
|
|
* space for its HW descriptors plus, optionally, space for the SW state
|
|
* associated with each HW entry (the metadata). The function returns
|
|
* three values: the virtual address for the HW ring (the return value
|
|
* of the function), the bus address of the HW ring, and the address
|
|
* of the SW ring.
|
|
*/
|
|
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
|
|
size_t sw_size, dma_addr_t *phys, void *metadata,
|
|
size_t stat_size, int node)
|
|
{
|
|
size_t len = nelem * elem_size + stat_size;
|
|
void *s = NULL;
|
|
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
|
|
|
|
if (!p)
|
|
return NULL;
|
|
if (sw_size) {
|
|
s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
|
|
|
|
if (!s) {
|
|
dma_free_coherent(dev, len, p, *phys);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (metadata)
|
|
*(void **)metadata = s;
|
|
memset(p, 0, len);
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
* @n: the number of SGL entries
|
|
*
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
* can hold the given number of entries.
|
|
*/
|
|
static inline unsigned int sgl_len(unsigned int n)
|
|
{
|
|
/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
|
|
* addresses. The DSGL Work Request starts off with a 32-bit DSGL
|
|
* ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
|
|
* repeated sequences of { Length[i], Length[i+1], Address[i],
|
|
* Address[i+1] } (this ensures that all addresses are on 64-bit
|
|
* boundaries). If N is even, then Length[N+1] should be set to 0 and
|
|
* Address[N+1] is omitted.
|
|
*
|
|
* The following calculation incorporates all of the above. It's
|
|
* somewhat hard to follow but, briefly: the "+2" accounts for the
|
|
* first two flits which include the DSGL header, Length0 and
|
|
* Address0; the "(3*(n-1))/2" covers the main body of list entries (3
|
|
* flits for every pair of the remaining N) +1 if (n-1) is odd; and
|
|
* finally the "+((n-1)&1)" adds the one remaining flit needed if
|
|
* (n-1) is odd ...
|
|
*/
|
|
n--;
|
|
return (3 * n) / 2 + (n & 1) + 2;
|
|
}
|
|
|
|
/**
|
|
* flits_to_desc - returns the num of Tx descriptors for the given flits
|
|
* @n: the number of flits
|
|
*
|
|
* Returns the number of Tx descriptors needed for the supplied number
|
|
* of flits.
|
|
*/
|
|
static inline unsigned int flits_to_desc(unsigned int n)
|
|
{
|
|
BUG_ON(n > SGE_MAX_WR_LEN / 8);
|
|
return DIV_ROUND_UP(n, 8);
|
|
}
|
|
|
|
/**
|
|
* is_eth_imm - can an Ethernet packet be sent as immediate data?
|
|
* @skb: the packet
|
|
*
|
|
* Returns whether an Ethernet packet is small enough to fit as
|
|
* immediate data. Return value corresponds to headroom required.
|
|
*/
|
|
static inline int is_eth_imm(const struct sk_buff *skb)
|
|
{
|
|
int hdrlen = skb_shinfo(skb)->gso_size ?
|
|
sizeof(struct cpl_tx_pkt_lso_core) : 0;
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt);
|
|
if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
|
|
return hdrlen;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* calc_tx_flits - calculate the number of flits for a packet Tx WR
|
|
* @skb: the packet
|
|
*
|
|
* Returns the number of flits needed for a Tx WR for the given Ethernet
|
|
* packet, including the needed WR and CPL headers.
|
|
*/
|
|
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
|
|
{
|
|
unsigned int flits;
|
|
int hdrlen = is_eth_imm(skb);
|
|
|
|
/* If the skb is small enough, we can pump it out as a work request
|
|
* with only immediate data. In that case we just have to have the
|
|
* TX Packet header plus the skb data in the Work Request.
|
|
*/
|
|
|
|
if (hdrlen)
|
|
return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
|
|
|
|
/* Otherwise, we're going to have to construct a Scatter gather list
|
|
* of the skb body and fragments. We also include the flits necessary
|
|
* for the TX Packet Work Request and CPL. We always have a firmware
|
|
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
|
|
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
|
|
* message or, if we're doing a Large Send Offload, an LSO CPL message
|
|
* with an embedded TX Packet Write CPL message.
|
|
*/
|
|
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
|
|
if (skb_shinfo(skb)->gso_size)
|
|
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
|
|
sizeof(struct cpl_tx_pkt_lso_core) +
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
|
else
|
|
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
|
return flits;
|
|
}
|
|
|
|
/**
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
* @skb: the packet
|
|
*
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
* packet, including the needed WR and CPL headers.
|
|
*/
|
|
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
|
|
{
|
|
return flits_to_desc(calc_tx_flits(skb));
|
|
}
|
|
|
|
/**
|
|
* write_sgl - populate a scatter/gather list for a packet
|
|
* @skb: the packet
|
|
* @q: the Tx queue we are writing into
|
|
* @sgl: starting location for writing the SGL
|
|
* @end: points right after the end of the SGL
|
|
* @start: start offset into skb main-body data to include in the SGL
|
|
* @addr: the list of bus addresses for the SGL elements
|
|
*
|
|
* Generates a gather list for the buffers that make up a packet.
|
|
* The caller must provide adequate space for the SGL that will be written.
|
|
* The SGL includes all of the packet's page fragments and the data in its
|
|
* main body except for the first @start bytes. @sgl must be 16-byte
|
|
* aligned and within a Tx descriptor with available space. @end points
|
|
* right after the end of the SGL but does not account for any potential
|
|
* wrap around, i.e., @end > @sgl.
|
|
*/
|
|
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
|
|
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
|
|
const dma_addr_t *addr)
|
|
{
|
|
unsigned int i, len;
|
|
struct ulptx_sge_pair *to;
|
|
const struct skb_shared_info *si = skb_shinfo(skb);
|
|
unsigned int nfrags = si->nr_frags;
|
|
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
|
|
|
|
len = skb_headlen(skb) - start;
|
|
if (likely(len)) {
|
|
sgl->len0 = htonl(len);
|
|
sgl->addr0 = cpu_to_be64(addr[0] + start);
|
|
nfrags++;
|
|
} else {
|
|
sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
|
|
sgl->addr0 = cpu_to_be64(addr[1]);
|
|
}
|
|
|
|
sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
|
|
ULPTX_NSGE_V(nfrags));
|
|
if (likely(--nfrags == 0))
|
|
return;
|
|
/*
|
|
* Most of the complexity below deals with the possibility we hit the
|
|
* end of the queue in the middle of writing the SGL. For this case
|
|
* only we create the SGL in a temporary buffer and then copy it.
|
|
*/
|
|
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
|
|
|
|
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
|
to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
|
|
to->addr[0] = cpu_to_be64(addr[i]);
|
|
to->addr[1] = cpu_to_be64(addr[++i]);
|
|
}
|
|
if (nfrags) {
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
|
to->len[1] = cpu_to_be32(0);
|
|
to->addr[0] = cpu_to_be64(addr[i + 1]);
|
|
}
|
|
if (unlikely((u8 *)end > (u8 *)q->stat)) {
|
|
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
|
|
|
|
if (likely(part0))
|
|
memcpy(sgl->sge, buf, part0);
|
|
part1 = (u8 *)end - (u8 *)q->stat;
|
|
memcpy(q->desc, (u8 *)buf + part0, part1);
|
|
end = (void *)q->desc + part1;
|
|
}
|
|
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
|
|
*end = 0;
|
|
}
|
|
|
|
/* This function copies 64 byte coalesced work request to
|
|
* memory mapped BAR2 space. For coalesced WR SGE fetches
|
|
* data from the FIFO instead of from Host.
|
|
*/
|
|
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
|
|
{
|
|
int count = 8;
|
|
|
|
while (count) {
|
|
writeq(*src, dst);
|
|
src++;
|
|
dst++;
|
|
count--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ring_tx_db - check and potentially ring a Tx queue's doorbell
|
|
* @adap: the adapter
|
|
* @q: the Tx queue
|
|
* @n: number of new descriptors to give to HW
|
|
*
|
|
* Ring the doorbel for a Tx queue.
|
|
*/
|
|
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
|
|
{
|
|
/* Make sure that all writes to the TX Descriptors are committed
|
|
* before we tell the hardware about them.
|
|
*/
|
|
wmb();
|
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use the old
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
*/
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
|
u32 val = PIDX_V(n);
|
|
unsigned long flags;
|
|
|
|
/* For T4 we need to participate in the Doorbell Recovery
|
|
* mechanism.
|
|
*/
|
|
spin_lock_irqsave(&q->db_lock, flags);
|
|
if (!q->db_disabled)
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
QID_V(q->cntxt_id) | val);
|
|
else
|
|
q->db_pidx_inc += n;
|
|
q->db_pidx = q->pidx;
|
|
spin_unlock_irqrestore(&q->db_lock, flags);
|
|
} else {
|
|
u32 val = PIDX_T5_V(n);
|
|
|
|
/* T4 and later chips share the same PIDX field offset within
|
|
* the doorbell, but T5 and later shrank the field in order to
|
|
* gain a bit for Doorbell Priority. The field was absurdly
|
|
* large in the first place (14 bits) so we just use the T5
|
|
* and later limits and warn if a Queue ID is too large.
|
|
*/
|
|
WARN_ON(val & DBPRIO_F);
|
|
|
|
/* If we're only writing a single TX Descriptor and we can use
|
|
* Inferred QID registers, we can use the Write Combining
|
|
* Gather Buffer; otherwise we use the simple doorbell.
|
|
*/
|
|
if (n == 1 && q->bar2_qid == 0) {
|
|
int index = (q->pidx
|
|
? (q->pidx - 1)
|
|
: (q->size - 1));
|
|
u64 *wr = (u64 *)&q->desc[index];
|
|
|
|
cxgb_pio_copy((u64 __iomem *)
|
|
(q->bar2_addr + SGE_UDB_WCDOORBELL),
|
|
wr);
|
|
} else {
|
|
writel(val | QID_V(q->bar2_qid),
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
|
}
|
|
|
|
/* This Write Memory Barrier will force the write to the User
|
|
* Doorbell area to be flushed. This is needed to prevent
|
|
* writes on different CPUs for the same queue from hitting
|
|
* the adapter out of order. This is required when some Work
|
|
* Requests take the Write Combine Gather Buffer path (user
|
|
* doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
|
|
* take the traditional path where we simply increment the
|
|
* PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
|
|
* hardware DMA read the actual Work Request.
|
|
*/
|
|
wmb();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* inline_tx_skb - inline a packet's data into Tx descriptors
|
|
* @skb: the packet
|
|
* @q: the Tx queue where the packet will be inlined
|
|
* @pos: starting position in the Tx queue where to inline the packet
|
|
*
|
|
* Inline a packet's contents directly into Tx descriptors, starting at
|
|
* the given position within the Tx DMA ring.
|
|
* Most of the complexity of this operation is dealing with wrap arounds
|
|
* in the middle of the packet we want to inline.
|
|
*/
|
|
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
|
|
void *pos)
|
|
{
|
|
u64 *p;
|
|
int left = (void *)q->stat - pos;
|
|
|
|
if (likely(skb->len <= left)) {
|
|
if (likely(!skb->data_len))
|
|
skb_copy_from_linear_data(skb, pos, skb->len);
|
|
else
|
|
skb_copy_bits(skb, 0, pos, skb->len);
|
|
pos += skb->len;
|
|
} else {
|
|
skb_copy_bits(skb, 0, pos, left);
|
|
skb_copy_bits(skb, left, q->desc, skb->len - left);
|
|
pos = (void *)q->desc + (skb->len - left);
|
|
}
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
p = PTR_ALIGN(pos, 8);
|
|
if ((uintptr_t)p & 8)
|
|
*p = 0;
|
|
}
|
|
|
|
static void *inline_tx_skb_header(const struct sk_buff *skb,
|
|
const struct sge_txq *q, void *pos,
|
|
int length)
|
|
{
|
|
u64 *p;
|
|
int left = (void *)q->stat - pos;
|
|
|
|
if (likely(length <= left)) {
|
|
memcpy(pos, skb->data, length);
|
|
pos += length;
|
|
} else {
|
|
memcpy(pos, skb->data, left);
|
|
memcpy(q->desc, skb->data + left, length - left);
|
|
pos = (void *)q->desc + (length - left);
|
|
}
|
|
/* 0-pad to multiple of 16 */
|
|
p = PTR_ALIGN(pos, 8);
|
|
if ((uintptr_t)p & 8) {
|
|
*p = 0;
|
|
return p + 1;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Figure out what HW csum a packet wants and return the appropriate control
|
|
* bits.
|
|
*/
|
|
static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
|
|
{
|
|
int csum_type;
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
if (iph->version == 4) {
|
|
if (iph->protocol == IPPROTO_TCP)
|
|
csum_type = TX_CSUM_TCPIP;
|
|
else if (iph->protocol == IPPROTO_UDP)
|
|
csum_type = TX_CSUM_UDPIP;
|
|
else {
|
|
nocsum: /*
|
|
* unknown protocol, disable HW csum
|
|
* and hope a bad packet is detected
|
|
*/
|
|
return TXPKT_L4CSUM_DIS_F;
|
|
}
|
|
} else {
|
|
/*
|
|
* this doesn't work with extension headers
|
|
*/
|
|
const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
|
|
|
|
if (ip6h->nexthdr == IPPROTO_TCP)
|
|
csum_type = TX_CSUM_TCPIP6;
|
|
else if (ip6h->nexthdr == IPPROTO_UDP)
|
|
csum_type = TX_CSUM_UDPIP6;
|
|
else
|
|
goto nocsum;
|
|
}
|
|
|
|
if (likely(csum_type >= TX_CSUM_TCPIP)) {
|
|
u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
|
|
int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
|
|
hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
else
|
|
hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
|
|
} else {
|
|
int start = skb_transport_offset(skb);
|
|
|
|
return TXPKT_CSUM_TYPE_V(csum_type) |
|
|
TXPKT_CSUM_START_V(start) |
|
|
TXPKT_CSUM_LOC_V(start + skb->csum_offset);
|
|
}
|
|
}
|
|
|
|
static void eth_txq_stop(struct sge_eth_txq *q)
|
|
{
|
|
netif_tx_stop_queue(q->txq);
|
|
q->q.stops++;
|
|
}
|
|
|
|
static inline void txq_advance(struct sge_txq *q, unsigned int n)
|
|
{
|
|
q->in_use += n;
|
|
q->pidx += n;
|
|
if (q->pidx >= q->size)
|
|
q->pidx -= q->size;
|
|
}
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
static inline int
|
|
cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
|
|
const struct port_info *pi, u64 *cntrl)
|
|
{
|
|
const struct cxgb_fcoe *fcoe = &pi->fcoe;
|
|
|
|
if (!(fcoe->flags & CXGB_FCOE_ENABLED))
|
|
return 0;
|
|
|
|
if (skb->protocol != htons(ETH_P_FCOE))
|
|
return 0;
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb->mac_len = sizeof(struct ethhdr);
|
|
|
|
skb_set_network_header(skb, skb->mac_len);
|
|
skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
|
|
|
|
if (!cxgb_fcoe_sof_eof_supported(adap, skb))
|
|
return -ENOTSUPP;
|
|
|
|
/* FC CRC offload */
|
|
*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
|
|
TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
|
|
TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
|
|
TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
|
|
TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
/**
|
|
* t4_eth_xmit - add a packet to an Ethernet Tx queue
|
|
* @skb: the packet
|
|
* @dev: the egress net device
|
|
*
|
|
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
|
|
*/
|
|
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
u32 wr_mid, ctrl0;
|
|
u64 cntrl, *end;
|
|
int qidx, credits;
|
|
unsigned int flits, ndesc;
|
|
struct adapter *adap;
|
|
struct sge_eth_txq *q;
|
|
const struct port_info *pi;
|
|
struct fw_eth_tx_pkt_wr *wr;
|
|
struct cpl_tx_pkt_core *cpl;
|
|
const struct skb_shared_info *ssi;
|
|
dma_addr_t addr[MAX_SKB_FRAGS + 1];
|
|
bool immediate = false;
|
|
int len, max_pkt_len;
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
int err;
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
/*
|
|
* The chip min packet length is 10 octets but play safe and reject
|
|
* anything shorter than an Ethernet header.
|
|
*/
|
|
if (unlikely(skb->len < ETH_HLEN)) {
|
|
out_free: dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Discard the packet if the length is greater than mtu */
|
|
max_pkt_len = ETH_HLEN + dev->mtu;
|
|
if (skb_vlan_tag_present(skb))
|
|
max_pkt_len += VLAN_HLEN;
|
|
if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
|
|
goto out_free;
|
|
|
|
pi = netdev_priv(dev);
|
|
adap = pi->adapter;
|
|
qidx = skb_get_queue_mapping(skb);
|
|
q = &adap->sge.ethtxq[qidx + pi->first_qset];
|
|
|
|
reclaim_completed_tx(adap, &q->q, true);
|
|
cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
|
|
if (unlikely(err == -ENOTSUPP))
|
|
goto out_free;
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
flits = calc_tx_flits(skb);
|
|
ndesc = flits_to_desc(flits);
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
if (unlikely(credits < 0)) {
|
|
eth_txq_stop(q);
|
|
dev_err(adap->pdev_dev,
|
|
"%s: Tx ring %u full while queue awake!\n",
|
|
dev->name, qidx);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
if (is_eth_imm(skb))
|
|
immediate = true;
|
|
|
|
if (!immediate &&
|
|
unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
|
|
q->mapping_err++;
|
|
goto out_free;
|
|
}
|
|
|
|
wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
|
|
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
|
|
eth_txq_stop(q);
|
|
wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
|
|
}
|
|
|
|
wr = (void *)&q->q.desc[q->q.pidx];
|
|
wr->equiq_to_len16 = htonl(wr_mid);
|
|
wr->r3 = cpu_to_be64(0);
|
|
end = (u64 *)wr + flits;
|
|
|
|
len = immediate ? skb->len : 0;
|
|
ssi = skb_shinfo(skb);
|
|
if (ssi->gso_size) {
|
|
struct cpl_tx_pkt_lso *lso = (void *)wr;
|
|
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
len += sizeof(*lso);
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
|
|
FW_WR_IMMDLEN_V(len));
|
|
lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
|
|
LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
|
|
LSO_IPV6_V(v6) |
|
|
LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
|
|
LSO_IPHDR_LEN_V(l3hdr_len / 4) |
|
|
LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
|
|
lso->c.ipid_ofst = htons(0);
|
|
lso->c.mss = htons(ssi->gso_size);
|
|
lso->c.seqno_offset = htonl(0);
|
|
if (is_t4(adap->params.chip))
|
|
lso->c.len = htonl(skb->len);
|
|
else
|
|
lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
|
|
cpl = (void *)(lso + 1);
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
else
|
|
cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
|
|
cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
|
|
TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
|
|
TXPKT_IPHDR_LEN_V(l3hdr_len);
|
|
q->tso++;
|
|
q->tx_cso += ssi->gso_segs;
|
|
} else {
|
|
len += sizeof(*cpl);
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
|
|
FW_WR_IMMDLEN_V(len));
|
|
cpl = (void *)(wr + 1);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
cntrl = hwcsum(adap->params.chip, skb) |
|
|
TXPKT_IPCSUM_DIS_F;
|
|
q->tx_cso++;
|
|
}
|
|
}
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
q->vlan_ins++;
|
|
cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
if (skb->protocol == htons(ETH_P_FCOE))
|
|
cntrl |= TXPKT_VLAN_V(
|
|
((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
}
|
|
|
|
ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
|
|
TXPKT_PF_V(adap->pf);
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
if (is_t4(adap->params.chip))
|
|
ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
|
|
else
|
|
ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
|
|
#endif
|
|
cpl->ctrl0 = htonl(ctrl0);
|
|
cpl->pack = htons(0);
|
|
cpl->len = htons(skb->len);
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
if (immediate) {
|
|
inline_tx_skb(skb, &q->q, cpl + 1);
|
|
dev_consume_skb_any(skb);
|
|
} else {
|
|
int last_desc;
|
|
|
|
write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
|
|
addr);
|
|
skb_orphan(skb);
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
if (last_desc >= q->q.size)
|
|
last_desc -= q->q.size;
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
|
|
}
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
ring_tx_db(adap, &q->q, ndesc);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
* @q: the SGE control Tx queue
|
|
*
|
|
* This is a variant of reclaim_completed_tx() that is used for Tx queues
|
|
* that send only immediate data (presently just the control queues) and
|
|
* thus do not have any sk_buffs to release.
|
|
*/
|
|
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
|
|
{
|
|
int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
|
|
int reclaim = hw_cidx - q->cidx;
|
|
|
|
if (reclaim < 0)
|
|
reclaim += q->size;
|
|
|
|
q->in_use -= reclaim;
|
|
q->cidx = hw_cidx;
|
|
}
|
|
|
|
/**
|
|
* is_imm - check whether a packet can be sent as immediate data
|
|
* @skb: the packet
|
|
*
|
|
* Returns true if a packet can be sent as a WR with immediate data.
|
|
*/
|
|
static inline int is_imm(const struct sk_buff *skb)
|
|
{
|
|
return skb->len <= MAX_CTRL_WR_LEN;
|
|
}
|
|
|
|
/**
|
|
* ctrlq_check_stop - check if a control queue is full and should stop
|
|
* @q: the queue
|
|
* @wr: most recent WR written to the queue
|
|
*
|
|
* Check if a control queue has become full and should be stopped.
|
|
* We clean up control queue descriptors very lazily, only when we are out.
|
|
* If the queue is still full after reclaiming any completed descriptors
|
|
* we suspend it and have the last WR wake it up.
|
|
*/
|
|
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
|
|
{
|
|
reclaim_completed_tx_imm(&q->q);
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
|
q->q.stops++;
|
|
q->full = 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
* @q: the control queue
|
|
* @skb: the packet
|
|
*
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
* a control queue must fit entirely as immediate data.
|
|
*/
|
|
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
|
|
{
|
|
unsigned int ndesc;
|
|
struct fw_wr_hdr *wr;
|
|
|
|
if (unlikely(!is_imm(skb))) {
|
|
WARN_ON(1);
|
|
dev_kfree_skb(skb);
|
|
return NET_XMIT_DROP;
|
|
}
|
|
|
|
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
if (unlikely(q->full)) {
|
|
skb->priority = ndesc; /* save for restart */
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
spin_unlock(&q->sendq.lock);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
ring_tx_db(q->adap, &q->q, ndesc);
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
kfree_skb(skb);
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* restart_ctrlq - restart a suspended control queue
|
|
* @data: the control queue to restart
|
|
*
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
*/
|
|
static void restart_ctrlq(unsigned long data)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned int written = 0;
|
|
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
reclaim_completed_tx_imm(&q->q);
|
|
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
|
|
|
|
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
|
|
struct fw_wr_hdr *wr;
|
|
unsigned int ndesc = skb->priority; /* previously saved */
|
|
|
|
written += ndesc;
|
|
/* Write descriptors and free skbs outside the lock to limit
|
|
* wait times. q->full is still set so new skbs will be queued.
|
|
*/
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
txq_advance(&q->q, ndesc);
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
kfree_skb(skb);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
unsigned long old = q->q.stops;
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
if (q->q.stops != old) { /* suspended anew */
|
|
spin_lock(&q->sendq.lock);
|
|
goto ringdb;
|
|
}
|
|
}
|
|
if (written > 16) {
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
written = 0;
|
|
}
|
|
spin_lock(&q->sendq.lock);
|
|
}
|
|
q->full = 0;
|
|
ringdb: if (written)
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
spin_unlock(&q->sendq.lock);
|
|
}
|
|
|
|
/**
|
|
* t4_mgmt_tx - send a management message
|
|
* @adap: the adapter
|
|
* @skb: the packet containing the management message
|
|
*
|
|
* Send a management message through control queue 0.
|
|
*/
|
|
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
|
|
local_bh_disable();
|
|
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
|
|
local_bh_enable();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* is_ofld_imm - check whether a packet can be sent as immediate data
|
|
* @skb: the packet
|
|
*
|
|
* Returns true if a packet can be sent as an offload WR with immediate
|
|
* data. We currently use the same limit as for Ethernet packets.
|
|
*/
|
|
static inline int is_ofld_imm(const struct sk_buff *skb)
|
|
{
|
|
return skb->len <= MAX_IMM_TX_PKT_LEN;
|
|
}
|
|
|
|
/**
|
|
* calc_tx_flits_ofld - calculate # of flits for an offload packet
|
|
* @skb: the packet
|
|
*
|
|
* Returns the number of flits needed for the given offload packet.
|
|
* These packets are already fully constructed and no additional headers
|
|
* will be added.
|
|
*/
|
|
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
|
|
{
|
|
unsigned int flits, cnt;
|
|
|
|
if (is_ofld_imm(skb))
|
|
return DIV_ROUND_UP(skb->len, 8);
|
|
|
|
flits = skb_transport_offset(skb) / 8U; /* headers */
|
|
cnt = skb_shinfo(skb)->nr_frags;
|
|
if (skb_tail_pointer(skb) != skb_transport_header(skb))
|
|
cnt++;
|
|
return flits + sgl_len(cnt);
|
|
}
|
|
|
|
/**
|
|
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
|
|
* @adap: the adapter
|
|
* @q: the queue to stop
|
|
*
|
|
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
|
|
* inability to map packets. A periodic timer attempts to restart
|
|
* queues so marked.
|
|
*/
|
|
static void txq_stop_maperr(struct sge_ofld_txq *q)
|
|
{
|
|
q->mapping_err++;
|
|
q->q.stops++;
|
|
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
|
|
q->adap->sge.txq_maperr);
|
|
}
|
|
|
|
/**
|
|
* ofldtxq_stop - stop an offload Tx queue that has become full
|
|
* @q: the queue to stop
|
|
* @skb: the packet causing the queue to become full
|
|
*
|
|
* Stops an offload Tx queue that has become full and modifies the packet
|
|
* being written to request a wakeup.
|
|
*/
|
|
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
{
|
|
struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
|
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
|
q->q.stops++;
|
|
q->full = 1;
|
|
}
|
|
|
|
/**
|
|
* service_ofldq - service/restart a suspended offload queue
|
|
* @q: the offload queue
|
|
*
|
|
* Services an offload Tx queue by moving packets from its Pending Send
|
|
* Queue to the Hardware TX ring. The function starts and ends with the
|
|
* Send Queue locked, but drops the lock while putting the skb at the
|
|
* head of the Send Queue onto the Hardware TX Ring. Dropping the lock
|
|
* allows more skbs to be added to the Send Queue by other threads.
|
|
* The packet being processed at the head of the Pending Send Queue is
|
|
* left on the queue in case we experience DMA Mapping errors, etc.
|
|
* and need to give up and restart later.
|
|
*
|
|
* service_ofldq() can be thought of as a task which opportunistically
|
|
* uses other threads execution contexts. We use the Offload Queue
|
|
* boolean "service_ofldq_running" to make sure that only one instance
|
|
* is ever running at a time ...
|
|
*/
|
|
static void service_ofldq(struct sge_ofld_txq *q)
|
|
{
|
|
u64 *pos, *before, *end;
|
|
int credits;
|
|
struct sk_buff *skb;
|
|
struct sge_txq *txq;
|
|
unsigned int left;
|
|
unsigned int written = 0;
|
|
unsigned int flits, ndesc;
|
|
|
|
/* If another thread is currently in service_ofldq() processing the
|
|
* Pending Send Queue then there's nothing to do. Otherwise, flag
|
|
* that we're doing the work and continue. Examining/modifying
|
|
* the Offload Queue boolean "service_ofldq_running" must be done
|
|
* while holding the Pending Send Queue Lock.
|
|
*/
|
|
if (q->service_ofldq_running)
|
|
return;
|
|
q->service_ofldq_running = true;
|
|
|
|
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
|
|
/* We drop the lock while we're working with the skb at the
|
|
* head of the Pending Send Queue. This allows more skbs to
|
|
* be added to the Pending Send Queue while we're working on
|
|
* this one. We don't need to lock to guard the TX Ring
|
|
* updates because only one thread of execution is ever
|
|
* allowed into service_ofldq() at a time.
|
|
*/
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
reclaim_completed_tx(q->adap, &q->q, false);
|
|
|
|
flits = skb->priority; /* previously saved */
|
|
ndesc = flits_to_desc(flits);
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
BUG_ON(credits < 0);
|
|
if (unlikely(credits < TXQ_STOP_THRES))
|
|
ofldtxq_stop(q, skb);
|
|
|
|
pos = (u64 *)&q->q.desc[q->q.pidx];
|
|
if (is_ofld_imm(skb))
|
|
inline_tx_skb(skb, &q->q, pos);
|
|
else if (map_skb(q->adap->pdev_dev, skb,
|
|
(dma_addr_t *)skb->head)) {
|
|
txq_stop_maperr(q);
|
|
spin_lock(&q->sendq.lock);
|
|
break;
|
|
} else {
|
|
int last_desc, hdr_len = skb_transport_offset(skb);
|
|
|
|
/* The WR headers may not fit within one descriptor.
|
|
* So we need to deal with wrap-around here.
|
|
*/
|
|
before = (u64 *)pos;
|
|
end = (u64 *)pos + flits;
|
|
txq = &q->q;
|
|
pos = (void *)inline_tx_skb_header(skb, &q->q,
|
|
(void *)pos,
|
|
hdr_len);
|
|
if (before > (u64 *)pos) {
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
end = (void *)txq->desc + left;
|
|
}
|
|
|
|
/* If current position is already at the end of the
|
|
* ofld queue, reset the current to point to
|
|
* start of the queue and update the end ptr as well.
|
|
*/
|
|
if (pos == (u64 *)txq->stat) {
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
end = (void *)txq->desc + left;
|
|
pos = (void *)txq->desc;
|
|
}
|
|
|
|
write_sgl(skb, &q->q, (void *)pos,
|
|
end, hdr_len,
|
|
(dma_addr_t *)skb->head);
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
skb->dev = q->adap->port[0];
|
|
skb->destructor = deferred_unmap_destructor;
|
|
#endif
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
if (last_desc >= q->q.size)
|
|
last_desc -= q->q.size;
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
}
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
written += ndesc;
|
|
if (unlikely(written > 32)) {
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
written = 0;
|
|
}
|
|
|
|
/* Reacquire the Pending Send Queue Lock so we can unlink the
|
|
* skb we've just successfully transferred to the TX Ring and
|
|
* loop for the next skb which may be at the head of the
|
|
* Pending Send Queue.
|
|
*/
|
|
spin_lock(&q->sendq.lock);
|
|
__skb_unlink(skb, &q->sendq);
|
|
if (is_ofld_imm(skb))
|
|
kfree_skb(skb);
|
|
}
|
|
if (likely(written))
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
/*Indicate that no thread is processing the Pending Send Queue
|
|
* currently.
|
|
*/
|
|
q->service_ofldq_running = false;
|
|
}
|
|
|
|
/**
|
|
* ofld_xmit - send a packet through an offload queue
|
|
* @q: the Tx offload queue
|
|
* @skb: the packet
|
|
*
|
|
* Send an offload packet through an SGE offload queue.
|
|
*/
|
|
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
{
|
|
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
/* Queue the new skb onto the Offload Queue's Pending Send Queue. If
|
|
* that results in this new skb being the only one on the queue, start
|
|
* servicing it. If there are other skbs already on the list, then
|
|
* either the queue is currently being processed or it's been stopped
|
|
* for some reason and it'll be restarted at a later time. Restart
|
|
* paths are triggered by events like experiencing a DMA Mapping Error
|
|
* or filling the Hardware TX Ring.
|
|
*/
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
if (q->sendq.qlen == 1)
|
|
service_ofldq(q);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* restart_ofldq - restart a suspended offload queue
|
|
* @data: the offload queue to restart
|
|
*
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
*/
|
|
static void restart_ofldq(unsigned long data)
|
|
{
|
|
struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
q->full = 0; /* the queue actually is completely empty now */
|
|
service_ofldq(q);
|
|
spin_unlock(&q->sendq.lock);
|
|
}
|
|
|
|
/**
|
|
* skb_txq - return the Tx queue an offload packet should use
|
|
* @skb: the packet
|
|
*
|
|
* Returns the Tx queue an offload packet should use as indicated by bits
|
|
* 1-15 in the packet's queue_mapping.
|
|
*/
|
|
static inline unsigned int skb_txq(const struct sk_buff *skb)
|
|
{
|
|
return skb->queue_mapping >> 1;
|
|
}
|
|
|
|
/**
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
* @skb: the packet
|
|
*
|
|
* Returns whether an offload packet should use an OFLD or a CTRL
|
|
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
|
|
*/
|
|
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
|
|
{
|
|
return skb->queue_mapping & 1;
|
|
}
|
|
|
|
static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
{
|
|
unsigned int idx = skb_txq(skb);
|
|
|
|
if (unlikely(is_ctrl_pkt(skb))) {
|
|
/* Single ctrl queue is a requirement for LE workaround path */
|
|
if (adap->tids.nsftids)
|
|
idx = 0;
|
|
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
|
|
}
|
|
return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
|
|
}
|
|
|
|
/**
|
|
* t4_ofld_send - send an offload packet
|
|
* @adap: the adapter
|
|
* @skb: the packet
|
|
*
|
|
* Sends an offload packet. We use the packet queue_mapping to select the
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
* should be sent as regular or control, bits 1-15 select the queue.
|
|
*/
|
|
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
|
|
local_bh_disable();
|
|
ret = ofld_send(adap, skb);
|
|
local_bh_enable();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cxgb4_ofld_send - send an offload packet
|
|
* @dev: the net device
|
|
* @skb: the packet
|
|
*
|
|
* Sends an offload packet. This is an exported version of @t4_ofld_send,
|
|
* intended for ULDs.
|
|
*/
|
|
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
|
|
{
|
|
return t4_ofld_send(netdev2adap(dev), skb);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_ofld_send);
|
|
|
|
static inline void copy_frags(struct sk_buff *skb,
|
|
const struct pkt_gl *gl, unsigned int offset)
|
|
{
|
|
int i;
|
|
|
|
/* usually there's just one frag */
|
|
__skb_fill_page_desc(skb, 0, gl->frags[0].page,
|
|
gl->frags[0].offset + offset,
|
|
gl->frags[0].size - offset);
|
|
skb_shinfo(skb)->nr_frags = gl->nfrags;
|
|
for (i = 1; i < gl->nfrags; i++)
|
|
__skb_fill_page_desc(skb, i, gl->frags[i].page,
|
|
gl->frags[i].offset,
|
|
gl->frags[i].size);
|
|
|
|
/* get a reference to the last page, we don't own it */
|
|
get_page(gl->frags[gl->nfrags - 1].page);
|
|
}
|
|
|
|
/**
|
|
* cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
|
|
* @gl: the gather list
|
|
* @skb_len: size of sk_buff main body if it carries fragments
|
|
* @pull_len: amount of data to move to the sk_buff's main body
|
|
*
|
|
* Builds an sk_buff from the given packet gather list. Returns the
|
|
* sk_buff or %NULL if sk_buff allocation failed.
|
|
*/
|
|
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
|
|
unsigned int skb_len, unsigned int pull_len)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
/*
|
|
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
|
|
* size, which is expected since buffers are at least PAGE_SIZEd.
|
|
* In this case packets up to RX_COPY_THRES have only one fragment.
|
|
*/
|
|
if (gl->tot_len <= RX_COPY_THRES) {
|
|
skb = dev_alloc_skb(gl->tot_len);
|
|
if (unlikely(!skb))
|
|
goto out;
|
|
__skb_put(skb, gl->tot_len);
|
|
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
|
|
} else {
|
|
skb = dev_alloc_skb(skb_len);
|
|
if (unlikely(!skb))
|
|
goto out;
|
|
__skb_put(skb, pull_len);
|
|
skb_copy_to_linear_data(skb, gl->va, pull_len);
|
|
|
|
copy_frags(skb, gl, pull_len);
|
|
skb->len = gl->tot_len;
|
|
skb->data_len = skb->len - pull_len;
|
|
skb->truesize += skb->data_len;
|
|
}
|
|
out: return skb;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
|
|
|
|
/**
|
|
* t4_pktgl_free - free a packet gather list
|
|
* @gl: the gather list
|
|
*
|
|
* Releases the pages of a packet gather list. We do not own the last
|
|
* page on the list and do not free it.
|
|
*/
|
|
static void t4_pktgl_free(const struct pkt_gl *gl)
|
|
{
|
|
int n;
|
|
const struct page_frag *p;
|
|
|
|
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
|
|
put_page(p->page);
|
|
}
|
|
|
|
/*
|
|
* Process an MPS trace packet. Give it an unused protocol number so it won't
|
|
* be delivered to anyone and send it to the stack for capture.
|
|
*/
|
|
static noinline int handle_trace_pkt(struct adapter *adap,
|
|
const struct pkt_gl *gl)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
|
|
if (unlikely(!skb)) {
|
|
t4_pktgl_free(gl);
|
|
return 0;
|
|
}
|
|
|
|
if (is_t4(adap->params.chip))
|
|
__skb_pull(skb, sizeof(struct cpl_trace_pkt));
|
|
else
|
|
__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
|
|
|
|
skb_reset_mac_header(skb);
|
|
skb->protocol = htons(0xffff);
|
|
skb->dev = adap->port[0];
|
|
netif_receive_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
|
|
* @adap: the adapter
|
|
* @hwtstamps: time stamp structure to update
|
|
* @sgetstamp: 60bit iqe timestamp
|
|
*
|
|
* Every ingress queue entry has the 60-bit timestamp, convert that timestamp
|
|
* which is in Core Clock ticks into ktime_t and assign it
|
|
**/
|
|
static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
u64 sgetstamp)
|
|
{
|
|
u64 ns;
|
|
u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
|
|
|
|
ns = div_u64(tmp, adap->params.vpd.cclk);
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
}
|
|
|
|
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
|
|
const struct cpl_rx_pkt *pkt)
|
|
{
|
|
struct adapter *adapter = rxq->rspq.adap;
|
|
struct sge *s = &adapter->sge;
|
|
struct port_info *pi;
|
|
int ret;
|
|
struct sk_buff *skb;
|
|
|
|
skb = napi_get_frags(&rxq->rspq.napi);
|
|
if (unlikely(!skb)) {
|
|
t4_pktgl_free(gl);
|
|
rxq->stats.rx_drops++;
|
|
return;
|
|
}
|
|
|
|
copy_frags(skb, gl, s->pktshift);
|
|
skb->len = gl->tot_len - s->pktshift;
|
|
skb->data_len = skb->len;
|
|
skb->truesize += skb->data_len;
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb_record_rx_queue(skb, rxq->rspq.idx);
|
|
pi = netdev_priv(skb->dev);
|
|
if (pi->rxtstamp)
|
|
cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
|
|
gl->sgetstamp);
|
|
if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
PKT_HASH_TYPE_L3);
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
|
rxq->stats.vlan_ex++;
|
|
}
|
|
ret = napi_gro_frags(&rxq->rspq.napi);
|
|
if (ret == GRO_HELD)
|
|
rxq->stats.lro_pkts++;
|
|
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
|
|
rxq->stats.lro_merged++;
|
|
rxq->stats.pkts++;
|
|
rxq->stats.rx_cso++;
|
|
}
|
|
|
|
/**
|
|
* t4_ethrx_handler - process an ingress ethernet packet
|
|
* @q: the response queue that received the packet
|
|
* @rsp: the response queue descriptor holding the RX_PKT message
|
|
* @si: the gather list of packet fragments
|
|
*
|
|
* Process an ingress ethernet packet and deliver it to the stack.
|
|
*/
|
|
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
const struct pkt_gl *si)
|
|
{
|
|
bool csum_ok;
|
|
struct sk_buff *skb;
|
|
const struct cpl_rx_pkt *pkt;
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
|
struct sge *s = &q->adap->sge;
|
|
int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
|
|
CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
|
|
struct port_info *pi;
|
|
|
|
if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
|
|
return handle_trace_pkt(q->adap, si);
|
|
|
|
pkt = (const struct cpl_rx_pkt *)rsp;
|
|
csum_ok = pkt->csum_calc && !pkt->err_vec &&
|
|
(q->netdev->features & NETIF_F_RXCSUM);
|
|
if ((pkt->l2info & htonl(RXF_TCP_F)) &&
|
|
!(cxgb_poll_busy_polling(q)) &&
|
|
(q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
|
|
do_gro(rxq, si, pkt);
|
|
return 0;
|
|
}
|
|
|
|
skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
|
|
if (unlikely(!skb)) {
|
|
t4_pktgl_free(si);
|
|
rxq->stats.rx_drops++;
|
|
return 0;
|
|
}
|
|
|
|
__skb_pull(skb, s->pktshift); /* remove ethernet header padding */
|
|
skb->protocol = eth_type_trans(skb, q->netdev);
|
|
skb_record_rx_queue(skb, q->idx);
|
|
if (skb->dev->features & NETIF_F_RXHASH)
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
PKT_HASH_TYPE_L3);
|
|
|
|
rxq->stats.pkts++;
|
|
|
|
pi = netdev_priv(skb->dev);
|
|
if (pi->rxtstamp)
|
|
cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
|
|
si->sgetstamp);
|
|
if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
|
|
if (!pkt->ip_frag) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
rxq->stats.rx_cso++;
|
|
} else if (pkt->l2info & htonl(RXF_IP_F)) {
|
|
__sum16 c = (__force __sum16)pkt->csum;
|
|
skb->csum = csum_unfold(c);
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
rxq->stats.rx_cso++;
|
|
}
|
|
} else {
|
|
skb_checksum_none_assert(skb);
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
|
|
RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
|
|
|
|
if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
|
|
if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
|
|
(pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
|
|
if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
}
|
|
|
|
#undef CPL_RX_PKT_FLAGS
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
}
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
|
rxq->stats.vlan_ex++;
|
|
}
|
|
skb_mark_napi_id(skb, &q->napi);
|
|
netif_receive_skb(skb);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* restore_rx_bufs - put back a packet's Rx buffers
|
|
* @si: the packet gather list
|
|
* @q: the SGE free list
|
|
* @frags: number of FL buffers to restore
|
|
*
|
|
* Puts back on an FL the Rx buffers associated with @si. The buffers
|
|
* have already been unmapped and are left unmapped, we mark them so to
|
|
* prevent further unmapping attempts.
|
|
*
|
|
* This function undoes a series of @unmap_rx_buf calls when we find out
|
|
* that the current packet can't be processed right away afterall and we
|
|
* need to come back to it later. This is a very rare event and there's
|
|
* no effort to make this particularly efficient.
|
|
*/
|
|
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
|
|
int frags)
|
|
{
|
|
struct rx_sw_desc *d;
|
|
|
|
while (frags--) {
|
|
if (q->cidx == 0)
|
|
q->cidx = q->size - 1;
|
|
else
|
|
q->cidx--;
|
|
d = &q->sdesc[q->cidx];
|
|
d->page = si->frags[frags].page;
|
|
d->dma_addr |= RX_UNMAPPED_BUF;
|
|
q->avail++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* is_new_response - check if a response is newly written
|
|
* @r: the response descriptor
|
|
* @q: the response queue
|
|
*
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
* response.
|
|
*/
|
|
static inline bool is_new_response(const struct rsp_ctrl *r,
|
|
const struct sge_rspq *q)
|
|
{
|
|
return (r->type_gen >> RSPD_GEN_S) == q->gen;
|
|
}
|
|
|
|
/**
|
|
* rspq_next - advance to the next entry in a response queue
|
|
* @q: the queue
|
|
*
|
|
* Updates the state of a response queue to advance it to the next entry.
|
|
*/
|
|
static inline void rspq_next(struct sge_rspq *q)
|
|
{
|
|
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
|
|
if (unlikely(++q->cidx == q->size)) {
|
|
q->cidx = 0;
|
|
q->gen ^= 1;
|
|
q->cur_desc = q->desc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* process_responses - process responses from an SGE response queue
|
|
* @q: the ingress queue to process
|
|
* @budget: how many responses can be processed in this round
|
|
*
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
* Responses include received packets as well as control messages from FW
|
|
* or HW.
|
|
*
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
* long delay to help recovery.
|
|
*/
|
|
static int process_responses(struct sge_rspq *q, int budget)
|
|
{
|
|
int ret, rsp_type;
|
|
int budget_left = budget;
|
|
const struct rsp_ctrl *rc;
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
|
struct adapter *adapter = q->adap;
|
|
struct sge *s = &adapter->sge;
|
|
|
|
while (likely(budget_left)) {
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
if (!is_new_response(rc, q)) {
|
|
if (q->flush_handler)
|
|
q->flush_handler(q);
|
|
break;
|
|
}
|
|
|
|
dma_rmb();
|
|
rsp_type = RSPD_TYPE_G(rc->type_gen);
|
|
if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
|
|
struct page_frag *fp;
|
|
struct pkt_gl si;
|
|
const struct rx_sw_desc *rsd;
|
|
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
|
|
|
|
if (len & RSPD_NEWBUF_F) {
|
|
if (likely(q->offset > 0)) {
|
|
free_rx_bufs(q->adap, &rxq->fl, 1);
|
|
q->offset = 0;
|
|
}
|
|
len = RSPD_LEN_G(len);
|
|
}
|
|
si.tot_len = len;
|
|
|
|
/* gather packet fragments */
|
|
for (frags = 0, fp = si.frags; ; frags++, fp++) {
|
|
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
|
|
bufsz = get_buf_size(adapter, rsd);
|
|
fp->page = rsd->page;
|
|
fp->offset = q->offset;
|
|
fp->size = min(bufsz, len);
|
|
len -= fp->size;
|
|
if (!len)
|
|
break;
|
|
unmap_rx_buf(q->adap, &rxq->fl);
|
|
}
|
|
|
|
si.sgetstamp = SGE_TIMESTAMP_G(
|
|
be64_to_cpu(rc->last_flit));
|
|
/*
|
|
* Last buffer remains mapped so explicitly make it
|
|
* coherent for CPU access.
|
|
*/
|
|
dma_sync_single_for_cpu(q->adap->pdev_dev,
|
|
get_buf_addr(rsd),
|
|
fp->size, DMA_FROM_DEVICE);
|
|
|
|
si.va = page_address(si.frags[0].page) +
|
|
si.frags[0].offset;
|
|
prefetch(si.va);
|
|
|
|
si.nfrags = frags + 1;
|
|
ret = q->handler(q, q->cur_desc, &si);
|
|
if (likely(ret == 0))
|
|
q->offset += ALIGN(fp->size, s->fl_align);
|
|
else
|
|
restore_rx_bufs(&si, &rxq->fl, frags);
|
|
} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
|
|
ret = q->handler(q, q->cur_desc, NULL);
|
|
} else {
|
|
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
|
|
}
|
|
|
|
if (unlikely(ret)) {
|
|
/* couldn't process descriptor, back off for recovery */
|
|
q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
|
|
break;
|
|
}
|
|
|
|
rspq_next(q);
|
|
budget_left--;
|
|
}
|
|
|
|
if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
|
|
__refill_fl(q->adap, &rxq->fl);
|
|
return budget - budget_left;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
int cxgb_busy_poll(struct napi_struct *napi)
|
|
{
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
|
unsigned int params, work_done;
|
|
u32 val;
|
|
|
|
if (!cxgb_poll_lock_poll(q))
|
|
return LL_FLUSH_BUSY;
|
|
|
|
work_done = process_responses(q, 4);
|
|
params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
|
|
q->next_intr_params = params;
|
|
val = CIDXINC_V(work_done) | SEINTARM_V(params);
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
*/
|
|
if (unlikely(!q->bar2_addr))
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
|
|
val | INGRESSQID_V((u32)q->cntxt_id));
|
|
else {
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
|
q->bar2_addr + SGE_UDB_GTS);
|
|
wmb();
|
|
}
|
|
|
|
cxgb_poll_unlock_poll(q);
|
|
return work_done;
|
|
}
|
|
#endif /* CONFIG_NET_RX_BUSY_POLL */
|
|
|
|
/**
|
|
* napi_rx_handler - the NAPI handler for Rx processing
|
|
* @napi: the napi instance
|
|
* @budget: how many packets we can process in this round
|
|
*
|
|
* Handler for new data events when using NAPI. This does not need any
|
|
* locking or protection from interrupts as data interrupts are off at
|
|
* this point and other adapter interrupts do not interfere (the latter
|
|
* in not a concern at all with MSI-X as non-data interrupts then have
|
|
* a separate handler).
|
|
*/
|
|
static int napi_rx_handler(struct napi_struct *napi, int budget)
|
|
{
|
|
unsigned int params;
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
|
int work_done;
|
|
u32 val;
|
|
|
|
if (!cxgb_poll_lock_napi(q))
|
|
return budget;
|
|
|
|
work_done = process_responses(q, budget);
|
|
if (likely(work_done < budget)) {
|
|
int timer_index;
|
|
|
|
napi_complete_done(napi, work_done);
|
|
timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
|
|
|
|
if (q->adaptive_rx) {
|
|
if (work_done > max(timer_pkt_quota[timer_index],
|
|
MIN_NAPI_WORK))
|
|
timer_index = (timer_index + 1);
|
|
else
|
|
timer_index = timer_index - 1;
|
|
|
|
timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
|
|
q->next_intr_params =
|
|
QINTR_TIMER_IDX_V(timer_index) |
|
|
QINTR_CNT_EN_V(0);
|
|
params = q->next_intr_params;
|
|
} else {
|
|
params = q->next_intr_params;
|
|
q->next_intr_params = q->intr_params;
|
|
}
|
|
} else
|
|
params = QINTR_TIMER_IDX_V(7);
|
|
|
|
val = CIDXINC_V(work_done) | SEINTARM_V(params);
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
*/
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
|
|
val | INGRESSQID_V((u32)q->cntxt_id));
|
|
} else {
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
|
q->bar2_addr + SGE_UDB_GTS);
|
|
wmb();
|
|
}
|
|
cxgb_poll_unlock_napi(q);
|
|
return work_done;
|
|
}
|
|
|
|
/*
|
|
* The MSI-X interrupt handler for an SGE response queue.
|
|
*/
|
|
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
|
|
{
|
|
struct sge_rspq *q = cookie;
|
|
|
|
napi_schedule(&q->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Process the indirect interrupt entries in the interrupt queue and kick off
|
|
* NAPI for each queue that has generated an entry.
|
|
*/
|
|
static unsigned int process_intrq(struct adapter *adap)
|
|
{
|
|
unsigned int credits;
|
|
const struct rsp_ctrl *rc;
|
|
struct sge_rspq *q = &adap->sge.intrq;
|
|
u32 val;
|
|
|
|
spin_lock(&adap->sge.intrq_lock);
|
|
for (credits = 0; ; credits++) {
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
if (!is_new_response(rc, q))
|
|
break;
|
|
|
|
dma_rmb();
|
|
if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
|
|
unsigned int qid = ntohl(rc->pldbuflen_qid);
|
|
|
|
qid -= adap->sge.ingr_start;
|
|
napi_schedule(&adap->sge.ingr_map[qid]->napi);
|
|
}
|
|
|
|
rspq_next(q);
|
|
}
|
|
|
|
val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
*/
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
|
|
val | INGRESSQID_V(q->cntxt_id));
|
|
} else {
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
|
q->bar2_addr + SGE_UDB_GTS);
|
|
wmb();
|
|
}
|
|
spin_unlock(&adap->sge.intrq_lock);
|
|
return credits;
|
|
}
|
|
|
|
/*
|
|
* The MSI interrupt handler, which handles data events from SGE response queues
|
|
* as well as error and other async events as they all use the same MSI vector.
|
|
*/
|
|
static irqreturn_t t4_intr_msi(int irq, void *cookie)
|
|
{
|
|
struct adapter *adap = cookie;
|
|
|
|
if (adap->flags & MASTER_PF)
|
|
t4_slow_intr_handler(adap);
|
|
process_intrq(adap);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for legacy INTx interrupts.
|
|
* Handles data events from SGE response queues as well as error and other
|
|
* async events as they all use the same interrupt line.
|
|
*/
|
|
static irqreturn_t t4_intr_intx(int irq, void *cookie)
|
|
{
|
|
struct adapter *adap = cookie;
|
|
|
|
t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
|
|
if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
|
|
process_intrq(adap))
|
|
return IRQ_HANDLED;
|
|
return IRQ_NONE; /* probably shared interrupt */
|
|
}
|
|
|
|
/**
|
|
* t4_intr_handler - select the top-level interrupt handler
|
|
* @adap: the adapter
|
|
*
|
|
* Selects the top-level interrupt handler based on the type of interrupts
|
|
* (MSI-X, MSI, or INTx).
|
|
*/
|
|
irq_handler_t t4_intr_handler(struct adapter *adap)
|
|
{
|
|
if (adap->flags & USING_MSIX)
|
|
return t4_sge_intr_msix;
|
|
if (adap->flags & USING_MSI)
|
|
return t4_intr_msi;
|
|
return t4_intr_intx;
|
|
}
|
|
|
|
static void sge_rx_timer_cb(unsigned long data)
|
|
{
|
|
unsigned long m;
|
|
unsigned int i;
|
|
struct adapter *adap = (struct adapter *)data;
|
|
struct sge *s = &adap->sge;
|
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
|
for (m = s->starving_fl[i]; m; m &= m - 1) {
|
|
struct sge_eth_rxq *rxq;
|
|
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
|
|
struct sge_fl *fl = s->egr_map[id];
|
|
|
|
clear_bit(id, s->starving_fl);
|
|
smp_mb__after_atomic();
|
|
|
|
if (fl_starving(adap, fl)) {
|
|
rxq = container_of(fl, struct sge_eth_rxq, fl);
|
|
if (napi_reschedule(&rxq->rspq.napi))
|
|
fl->starving++;
|
|
else
|
|
set_bit(id, s->starving_fl);
|
|
}
|
|
}
|
|
/* The remainder of the SGE RX Timer Callback routine is dedicated to
|
|
* global Master PF activities like checking for chip ingress stalls,
|
|
* etc.
|
|
*/
|
|
if (!(adap->flags & MASTER_PF))
|
|
goto done;
|
|
|
|
t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
|
|
|
|
done:
|
|
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
}
|
|
|
|
static void sge_tx_timer_cb(unsigned long data)
|
|
{
|
|
unsigned long m;
|
|
unsigned int i, budget;
|
|
struct adapter *adap = (struct adapter *)data;
|
|
struct sge *s = &adap->sge;
|
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
|
for (m = s->txq_maperr[i]; m; m &= m - 1) {
|
|
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
|
|
struct sge_ofld_txq *txq = s->egr_map[id];
|
|
|
|
clear_bit(id, s->txq_maperr);
|
|
tasklet_schedule(&txq->qresume_tsk);
|
|
}
|
|
|
|
budget = MAX_TIMER_TX_RECLAIM;
|
|
i = s->ethtxq_rover;
|
|
do {
|
|
struct sge_eth_txq *q = &s->ethtxq[i];
|
|
|
|
if (q->q.in_use &&
|
|
time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
|
|
__netif_tx_trylock(q->txq)) {
|
|
int avail = reclaimable(&q->q);
|
|
|
|
if (avail) {
|
|
if (avail > budget)
|
|
avail = budget;
|
|
|
|
free_tx_desc(adap, &q->q, avail, true);
|
|
q->q.in_use -= avail;
|
|
budget -= avail;
|
|
}
|
|
__netif_tx_unlock(q->txq);
|
|
}
|
|
|
|
if (++i >= s->ethqsets)
|
|
i = 0;
|
|
} while (budget && i != s->ethtxq_rover);
|
|
s->ethtxq_rover = i;
|
|
mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
|
|
}
|
|
|
|
/**
|
|
* bar2_address - return the BAR2 address for an SGE Queue's Registers
|
|
* @adapter: the adapter
|
|
* @qid: the SGE Queue ID
|
|
* @qtype: the SGE Queue Type (Egress or Ingress)
|
|
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
|
|
*
|
|
* Returns the BAR2 address for the SGE Queue Registers associated with
|
|
* @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
|
|
* returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
|
|
* Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
|
|
* Registers are supported (e.g. the Write Combining Doorbell Buffer).
|
|
*/
|
|
static void __iomem *bar2_address(struct adapter *adapter,
|
|
unsigned int qid,
|
|
enum t4_bar2_qtype qtype,
|
|
unsigned int *pbar2_qid)
|
|
{
|
|
u64 bar2_qoffset;
|
|
int ret;
|
|
|
|
ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
|
|
&bar2_qoffset, pbar2_qid);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
return adapter->bar2 + bar2_qoffset;
|
|
}
|
|
|
|
/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
|
|
* @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
|
|
*/
|
|
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
|
|
struct net_device *dev, int intr_idx,
|
|
struct sge_fl *fl, rspq_handler_t hnd,
|
|
rspq_flush_handler_t flush_hnd, int cong)
|
|
{
|
|
int ret, flsz = 0;
|
|
struct fw_iq_cmd c;
|
|
struct sge *s = &adap->sge;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
/* Size needs to be multiple of 16, including status entry. */
|
|
iq->size = roundup(iq->size, 16);
|
|
|
|
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
|
|
&iq->phys_addr, NULL, 0,
|
|
dev_to_node(adap->pdev_dev));
|
|
if (!iq->desc)
|
|
return -ENOMEM;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
|
|
c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
|
|
FW_LEN16(c));
|
|
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
|
|
FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
|
|
FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
|
|
FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
|
|
FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
|
|
-intr_idx - 1));
|
|
c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
|
|
FW_IQ_CMD_IQGTSMODE_F |
|
|
FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
|
|
FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
|
|
c.iqsize = htons(iq->size);
|
|
c.iqaddr = cpu_to_be64(iq->phys_addr);
|
|
if (cong >= 0)
|
|
c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
|
|
|
|
if (fl) {
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
|
|
/* Allocate the ring for the hardware free list (with space
|
|
* for its status page) along with the associated software
|
|
* descriptor ring. The free list size needs to be a multiple
|
|
* of the Egress Queue Unit and at least 2 Egress Units larger
|
|
* than the SGE's Egress Congrestion Threshold
|
|
* (fl_starve_thres - 1).
|
|
*/
|
|
if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
|
|
fl->size = s->fl_starve_thres - 1 + 2 * 8;
|
|
fl->size = roundup(fl->size, 8);
|
|
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
|
|
sizeof(struct rx_sw_desc), &fl->addr,
|
|
&fl->sdesc, s->stat_len,
|
|
dev_to_node(adap->pdev_dev));
|
|
if (!fl->desc)
|
|
goto fl_nomem;
|
|
|
|
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
|
|
c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
|
|
FW_IQ_CMD_FL0FETCHRO_F |
|
|
FW_IQ_CMD_FL0DATARO_F |
|
|
FW_IQ_CMD_FL0PADEN_F);
|
|
if (cong >= 0)
|
|
c.iqns_to_fl0congen |=
|
|
htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
|
|
FW_IQ_CMD_FL0CONGCIF_F |
|
|
FW_IQ_CMD_FL0CONGEN_F);
|
|
/* In T6, for egress queue type FL there is internal overhead
|
|
* of 16B for header going into FLM module. Hence the maximum
|
|
* allowed burst size is 448 bytes. For T4/T5, the hardware
|
|
* doesn't coalesce fetch requests if more than 64 bytes of
|
|
* Free List pointers are provided, so we use a 128-byte Fetch
|
|
* Burst Minimum there (T6 implements coalescing so we can use
|
|
* the smaller 64-byte value there).
|
|
*/
|
|
c.fl0dcaen_to_fl0cidxfthresh =
|
|
htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
|
|
FETCHBURSTMIN_128B_X :
|
|
FETCHBURSTMIN_64B_X) |
|
|
FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
|
|
FETCHBURSTMAX_512B_X :
|
|
FETCHBURSTMAX_256B_X));
|
|
c.fl0size = htons(flsz);
|
|
c.fl0addr = cpu_to_be64(fl->addr);
|
|
}
|
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
|
if (ret)
|
|
goto err;
|
|
|
|
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
|
|
iq->cur_desc = iq->desc;
|
|
iq->cidx = 0;
|
|
iq->gen = 1;
|
|
iq->next_intr_params = iq->intr_params;
|
|
iq->cntxt_id = ntohs(c.iqid);
|
|
iq->abs_id = ntohs(c.physiqid);
|
|
iq->bar2_addr = bar2_address(adap,
|
|
iq->cntxt_id,
|
|
T4_BAR2_QTYPE_INGRESS,
|
|
&iq->bar2_qid);
|
|
iq->size--; /* subtract status entry */
|
|
iq->netdev = dev;
|
|
iq->handler = hnd;
|
|
iq->flush_handler = flush_hnd;
|
|
|
|
memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
|
|
skb_queue_head_init(&iq->lro_mgr.lroq);
|
|
|
|
/* set offset to -1 to distinguish ingress queues without FL */
|
|
iq->offset = fl ? 0 : -1;
|
|
|
|
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
|
|
|
|
if (fl) {
|
|
fl->cntxt_id = ntohs(c.fl0id);
|
|
fl->avail = fl->pend_cred = 0;
|
|
fl->pidx = fl->cidx = 0;
|
|
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
|
|
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
|
|
|
|
/* Note, we must initialize the BAR2 Free List User Doorbell
|
|
* information before refilling the Free List!
|
|
*/
|
|
fl->bar2_addr = bar2_address(adap,
|
|
fl->cntxt_id,
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
&fl->bar2_qid);
|
|
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
|
|
}
|
|
|
|
/* For T5 and later we attempt to set up the Congestion Manager values
|
|
* of the new RX Ethernet Queue. This should really be handled by
|
|
* firmware because it's more complex than any host driver wants to
|
|
* get involved with and it's different per chip and this is almost
|
|
* certainly wrong. Firmware would be wrong as well, but it would be
|
|
* a lot easier to fix in one place ... For now we do something very
|
|
* simple (and hopefully less wrong).
|
|
*/
|
|
if (!is_t4(adap->params.chip) && cong >= 0) {
|
|
u32 param, val, ch_map = 0;
|
|
int i;
|
|
u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
|
|
FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
|
|
if (cong == 0) {
|
|
val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
|
|
} else {
|
|
val =
|
|
CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
|
|
for (i = 0; i < 4; i++) {
|
|
if (cong & (1 << i))
|
|
ch_map |= 1 << (i << cng_ch_bits_log);
|
|
}
|
|
val |= CONMCTXT_CNGCHMAP_V(ch_map);
|
|
}
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
|
|
¶m, &val);
|
|
if (ret)
|
|
dev_warn(adap->pdev_dev, "Failed to set Congestion"
|
|
" Manager Context for Ingress Queue %d: %d\n",
|
|
iq->cntxt_id, -ret);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fl_nomem:
|
|
ret = -ENOMEM;
|
|
err:
|
|
if (iq->desc) {
|
|
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
|
|
iq->desc, iq->phys_addr);
|
|
iq->desc = NULL;
|
|
}
|
|
if (fl && fl->desc) {
|
|
kfree(fl->sdesc);
|
|
fl->sdesc = NULL;
|
|
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
|
|
fl->desc, fl->addr);
|
|
fl->desc = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
|
|
{
|
|
q->cntxt_id = id;
|
|
q->bar2_addr = bar2_address(adap,
|
|
q->cntxt_id,
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
&q->bar2_qid);
|
|
q->in_use = 0;
|
|
q->cidx = q->pidx = 0;
|
|
q->stops = q->restarts = 0;
|
|
q->stat = (void *)&q->desc[q->size];
|
|
spin_lock_init(&q->db_lock);
|
|
adap->sge.egr_map[id - adap->sge.egr_start] = q;
|
|
}
|
|
|
|
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
|
|
struct net_device *dev, struct netdev_queue *netdevq,
|
|
unsigned int iqid)
|
|
{
|
|
int ret, nentries;
|
|
struct fw_eq_eth_cmd c;
|
|
struct sge *s = &adap->sge;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
/* Add status entries */
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
|
netdev_queue_numa_node_read(netdevq));
|
|
if (!txq->q.desc)
|
|
return -ENOMEM;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_EQ_ETH_CMD_PFN_V(adap->pf) |
|
|
FW_EQ_ETH_CMD_VFN_V(0));
|
|
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
|
|
FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
|
|
c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
|
|
FW_EQ_ETH_CMD_VIID_V(pi->viid));
|
|
c.fetchszm_to_iqid =
|
|
htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
|
|
FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
|
|
c.dcaen_to_eqsize =
|
|
htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
FW_EQ_ETH_CMD_EQSIZE_V(nentries));
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
|
if (ret) {
|
|
kfree(txq->q.sdesc);
|
|
txq->q.sdesc = NULL;
|
|
dma_free_coherent(adap->pdev_dev,
|
|
nentries * sizeof(struct tx_desc),
|
|
txq->q.desc, txq->q.phys_addr);
|
|
txq->q.desc = NULL;
|
|
return ret;
|
|
}
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
|
txq->txq = netdevq;
|
|
txq->tso = txq->tx_cso = txq->vlan_ins = 0;
|
|
txq->mapping_err = 0;
|
|
return 0;
|
|
}
|
|
|
|
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
|
|
struct net_device *dev, unsigned int iqid,
|
|
unsigned int cmplqid)
|
|
{
|
|
int ret, nentries;
|
|
struct fw_eq_ctrl_cmd c;
|
|
struct sge *s = &adap->sge;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
/* Add status entries */
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
|
|
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
|
|
NULL, 0, dev_to_node(adap->pdev_dev));
|
|
if (!txq->q.desc)
|
|
return -ENOMEM;
|
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
|
|
FW_EQ_CTRL_CMD_VFN_V(0));
|
|
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
|
|
FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
|
|
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
|
|
c.physeqid_pkd = htonl(0);
|
|
c.fetchszm_to_iqid =
|
|
htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
|
|
FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
|
|
c.dcaen_to_eqsize =
|
|
htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
|
if (ret) {
|
|
dma_free_coherent(adap->pdev_dev,
|
|
nentries * sizeof(struct tx_desc),
|
|
txq->q.desc, txq->q.phys_addr);
|
|
txq->q.desc = NULL;
|
|
return ret;
|
|
}
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
|
|
txq->adap = adap;
|
|
skb_queue_head_init(&txq->sendq);
|
|
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
|
|
txq->full = 0;
|
|
return 0;
|
|
}
|
|
|
|
int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
|
|
struct net_device *dev, unsigned int iqid)
|
|
{
|
|
int ret, nentries;
|
|
struct fw_eq_ofld_cmd c;
|
|
struct sge *s = &adap->sge;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
/* Add status entries */
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
|
NUMA_NO_NODE);
|
|
if (!txq->q.desc)
|
|
return -ENOMEM;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
|
|
FW_EQ_OFLD_CMD_VFN_V(0));
|
|
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
|
|
FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
|
|
c.fetchszm_to_iqid =
|
|
htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
|
|
FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
|
|
c.dcaen_to_eqsize =
|
|
htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
|
if (ret) {
|
|
kfree(txq->q.sdesc);
|
|
txq->q.sdesc = NULL;
|
|
dma_free_coherent(adap->pdev_dev,
|
|
nentries * sizeof(struct tx_desc),
|
|
txq->q.desc, txq->q.phys_addr);
|
|
txq->q.desc = NULL;
|
|
return ret;
|
|
}
|
|
|
|
init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
|
txq->adap = adap;
|
|
skb_queue_head_init(&txq->sendq);
|
|
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
|
|
txq->full = 0;
|
|
txq->mapping_err = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void free_txq(struct adapter *adap, struct sge_txq *q)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
q->size * sizeof(struct tx_desc) + s->stat_len,
|
|
q->desc, q->phys_addr);
|
|
q->cntxt_id = 0;
|
|
q->sdesc = NULL;
|
|
q->desc = NULL;
|
|
}
|
|
|
|
static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
|
|
struct sge_fl *fl)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
|
|
|
|
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
|
|
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
|
|
rq->cntxt_id, fl_id, 0xffff);
|
|
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
|
|
rq->desc, rq->phys_addr);
|
|
napi_hash_del(&rq->napi);
|
|
netif_napi_del(&rq->napi);
|
|
rq->netdev = NULL;
|
|
rq->cntxt_id = rq->abs_id = 0;
|
|
rq->desc = NULL;
|
|
|
|
if (fl) {
|
|
free_rx_bufs(adap, fl, fl->avail);
|
|
dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
|
|
fl->desc, fl->addr);
|
|
kfree(fl->sdesc);
|
|
fl->sdesc = NULL;
|
|
fl->cntxt_id = 0;
|
|
fl->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_free_ofld_rxqs - free a block of consecutive Rx queues
|
|
* @adap: the adapter
|
|
* @n: number of queues
|
|
* @q: pointer to first queue
|
|
*
|
|
* Release the resources of a consecutive block of offload Rx queues.
|
|
*/
|
|
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
|
|
{
|
|
for ( ; n; n--, q++)
|
|
if (q->rspq.desc)
|
|
free_rspq_fl(adap, &q->rspq,
|
|
q->fl.size ? &q->fl : NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_free_sge_resources - free SGE resources
|
|
* @adap: the adapter
|
|
*
|
|
* Frees resources used by the SGE queue sets.
|
|
*/
|
|
void t4_free_sge_resources(struct adapter *adap)
|
|
{
|
|
int i;
|
|
struct sge_eth_rxq *eq;
|
|
struct sge_eth_txq *etq;
|
|
|
|
/* stop all Rx queues in order to start them draining */
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
eq = &adap->sge.ethrxq[i];
|
|
if (eq->rspq.desc)
|
|
t4_iq_stop(adap, adap->mbox, adap->pf, 0,
|
|
FW_IQ_TYPE_FL_INT_CAP,
|
|
eq->rspq.cntxt_id,
|
|
eq->fl.size ? eq->fl.cntxt_id : 0xffff,
|
|
0xffff);
|
|
}
|
|
|
|
/* clean up Ethernet Tx/Rx queues */
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
eq = &adap->sge.ethrxq[i];
|
|
if (eq->rspq.desc)
|
|
free_rspq_fl(adap, &eq->rspq,
|
|
eq->fl.size ? &eq->fl : NULL);
|
|
|
|
etq = &adap->sge.ethtxq[i];
|
|
if (etq->q.desc) {
|
|
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
|
|
etq->q.cntxt_id);
|
|
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
|
|
kfree(etq->q.sdesc);
|
|
free_txq(adap, &etq->q);
|
|
}
|
|
}
|
|
|
|
/* clean up RDMA and iSCSI Rx queues */
|
|
t4_free_ofld_rxqs(adap, adap->sge.iscsiqsets, adap->sge.iscsirxq);
|
|
t4_free_ofld_rxqs(adap, adap->sge.niscsitq, adap->sge.iscsitrxq);
|
|
t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
|
|
t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
|
|
|
|
/* clean up offload Tx queues */
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
|
|
struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
|
|
|
|
if (q->q.desc) {
|
|
tasklet_kill(&q->qresume_tsk);
|
|
t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
|
|
q->q.cntxt_id);
|
|
free_tx_desc(adap, &q->q, q->q.in_use, false);
|
|
kfree(q->q.sdesc);
|
|
__skb_queue_purge(&q->sendq);
|
|
free_txq(adap, &q->q);
|
|
}
|
|
}
|
|
|
|
/* clean up control Tx queues */
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
|
|
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
|
|
|
|
if (cq->q.desc) {
|
|
tasklet_kill(&cq->qresume_tsk);
|
|
t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
|
|
cq->q.cntxt_id);
|
|
__skb_queue_purge(&cq->sendq);
|
|
free_txq(adap, &cq->q);
|
|
}
|
|
}
|
|
|
|
if (adap->sge.fw_evtq.desc)
|
|
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
|
|
|
|
if (adap->sge.intrq.desc)
|
|
free_rspq_fl(adap, &adap->sge.intrq, NULL);
|
|
|
|
/* clear the reverse egress queue map */
|
|
memset(adap->sge.egr_map, 0,
|
|
adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
|
|
}
|
|
|
|
void t4_sge_start(struct adapter *adap)
|
|
{
|
|
adap->sge.ethtxq_rover = 0;
|
|
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
|
|
}
|
|
|
|
/**
|
|
* t4_sge_stop - disable SGE operation
|
|
* @adap: the adapter
|
|
*
|
|
* Stop tasklets and timers associated with the DMA engine. Note that
|
|
* this is effective only if measures have been taken to disable any HW
|
|
* events that may restart them.
|
|
*/
|
|
void t4_sge_stop(struct adapter *adap)
|
|
{
|
|
int i;
|
|
struct sge *s = &adap->sge;
|
|
|
|
if (in_interrupt()) /* actions below require waiting */
|
|
return;
|
|
|
|
if (s->rx_timer.function)
|
|
del_timer_sync(&s->rx_timer);
|
|
if (s->tx_timer.function)
|
|
del_timer_sync(&s->tx_timer);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
|
|
struct sge_ofld_txq *q = &s->ofldtxq[i];
|
|
|
|
if (q->q.desc)
|
|
tasklet_kill(&q->qresume_tsk);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
|
|
struct sge_ctrl_txq *cq = &s->ctrlq[i];
|
|
|
|
if (cq->q.desc)
|
|
tasklet_kill(&cq->qresume_tsk);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_sge_init_soft - grab core SGE values needed by SGE code
|
|
* @adap: the adapter
|
|
*
|
|
* We need to grab the SGE operating parameters that we need to have
|
|
* in order to do our job and make sure we can live with them.
|
|
*/
|
|
|
|
static int t4_sge_init_soft(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
u32 ingress_rx_threshold;
|
|
|
|
/*
|
|
* Verify that CPL messages are going to the Ingress Queue for
|
|
* process_responses() and that only packet data is going to the
|
|
* Free Lists.
|
|
*/
|
|
if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
|
|
RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
|
|
dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Validate the Host Buffer Register Array indices that we want to
|
|
* use ...
|
|
*
|
|
* XXX Note that we should really read through the Host Buffer Size
|
|
* XXX register array and find the indices of the Buffer Sizes which
|
|
* XXX meet our needs!
|
|
*/
|
|
#define READ_FL_BUF(x) \
|
|
t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
|
|
|
|
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
|
|
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
|
|
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
|
|
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
|
|
|
|
/* We only bother using the Large Page logic if the Large Page Buffer
|
|
* is larger than our Page Size Buffer.
|
|
*/
|
|
if (fl_large_pg <= fl_small_pg)
|
|
fl_large_pg = 0;
|
|
|
|
#undef READ_FL_BUF
|
|
|
|
/* The Page Size Buffer must be exactly equal to our Page Size and the
|
|
* Large Page Size Buffer should be 0 (per above) or a power of 2.
|
|
*/
|
|
if (fl_small_pg != PAGE_SIZE ||
|
|
(fl_large_pg & (fl_large_pg-1)) != 0) {
|
|
dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
|
|
fl_small_pg, fl_large_pg);
|
|
return -EINVAL;
|
|
}
|
|
if (fl_large_pg)
|
|
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
|
|
|
|
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
|
|
fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
|
|
dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
|
|
fl_small_mtu, fl_large_mtu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Retrieve our RX interrupt holdoff timer values and counter
|
|
* threshold values from the SGE parameters.
|
|
*/
|
|
timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
|
|
timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
|
|
timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
|
|
s->timer_val[0] = core_ticks_to_us(adap,
|
|
TIMERVALUE0_G(timer_value_0_and_1));
|
|
s->timer_val[1] = core_ticks_to_us(adap,
|
|
TIMERVALUE1_G(timer_value_0_and_1));
|
|
s->timer_val[2] = core_ticks_to_us(adap,
|
|
TIMERVALUE2_G(timer_value_2_and_3));
|
|
s->timer_val[3] = core_ticks_to_us(adap,
|
|
TIMERVALUE3_G(timer_value_2_and_3));
|
|
s->timer_val[4] = core_ticks_to_us(adap,
|
|
TIMERVALUE4_G(timer_value_4_and_5));
|
|
s->timer_val[5] = core_ticks_to_us(adap,
|
|
TIMERVALUE5_G(timer_value_4_and_5));
|
|
|
|
ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
|
|
s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
|
|
s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
|
|
s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
|
|
s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_sge_init - initialize SGE
|
|
* @adap: the adapter
|
|
*
|
|
* Perform low-level SGE code initialization needed every time after a
|
|
* chip reset.
|
|
*/
|
|
int t4_sge_init(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
u32 sge_control, sge_conm_ctrl;
|
|
int ret, egress_threshold;
|
|
|
|
/*
|
|
* Ingress Padding Boundary and Egress Status Page Size are set up by
|
|
* t4_fixup_host_params().
|
|
*/
|
|
sge_control = t4_read_reg(adap, SGE_CONTROL_A);
|
|
s->pktshift = PKTSHIFT_G(sge_control);
|
|
s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
|
|
|
|
s->fl_align = t4_fl_pkt_align(adap);
|
|
ret = t4_sge_init_soft(adap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* A FL with <= fl_starve_thres buffers is starving and a periodic
|
|
* timer will attempt to refill it. This needs to be larger than the
|
|
* SGE's Egress Congestion Threshold. If it isn't, then we can get
|
|
* stuck waiting for new packets while the SGE is waiting for us to
|
|
* give it more Free List entries. (Note that the SGE's Egress
|
|
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
|
|
* there was only a single field to control this. For T5 there's the
|
|
* original field which now only applies to Unpacked Mode Free List
|
|
* buffers and a new field which only applies to Packed Mode Free List
|
|
* buffers.
|
|
*/
|
|
sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
|
|
switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
|
|
case CHELSIO_T4:
|
|
egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
|
|
break;
|
|
case CHELSIO_T5:
|
|
egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
|
break;
|
|
case CHELSIO_T6:
|
|
egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
|
break;
|
|
default:
|
|
dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
|
|
CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
return -EINVAL;
|
|
}
|
|
s->fl_starve_thres = 2*egress_threshold + 1;
|
|
|
|
t4_idma_monitor_init(adap, &s->idma_monitor);
|
|
|
|
/* Set up timers used for recuring callbacks to process RX and TX
|
|
* administrative tasks.
|
|
*/
|
|
setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
|
|
setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
|
|
|
|
spin_lock_init(&s->intrq_lock);
|
|
|
|
return 0;
|
|
}
|