OpenCloudOS-Kernel/drivers/gpu/drm/vc4/vc4_kms.c

1097 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 KMS
*
* This is the general code for implementing KMS mode setting that
* doesn't clearly associate with any of the other objects (plane,
* crtc, HDMI encoder).
*/
#include <linux/clk.h>
#include <linux/sort.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
struct vc4_ctm_state {
struct drm_private_state base;
struct drm_color_ctm *ctm;
int fifo;
};
static struct vc4_ctm_state *
to_vc4_ctm_state(const struct drm_private_state *priv)
{
return container_of(priv, struct vc4_ctm_state, base);
}
struct vc4_load_tracker_state {
struct drm_private_state base;
u64 hvs_load;
u64 membus_load;
};
static struct vc4_load_tracker_state *
to_vc4_load_tracker_state(const struct drm_private_state *priv)
{
return container_of(priv, struct vc4_load_tracker_state, base);
}
static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
struct drm_private_obj *manager)
{
struct drm_device *dev = state->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_private_state *priv_state;
int ret;
ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
if (ret)
return ERR_PTR(ret);
priv_state = drm_atomic_get_private_obj_state(state, manager);
if (IS_ERR(priv_state))
return ERR_CAST(priv_state);
return to_vc4_ctm_state(priv_state);
}
static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj *obj)
{
struct vc4_ctm_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
kfree(ctm_state);
}
static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
.atomic_duplicate_state = vc4_ctm_duplicate_state,
.atomic_destroy_state = vc4_ctm_destroy_state,
};
static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
drm_atomic_private_obj_fini(&vc4->ctm_manager);
}
static int vc4_ctm_obj_init(struct vc4_dev *vc4)
{
struct vc4_ctm_state *ctm_state;
drm_modeset_lock_init(&vc4->ctm_state_lock);
ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
if (!ctm_state)
return -ENOMEM;
drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
&vc4_ctm_state_funcs);
return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
}
/* Converts a DRM S31.32 value to the HW S0.9 format. */
static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
{
u16 r;
/* Sign bit. */
r = in & BIT_ULL(63) ? BIT(9) : 0;
if ((in & GENMASK_ULL(62, 32)) > 0) {
/* We have zero integer bits so we can only saturate here. */
r |= GENMASK(8, 0);
} else {
/* Otherwise take the 9 most important fractional bits. */
r |= (in >> 23) & GENMASK(8, 0);
}
return r;
}
static void
vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
{
struct vc4_hvs *hvs = vc4->hvs;
struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
struct drm_color_ctm *ctm = ctm_state->ctm;
if (ctm_state->fifo) {
HVS_WRITE(SCALER_OLEDCOEF2,
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
SCALER_OLEDCOEF2_R_TO_R) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
SCALER_OLEDCOEF2_R_TO_G) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
SCALER_OLEDCOEF2_R_TO_B));
HVS_WRITE(SCALER_OLEDCOEF1,
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
SCALER_OLEDCOEF1_G_TO_R) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
SCALER_OLEDCOEF1_G_TO_G) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
SCALER_OLEDCOEF1_G_TO_B));
HVS_WRITE(SCALER_OLEDCOEF0,
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
SCALER_OLEDCOEF0_B_TO_R) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
SCALER_OLEDCOEF0_B_TO_G) |
VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
SCALER_OLEDCOEF0_B_TO_B));
}
HVS_WRITE(SCALER_OLEDOFFS,
VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
}
struct vc4_hvs_state *
vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->dev);
struct drm_private_state *priv_state;
priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
if (!priv_state)
return ERR_PTR(-EINVAL);
return to_vc4_hvs_state(priv_state);
}
struct vc4_hvs_state *
vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->dev);
struct drm_private_state *priv_state;
priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
if (!priv_state)
return ERR_PTR(-EINVAL);
return to_vc4_hvs_state(priv_state);
}
struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->dev);
struct drm_private_state *priv_state;
priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
if (IS_ERR(priv_state))
return ERR_CAST(priv_state);
return to_vc4_hvs_state(priv_state);
}
static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
struct drm_atomic_state *state)
{
struct vc4_hvs *hvs = vc4->hvs;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
unsigned int i;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
u32 dispctrl;
u32 dsp3_mux;
if (!crtc_state->active)
continue;
if (vc4_state->assigned_channel != 2)
continue;
/*
* SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
* FIFO X'.
* SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
*
* DSP3 is connected to FIFO2 unless the transposer is
* enabled. In this case, FIFO 2 is directly accessed by the
* TXP IP, and we need to disable the FIFO2 -> pixelvalve1
* route.
*/
if (vc4_crtc->feeds_txp)
dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
else
dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
dispctrl = HVS_READ(SCALER_DISPCTRL) &
~SCALER_DISPCTRL_DSP3_MUX_MASK;
HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
}
}
static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
struct drm_atomic_state *state)
{
struct vc4_hvs *hvs = vc4->hvs;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
unsigned char mux;
unsigned int i;
u32 reg;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
unsigned int channel = vc4_state->assigned_channel;
if (!vc4_state->update_muxing)
continue;
switch (vc4_crtc->data->hvs_output) {
case 2:
drm_WARN_ON(&vc4->base,
VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
SCALER_DISPCTRL_DSP3_MUX) == channel);
mux = (channel == 2) ? 0 : 1;
reg = HVS_READ(SCALER_DISPECTRL);
HVS_WRITE(SCALER_DISPECTRL,
(reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
break;
case 3:
if (channel == VC4_HVS_CHANNEL_DISABLED)
mux = 3;
else
mux = channel;
reg = HVS_READ(SCALER_DISPCTRL);
HVS_WRITE(SCALER_DISPCTRL,
(reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
break;
case 4:
if (channel == VC4_HVS_CHANNEL_DISABLED)
mux = 3;
else
mux = channel;
reg = HVS_READ(SCALER_DISPEOLN);
HVS_WRITE(SCALER_DISPEOLN,
(reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
break;
case 5:
if (channel == VC4_HVS_CHANNEL_DISABLED)
mux = 3;
else
mux = channel;
reg = HVS_READ(SCALER_DISPDITHER);
HVS_WRITE(SCALER_DISPDITHER,
(reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
break;
default:
break;
}
}
}
static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_hvs *hvs = vc4->hvs;
struct drm_crtc_state *new_crtc_state;
struct vc4_hvs_state *new_hvs_state;
struct drm_crtc *crtc;
struct vc4_hvs_state *old_hvs_state;
unsigned int channel;
int i;
old_hvs_state = vc4_hvs_get_old_global_state(state);
if (WARN_ON(IS_ERR(old_hvs_state)))
return;
new_hvs_state = vc4_hvs_get_new_global_state(state);
if (WARN_ON(IS_ERR(new_hvs_state)))
return;
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
struct vc4_crtc_state *vc4_crtc_state;
if (!new_crtc_state->commit)
continue;
vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
}
for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
struct drm_crtc_commit *commit;
int ret;
if (!old_hvs_state->fifo_state[channel].in_use)
continue;
commit = old_hvs_state->fifo_state[channel].pending_commit;
if (!commit)
continue;
ret = drm_crtc_commit_wait(commit);
if (ret)
drm_err(dev, "Timed out waiting for commit\n");
drm_crtc_commit_put(commit);
old_hvs_state->fifo_state[channel].pending_commit = NULL;
}
if (vc4->is_vc5) {
unsigned long state_rate = max(old_hvs_state->core_clock_rate,
new_hvs_state->core_clock_rate);
unsigned long core_rate = clamp_t(unsigned long, state_rate,
500000000, hvs->max_core_rate);
drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
/*
* Do a temporary request on the core clock during the
* modeset.
*/
WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
}
drm_atomic_helper_commit_modeset_disables(dev, state);
vc4_ctm_commit(vc4, state);
if (vc4->is_vc5)
vc5_hvs_pv_muxing_commit(vc4, state);
else
vc4_hvs_pv_muxing_commit(vc4, state);
drm_atomic_helper_commit_planes(dev, state,
DRM_PLANE_COMMIT_ACTIVE_ONLY);
drm_atomic_helper_commit_modeset_enables(dev, state);
drm_atomic_helper_fake_vblank(state);
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_wait_for_flip_done(dev, state);
drm_atomic_helper_cleanup_planes(dev, state);
if (vc4->is_vc5) {
unsigned long core_rate = min_t(unsigned long,
hvs->max_core_rate,
new_hvs_state->core_clock_rate);
drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
/*
* Request a clock rate based on the current HVS
* requirements.
*/
WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
clk_get_rate(hvs->core_clk));
}
}
static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state;
struct vc4_hvs_state *hvs_state;
struct drm_crtc *crtc;
unsigned int i;
hvs_state = vc4_hvs_get_new_global_state(state);
if (WARN_ON(IS_ERR(hvs_state)))
return PTR_ERR(hvs_state);
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct vc4_crtc_state *vc4_crtc_state =
to_vc4_crtc_state(crtc_state);
unsigned int channel =
vc4_crtc_state->assigned_channel;
if (channel == VC4_HVS_CHANNEL_DISABLED)
continue;
if (!hvs_state->fifo_state[channel].in_use)
continue;
hvs_state->fifo_state[channel].pending_commit =
drm_crtc_commit_get(crtc_state->commit);
}
return 0;
}
static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
struct drm_file *file_priv,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_mode_fb_cmd2 mode_cmd_local;
if (WARN_ON_ONCE(vc4->is_vc5))
return ERR_PTR(-ENODEV);
/* If the user didn't specify a modifier, use the
* vc4_set_tiling_ioctl() state for the BO.
*/
if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
struct drm_gem_object *gem_obj;
struct vc4_bo *bo;
gem_obj = drm_gem_object_lookup(file_priv,
mode_cmd->handles[0]);
if (!gem_obj) {
DRM_DEBUG("Failed to look up GEM BO %d\n",
mode_cmd->handles[0]);
return ERR_PTR(-ENOENT);
}
bo = to_vc4_bo(gem_obj);
mode_cmd_local = *mode_cmd;
if (bo->t_format) {
mode_cmd_local.modifier[0] =
DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
} else {
mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
}
drm_gem_object_put(gem_obj);
mode_cmd = &mode_cmd_local;
}
return drm_gem_fb_create(dev, file_priv, mode_cmd);
}
/* Our CTM has some peculiar limitations: we can only enable it for one CRTC
* at a time and the HW only supports S0.9 scalars. To account for the latter,
* we don't allow userland to set a CTM that we have no hope of approximating.
*/
static int
vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_ctm_state *ctm_state = NULL;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_color_ctm *ctm;
int i;
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
/* CTM is being disabled. */
if (!new_crtc_state->ctm && old_crtc_state->ctm) {
ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
if (IS_ERR(ctm_state))
return PTR_ERR(ctm_state);
ctm_state->fifo = 0;
}
}
for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (new_crtc_state->ctm == old_crtc_state->ctm)
continue;
if (!ctm_state) {
ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
if (IS_ERR(ctm_state))
return PTR_ERR(ctm_state);
}
/* CTM is being enabled or the matrix changed. */
if (new_crtc_state->ctm) {
struct vc4_crtc_state *vc4_crtc_state =
to_vc4_crtc_state(new_crtc_state);
/* fifo is 1-based since 0 disables CTM. */
int fifo = vc4_crtc_state->assigned_channel + 1;
/* Check userland isn't trying to turn on CTM for more
* than one CRTC at a time.
*/
if (ctm_state->fifo && ctm_state->fifo != fifo) {
DRM_DEBUG_DRIVER("Too many CTM configured\n");
return -EINVAL;
}
/* Check we can approximate the specified CTM.
* We disallow scalars |c| > 1.0 since the HW has
* no integer bits.
*/
ctm = new_crtc_state->ctm->data;
for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
u64 val = ctm->matrix[i];
val &= ~BIT_ULL(63);
if (val > BIT_ULL(32))
return -EINVAL;
}
ctm_state->fifo = fifo;
ctm_state->ctm = ctm;
}
}
return 0;
}
static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
{
struct drm_plane_state *old_plane_state, *new_plane_state;
struct vc4_dev *vc4 = to_vc4_dev(state->dev);
struct vc4_load_tracker_state *load_state;
struct drm_private_state *priv_state;
struct drm_plane *plane;
int i;
priv_state = drm_atomic_get_private_obj_state(state,
&vc4->load_tracker);
if (IS_ERR(priv_state))
return PTR_ERR(priv_state);
load_state = to_vc4_load_tracker_state(priv_state);
for_each_oldnew_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
struct vc4_plane_state *vc4_plane_state;
if (old_plane_state->fb && old_plane_state->crtc) {
vc4_plane_state = to_vc4_plane_state(old_plane_state);
load_state->membus_load -= vc4_plane_state->membus_load;
load_state->hvs_load -= vc4_plane_state->hvs_load;
}
if (new_plane_state->fb && new_plane_state->crtc) {
vc4_plane_state = to_vc4_plane_state(new_plane_state);
load_state->membus_load += vc4_plane_state->membus_load;
load_state->hvs_load += vc4_plane_state->hvs_load;
}
}
/* Don't check the load when the tracker is disabled. */
if (!vc4->load_tracker_enabled)
return 0;
/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
* the system work when other blocks are accessing the memory.
*/
if (load_state->membus_load > SZ_1G + SZ_512M)
return -ENOSPC;
/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
* consider the maximum number of cycles is 240M.
*/
if (load_state->hvs_load > 240000000ULL)
return -ENOSPC;
return 0;
}
static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
{
struct vc4_load_tracker_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct vc4_load_tracker_state *load_state;
load_state = to_vc4_load_tracker_state(state);
kfree(load_state);
}
static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
.atomic_destroy_state = vc4_load_tracker_destroy_state,
};
static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
drm_atomic_private_obj_fini(&vc4->load_tracker);
}
static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
{
struct vc4_load_tracker_state *load_state;
load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
if (!load_state)
return -ENOMEM;
drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
&load_state->base,
&vc4_load_tracker_state_funcs);
return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
}
static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
{
struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
struct vc4_hvs_state *state;
unsigned int i;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
for (i = 0; i < HVS_NUM_CHANNELS; i++) {
state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
}
state->core_clock_rate = old_state->core_clock_rate;
return &state->base;
}
static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
unsigned int i;
for (i = 0; i < HVS_NUM_CHANNELS; i++) {
if (!hvs_state->fifo_state[i].pending_commit)
continue;
drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
}
kfree(hvs_state);
}
static void vc4_hvs_channels_print_state(struct drm_printer *p,
const struct drm_private_state *state)
{
struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
unsigned int i;
drm_printf(p, "HVS State\n");
drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
for (i = 0; i < HVS_NUM_CHANNELS; i++) {
drm_printf(p, "\tChannel %d\n", i);
drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
}
}
static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
.atomic_destroy_state = vc4_hvs_channels_destroy_state,
.atomic_print_state = vc4_hvs_channels_print_state,
};
static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
drm_atomic_private_obj_fini(&vc4->hvs_channels);
}
static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
{
struct vc4_hvs_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
&state->base,
&vc4_hvs_state_funcs);
return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
}
static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
{
const struct vc4_crtc *crtc_a =
to_vc4_crtc(*(const struct drm_crtc **)a);
const struct vc4_crtc_data *data_a =
vc4_crtc_to_vc4_crtc_data(crtc_a);
const struct vc4_crtc *crtc_b =
to_vc4_crtc(*(const struct drm_crtc **)b);
const struct vc4_crtc_data *data_b =
vc4_crtc_to_vc4_crtc_data(crtc_b);
return data_a->hvs_output - data_b->hvs_output;
}
/*
* The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
* the TXP (and therefore all the CRTCs found on that platform).
*
* The naive (and our initial) implementation would just iterate over
* all the active CRTCs, try to find a suitable FIFO, and then remove it
* from the pool of available FIFOs. However, there are a few corner
* cases that need to be considered:
*
* - When running in a dual-display setup (so with two CRTCs involved),
* we can update the state of a single CRTC (for example by changing
* its mode using xrandr under X11) without affecting the other. In
* this case, the other CRTC wouldn't be in the state at all, so we
* need to consider all the running CRTCs in the DRM device to assign
* a FIFO, not just the one in the state.
*
* - To fix the above, we can't use drm_atomic_get_crtc_state on all
* enabled CRTCs to pull their CRTC state into the global state, since
* a page flip would start considering their vblank to complete. Since
* we don't have a guarantee that they are actually active, that
* vblank might never happen, and shouldn't even be considered if we
* want to do a page flip on a single CRTC. That can be tested by
* doing a modetest -v first on HDMI1 and then on HDMI0.
*
* - Since we need the pixelvalve to be disabled and enabled back when
* the FIFO is changed, we should keep the FIFO assigned for as long
* as the CRTC is enabled, only considering it free again once that
* CRTC has been disabled. This can be tested by booting X11 on a
* single display, and changing the resolution down and then back up.
*/
static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct vc4_hvs_state *hvs_new_state;
struct drm_crtc **sorted_crtcs;
struct drm_crtc *crtc;
unsigned int unassigned_channels = 0;
unsigned int i;
int ret;
hvs_new_state = vc4_hvs_get_global_state(state);
if (IS_ERR(hvs_new_state))
return PTR_ERR(hvs_new_state);
for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
if (!hvs_new_state->fifo_state[i].in_use)
unassigned_channels |= BIT(i);
/*
* The problem we have to solve here is that we have up to 7
* encoders, connected to up to 6 CRTCs.
*
* Those CRTCs, depending on the instance, can be routed to 1, 2
* or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
* outputs in the HVS accordingly.
*
* It would be pretty hard to come up with an algorithm that
* would generically solve this. However, the current routing
* trees we support allow us to simplify a bit the problem.
*
* Indeed, with the current supported layouts, if we try to
* assign in the ascending crtc index order the FIFOs, we can't
* fall into the situation where an earlier CRTC that had
* multiple routes is assigned one that was the only option for
* a later CRTC.
*
* If the layout changes and doesn't give us that in the future,
* we will need to have something smarter, but it works so far.
*/
sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
if (!sorted_crtcs)
return -ENOMEM;
i = 0;
drm_for_each_crtc(crtc, dev)
sorted_crtcs[i++] = crtc;
sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
for (i = 0; i < dev->num_crtcs; i++) {
struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct vc4_crtc *vc4_crtc;
unsigned int matching_channels;
unsigned int channel;
crtc = sorted_crtcs[i];
if (!crtc)
continue;
vc4_crtc = to_vc4_crtc(crtc);
old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
if (!old_crtc_state)
continue;
old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state)
continue;
new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
/* Nothing to do here, let's skip it */
if (old_crtc_state->enable == new_crtc_state->enable) {
if (new_crtc_state->enable)
drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
crtc->name, new_vc4_crtc_state->assigned_channel);
else
drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
continue;
}
/* Muxing will need to be modified, mark it as such */
new_vc4_crtc_state->update_muxing = true;
/* If we're disabling our CRTC, we put back our channel */
if (!new_crtc_state->enable) {
channel = old_vc4_crtc_state->assigned_channel;
drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
crtc->name, channel);
hvs_new_state->fifo_state[channel].in_use = false;
new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
continue;
}
matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
if (!matching_channels) {
ret = -EINVAL;
goto err_free_crtc_array;
}
channel = ffs(matching_channels) - 1;
drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
new_vc4_crtc_state->assigned_channel = channel;
unassigned_channels &= ~BIT(channel);
hvs_new_state->fifo_state[channel].in_use = true;
}
kfree(sorted_crtcs);
return 0;
err_free_crtc_array:
kfree(sorted_crtcs);
return ret;
}
static int
vc4_core_clock_atomic_check(struct drm_atomic_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->dev);
struct drm_private_state *priv_state;
struct vc4_hvs_state *hvs_new_state;
struct vc4_load_tracker_state *load_state;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
struct drm_crtc *crtc;
unsigned int num_outputs;
unsigned long pixel_rate;
unsigned long cob_rate;
unsigned int i;
priv_state = drm_atomic_get_private_obj_state(state,
&vc4->load_tracker);
if (IS_ERR(priv_state))
return PTR_ERR(priv_state);
load_state = to_vc4_load_tracker_state(priv_state);
hvs_new_state = vc4_hvs_get_global_state(state);
if (IS_ERR(hvs_new_state))
return PTR_ERR(hvs_new_state);
for_each_oldnew_crtc_in_state(state, crtc,
old_crtc_state,
new_crtc_state,
i) {
if (old_crtc_state->active) {
struct vc4_crtc_state *old_vc4_state =
to_vc4_crtc_state(old_crtc_state);
unsigned int channel = old_vc4_state->assigned_channel;
hvs_new_state->fifo_state[channel].fifo_load = 0;
}
if (new_crtc_state->active) {
struct vc4_crtc_state *new_vc4_state =
to_vc4_crtc_state(new_crtc_state);
unsigned int channel = new_vc4_state->assigned_channel;
hvs_new_state->fifo_state[channel].fifo_load =
new_vc4_state->hvs_load;
}
}
cob_rate = 0;
num_outputs = 0;
for (i = 0; i < HVS_NUM_CHANNELS; i++) {
if (!hvs_new_state->fifo_state[i].in_use)
continue;
num_outputs++;
cob_rate = max_t(unsigned long,
hvs_new_state->fifo_state[i].fifo_load,
cob_rate);
}
pixel_rate = load_state->hvs_load;
if (num_outputs > 1) {
pixel_rate = (pixel_rate * 40) / 100;
} else {
pixel_rate = (pixel_rate * 60) / 100;
}
hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
return 0;
}
static int
vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
int ret;
ret = vc4_pv_muxing_atomic_check(dev, state);
if (ret)
return ret;
ret = vc4_ctm_atomic_check(dev, state);
if (ret < 0)
return ret;
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
ret = vc4_load_tracker_atomic_check(state);
if (ret)
return ret;
return vc4_core_clock_atomic_check(state);
}
static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
.atomic_commit_setup = vc4_atomic_commit_setup,
.atomic_commit_tail = vc4_atomic_commit_tail,
};
static const struct drm_mode_config_funcs vc4_mode_funcs = {
.atomic_check = vc4_atomic_check,
.atomic_commit = drm_atomic_helper_commit,
.fb_create = vc4_fb_create,
};
static const struct drm_mode_config_funcs vc5_mode_funcs = {
.atomic_check = vc4_atomic_check,
.atomic_commit = drm_atomic_helper_commit,
.fb_create = drm_gem_fb_create,
};
int vc4_kms_load(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
int ret;
/*
* The limits enforced by the load tracker aren't relevant for
* the BCM2711, but the load tracker computations are used for
* the core clock rate calculation.
*/
if (!vc4->is_vc5) {
/* Start with the load tracker enabled. Can be
* disabled through the debugfs load_tracker file.
*/
vc4->load_tracker_enabled = true;
}
/* Set support for vblank irq fast disable, before drm_vblank_init() */
dev->vblank_disable_immediate = true;
ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
if (ret < 0) {
dev_err(dev->dev, "failed to initialize vblank\n");
return ret;
}
if (vc4->is_vc5) {
dev->mode_config.max_width = 7680;
dev->mode_config.max_height = 7680;
} else {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
}
dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
dev->mode_config.helper_private = &vc4_mode_config_helpers;
dev->mode_config.preferred_depth = 24;
dev->mode_config.async_page_flip = true;
dev->mode_config.normalize_zpos = true;
ret = vc4_ctm_obj_init(vc4);
if (ret)
return ret;
ret = vc4_load_tracker_obj_init(vc4);
if (ret)
return ret;
ret = vc4_hvs_channels_obj_init(vc4);
if (ret)
return ret;
drm_mode_config_reset(dev);
drm_kms_helper_poll_init(dev);
return 0;
}