OpenCloudOS-Kernel/drivers/vdpa/ifcvf/ifcvf_base.c

415 lines
9.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel IFC VF NIC driver for virtio dataplane offloading
*
* Copyright (C) 2020 Intel Corporation.
*
* Author: Zhu Lingshan <lingshan.zhu@intel.com>
*
*/
#include "ifcvf_base.h"
static inline u8 ifc_ioread8(u8 __iomem *addr)
{
return ioread8(addr);
}
static inline u16 ifc_ioread16 (__le16 __iomem *addr)
{
return ioread16(addr);
}
static inline u32 ifc_ioread32(__le32 __iomem *addr)
{
return ioread32(addr);
}
static inline void ifc_iowrite8(u8 value, u8 __iomem *addr)
{
iowrite8(value, addr);
}
static inline void ifc_iowrite16(u16 value, __le16 __iomem *addr)
{
iowrite16(value, addr);
}
static inline void ifc_iowrite32(u32 value, __le32 __iomem *addr)
{
iowrite32(value, addr);
}
static void ifc_iowrite64_twopart(u64 val,
__le32 __iomem *lo, __le32 __iomem *hi)
{
ifc_iowrite32((u32)val, lo);
ifc_iowrite32(val >> 32, hi);
}
struct ifcvf_adapter *vf_to_adapter(struct ifcvf_hw *hw)
{
return container_of(hw, struct ifcvf_adapter, vf);
}
static void __iomem *get_cap_addr(struct ifcvf_hw *hw,
struct virtio_pci_cap *cap)
{
struct ifcvf_adapter *ifcvf;
struct pci_dev *pdev;
u32 length, offset;
u8 bar;
length = le32_to_cpu(cap->length);
offset = le32_to_cpu(cap->offset);
bar = cap->bar;
ifcvf= vf_to_adapter(hw);
pdev = ifcvf->pdev;
if (bar >= IFCVF_PCI_MAX_RESOURCE) {
IFCVF_DBG(pdev,
"Invalid bar number %u to get capabilities\n", bar);
return NULL;
}
if (offset + length > pci_resource_len(pdev, bar)) {
IFCVF_DBG(pdev,
"offset(%u) + len(%u) overflows bar%u's capability\n",
offset, length, bar);
return NULL;
}
return hw->base[bar] + offset;
}
static int ifcvf_read_config_range(struct pci_dev *dev,
uint32_t *val, int size, int where)
{
int ret, i;
for (i = 0; i < size; i += 4) {
ret = pci_read_config_dword(dev, where + i, val + i / 4);
if (ret < 0)
return ret;
}
return 0;
}
int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev)
{
struct virtio_pci_cap cap;
u16 notify_off;
int ret;
u8 pos;
u32 i;
ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
if (ret < 0) {
IFCVF_ERR(pdev, "Failed to read PCI capability list\n");
return -EIO;
}
while (pos) {
ret = ifcvf_read_config_range(pdev, (u32 *)&cap,
sizeof(cap), pos);
if (ret < 0) {
IFCVF_ERR(pdev,
"Failed to get PCI capability at %x\n", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR)
goto next;
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->common_cfg = %p\n",
hw->common_cfg);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
pci_read_config_dword(pdev, pos + sizeof(cap),
&hw->notify_off_multiplier);
hw->notify_bar = cap.bar;
hw->notify_base = get_cap_addr(hw, &cap);
hw->notify_base_pa = pci_resource_start(pdev, cap.bar) +
le32_to_cpu(cap.offset);
IFCVF_DBG(pdev, "hw->notify_base = %p\n",
hw->notify_base);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->net_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->net_cfg = %p\n", hw->net_cfg);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->isr == NULL || hw->net_cfg == NULL) {
IFCVF_ERR(pdev, "Incomplete PCI capabilities\n");
return -EIO;
}
for (i = 0; i < IFCVF_MAX_QUEUE_PAIRS * 2; i++) {
ifc_iowrite16(i, &hw->common_cfg->queue_select);
notify_off = ifc_ioread16(&hw->common_cfg->queue_notify_off);
hw->vring[i].notify_addr = hw->notify_base +
notify_off * hw->notify_off_multiplier;
hw->vring[i].notify_pa = hw->notify_base_pa +
notify_off * hw->notify_off_multiplier;
}
hw->lm_cfg = hw->base[IFCVF_LM_BAR];
IFCVF_DBG(pdev,
"PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n",
hw->common_cfg, hw->notify_base, hw->isr,
hw->net_cfg, hw->notify_off_multiplier);
return 0;
}
u8 ifcvf_get_status(struct ifcvf_hw *hw)
{
return ifc_ioread8(&hw->common_cfg->device_status);
}
void ifcvf_set_status(struct ifcvf_hw *hw, u8 status)
{
ifc_iowrite8(status, &hw->common_cfg->device_status);
}
void ifcvf_reset(struct ifcvf_hw *hw)
{
hw->config_cb.callback = NULL;
hw->config_cb.private = NULL;
ifcvf_set_status(hw, 0);
/* flush set_status, make sure VF is stopped, reset */
ifcvf_get_status(hw);
}
static void ifcvf_add_status(struct ifcvf_hw *hw, u8 status)
{
if (status != 0)
status |= ifcvf_get_status(hw);
ifcvf_set_status(hw, status);
ifcvf_get_status(hw);
}
u64 ifcvf_get_hw_features(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u32 features_lo, features_hi;
u64 features;
ifc_iowrite32(0, &cfg->device_feature_select);
features_lo = ifc_ioread32(&cfg->device_feature);
ifc_iowrite32(1, &cfg->device_feature_select);
features_hi = ifc_ioread32(&cfg->device_feature);
features = ((u64)features_hi << 32) | features_lo;
return features;
}
u64 ifcvf_get_features(struct ifcvf_hw *hw)
{
return hw->hw_features;
}
int ifcvf_verify_min_features(struct ifcvf_hw *hw, u64 features)
{
struct ifcvf_adapter *ifcvf = vf_to_adapter(hw);
if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) {
IFCVF_ERR(ifcvf->pdev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n");
return -EINVAL;
}
return 0;
}
void ifcvf_read_net_config(struct ifcvf_hw *hw, u64 offset,
void *dst, int length)
{
u8 old_gen, new_gen, *p;
int i;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
do {
old_gen = ifc_ioread8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = ifc_ioread8(hw->net_cfg + offset + i);
new_gen = ifc_ioread8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
void ifcvf_write_net_config(struct ifcvf_hw *hw, u64 offset,
const void *src, int length)
{
const u8 *p;
int i;
p = src;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
for (i = 0; i < length; i++)
ifc_iowrite8(*p++, hw->net_cfg + offset + i);
}
static void ifcvf_set_features(struct ifcvf_hw *hw, u64 features)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
ifc_iowrite32(0, &cfg->guest_feature_select);
ifc_iowrite32((u32)features, &cfg->guest_feature);
ifc_iowrite32(1, &cfg->guest_feature_select);
ifc_iowrite32(features >> 32, &cfg->guest_feature);
}
static int ifcvf_config_features(struct ifcvf_hw *hw)
{
struct ifcvf_adapter *ifcvf;
ifcvf = vf_to_adapter(hw);
ifcvf_set_features(hw, hw->req_features);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_FEATURES_OK);
if (!(ifcvf_get_status(hw) & VIRTIO_CONFIG_S_FEATURES_OK)) {
IFCVF_ERR(ifcvf->pdev, "Failed to set FEATURES_OK status\n");
return -EIO;
}
return 0;
}
u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u16 last_avail_idx;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
last_avail_idx = ifc_ioread16(avail_idx_addr);
return last_avail_idx;
}
int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
hw->vring[qid].last_avail_idx = num;
ifc_iowrite16(num, avail_idx_addr);
return 0;
}
static int ifcvf_hw_enable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
struct ifcvf_adapter *ifcvf;
u32 i;
ifcvf = vf_to_adapter(hw);
cfg = hw->common_cfg;
ifc_iowrite16(IFCVF_MSI_CONFIG_OFF, &cfg->msix_config);
if (ifc_ioread16(&cfg->msix_config) == VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev, "No msix vector for device config\n");
return -EINVAL;
}
for (i = 0; i < hw->nr_vring; i++) {
if (!hw->vring[i].ready)
break;
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite64_twopart(hw->vring[i].desc, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
ifc_iowrite64_twopart(hw->vring[i].avail, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
ifc_iowrite64_twopart(hw->vring[i].used, &cfg->queue_used_lo,
&cfg->queue_used_hi);
ifc_iowrite16(hw->vring[i].size, &cfg->queue_size);
ifc_iowrite16(i + IFCVF_MSI_QUEUE_OFF, &cfg->queue_msix_vector);
if (ifc_ioread16(&cfg->queue_msix_vector) ==
VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev,
"No msix vector for queue %u\n", i);
return -EINVAL;
}
ifcvf_set_vq_state(hw, i, hw->vring[i].last_avail_idx);
ifc_iowrite16(1, &cfg->queue_enable);
}
return 0;
}
static void ifcvf_hw_disable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
u32 i;
cfg = hw->common_cfg;
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->msix_config);
for (i = 0; i < hw->nr_vring; i++) {
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->queue_msix_vector);
}
ifc_ioread16(&cfg->queue_msix_vector);
}
int ifcvf_start_hw(struct ifcvf_hw *hw)
{
ifcvf_reset(hw);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_ACKNOWLEDGE);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER);
if (ifcvf_config_features(hw) < 0)
return -EINVAL;
if (ifcvf_hw_enable(hw) < 0)
return -EINVAL;
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER_OK);
return 0;
}
void ifcvf_stop_hw(struct ifcvf_hw *hw)
{
ifcvf_hw_disable(hw);
ifcvf_reset(hw);
}
void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid)
{
ifc_iowrite16(qid, hw->vring[qid].notify_addr);
}