OpenCloudOS-Kernel/drivers/scsi/53c700.c

2202 lines
70 KiB
C

/* -*- mode: c; c-basic-offset: 8 -*- */
/* NCR (or Symbios) 53c700 and 53c700-66 Driver
*
* Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
**-----------------------------------------------------------------------------
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**-----------------------------------------------------------------------------
*/
/* Notes:
*
* This driver is designed exclusively for these chips (virtually the
* earliest of the scripts engine chips). They need their own drivers
* because they are missing so many of the scripts and snazzy register
* features of their elder brothers (the 710, 720 and 770).
*
* The 700 is the lowliest of the line, it can only do async SCSI.
* The 700-66 can at least do synchronous SCSI up to 10MHz.
*
* The 700 chip has no host bus interface logic of its own. However,
* it is usually mapped to a location with well defined register
* offsets. Therefore, if you can determine the base address and the
* irq your board incorporating this chip uses, you can probably use
* this driver to run it (although you'll probably have to write a
* minimal wrapper for the purpose---see the NCR_D700 driver for
* details about how to do this).
*
*
* TODO List:
*
* 1. Better statistics in the proc fs
*
* 2. Implement message queue (queues SCSI messages like commands) and make
* the abort and device reset functions use them.
* */
/* CHANGELOG
*
* Version 2.8
*
* Fixed bad bug affecting tag starvation processing (previously the
* driver would hang the system if too many tags starved. Also fixed
* bad bug having to do with 10 byte command processing and REQUEST
* SENSE (the command would loop forever getting a transfer length
* mismatch in the CMD phase).
*
* Version 2.7
*
* Fixed scripts problem which caused certain devices (notably CDRWs)
* to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
* __raw_readl/writel for parisc compatibility (Thomas
* Bogendoerfer). Added missing SCp->request_bufflen initialisation
* for sense requests (Ryan Bradetich).
*
* Version 2.6
*
* Following test of the 64 bit parisc kernel by Richard Hirst,
* several problems have now been corrected. Also adds support for
* consistent memory allocation.
*
* Version 2.5
*
* More Compatibility changes for 710 (now actually works). Enhanced
* support for odd clock speeds which constrain SDTR negotiations.
* correct cacheline separation for scsi messages and status for
* incoherent architectures. Use of the pci mapping functions on
* buffers to begin support for 64 bit drivers.
*
* Version 2.4
*
* Added support for the 53c710 chip (in 53c700 emulation mode only---no
* special 53c710 instructions or registers are used).
*
* Version 2.3
*
* More endianness/cache coherency changes.
*
* Better bad device handling (handles devices lying about tag
* queueing support and devices which fail to provide sense data on
* contingent allegiance conditions)
*
* Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
* debugging this driver on the parisc architecture and suggesting
* many improvements and bug fixes.
*
* Thanks also go to Linuxcare Inc. for providing several PARISC
* machines for me to debug the driver on.
*
* Version 2.2
*
* Made the driver mem or io mapped; added endian invariance; added
* dma cache flushing operations for architectures which need it;
* added support for more varied clocking speeds.
*
* Version 2.1
*
* Initial modularisation from the D700. See NCR_D700.c for the rest of
* the changelog.
* */
#define NCR_700_VERSION "2.8"
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_spi.h>
#include "53c700.h"
/* NOTE: For 64 bit drivers there are points in the code where we use
* a non dereferenceable pointer to point to a structure in dma-able
* memory (which is 32 bits) so that we can use all of the structure
* operations but take the address at the end. This macro allows us
* to truncate the 64 bit pointer down to 32 bits without the compiler
* complaining */
#define to32bit(x) ((__u32)((unsigned long)(x)))
#ifdef NCR_700_DEBUG
#define STATIC
#else
#define STATIC static
#endif
MODULE_AUTHOR("James Bottomley");
MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
MODULE_LICENSE("GPL");
/* This is the script */
#include "53c700_d.h"
STATIC int NCR_700_queuecommand(struct scsi_cmnd *, void (*done)(struct scsi_cmnd *));
STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt);
STATIC int NCR_700_bus_reset(struct scsi_cmnd * SCpnt);
STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt);
STATIC void NCR_700_chip_setup(struct Scsi_Host *host);
STATIC void NCR_700_chip_reset(struct Scsi_Host *host);
STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt);
STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt);
STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt);
static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth);
static int NCR_700_change_queue_type(struct scsi_device *SDpnt, int depth);
STATIC struct device_attribute *NCR_700_dev_attrs[];
STATIC struct scsi_transport_template *NCR_700_transport_template = NULL;
static char *NCR_700_phase[] = {
"",
"after selection",
"before command phase",
"after command phase",
"after status phase",
"after data in phase",
"after data out phase",
"during data phase",
};
static char *NCR_700_condition[] = {
"",
"NOT MSG_OUT",
"UNEXPECTED PHASE",
"NOT MSG_IN",
"UNEXPECTED MSG",
"MSG_IN",
"SDTR_MSG RECEIVED",
"REJECT_MSG RECEIVED",
"DISCONNECT_MSG RECEIVED",
"MSG_OUT",
"DATA_IN",
};
static char *NCR_700_fatal_messages[] = {
"unexpected message after reselection",
"still MSG_OUT after message injection",
"not MSG_IN after selection",
"Illegal message length received",
};
static char *NCR_700_SBCL_bits[] = {
"IO ",
"CD ",
"MSG ",
"ATN ",
"SEL ",
"BSY ",
"ACK ",
"REQ ",
};
static char *NCR_700_SBCL_to_phase[] = {
"DATA_OUT",
"DATA_IN",
"CMD_OUT",
"STATE",
"ILLEGAL PHASE",
"ILLEGAL PHASE",
"MSG OUT",
"MSG IN",
};
/* This translates the SDTR message offset and period to a value
* which can be loaded into the SXFER_REG.
*
* NOTE: According to SCSI-2, the true transfer period (in ns) is
* actually four times this period value */
static inline __u8
NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata,
__u8 offset, __u8 period)
{
int XFERP;
__u8 min_xferp = (hostdata->chip710
? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
__u8 max_offset = (hostdata->chip710
? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET);
if(offset == 0)
return 0;
if(period < hostdata->min_period) {
printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4);
period = hostdata->min_period;
}
XFERP = (period*4 * hostdata->sync_clock)/1000 - 4;
if(offset > max_offset) {
printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n",
offset, max_offset);
offset = max_offset;
}
if(XFERP < min_xferp) {
printk(KERN_WARNING "53c700: XFERP %d is less than minium, setting to %d\n",
XFERP, min_xferp);
XFERP = min_xferp;
}
return (offset & 0x0f) | (XFERP & 0x07)<<4;
}
static inline __u8
NCR_700_get_SXFER(struct scsi_device *SDp)
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
return NCR_700_offset_period_to_sxfer(hostdata,
spi_offset(SDp->sdev_target),
spi_period(SDp->sdev_target));
}
struct Scsi_Host *
NCR_700_detect(struct scsi_host_template *tpnt,
struct NCR_700_Host_Parameters *hostdata, struct device *dev)
{
dma_addr_t pScript, pSlots;
__u8 *memory;
__u32 *script;
struct Scsi_Host *host;
static int banner = 0;
int j;
if(tpnt->sdev_attrs == NULL)
tpnt->sdev_attrs = NCR_700_dev_attrs;
memory = dma_alloc_noncoherent(hostdata->dev, TOTAL_MEM_SIZE,
&pScript, GFP_KERNEL);
if(memory == NULL) {
printk(KERN_ERR "53c700: Failed to allocate memory for driver, detatching\n");
return NULL;
}
script = (__u32 *)memory;
hostdata->msgin = memory + MSGIN_OFFSET;
hostdata->msgout = memory + MSGOUT_OFFSET;
hostdata->status = memory + STATUS_OFFSET;
/* all of these offsets are L1_CACHE_BYTES separated. It is fatal
* if this isn't sufficient separation to avoid dma flushing issues */
BUG_ON(!dma_is_consistent(hostdata->dev, pScript) && L1_CACHE_BYTES < dma_get_cache_alignment());
hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET);
hostdata->dev = dev;
pSlots = pScript + SLOTS_OFFSET;
/* Fill in the missing routines from the host template */
tpnt->queuecommand = NCR_700_queuecommand;
tpnt->eh_abort_handler = NCR_700_abort;
tpnt->eh_bus_reset_handler = NCR_700_bus_reset;
tpnt->eh_host_reset_handler = NCR_700_host_reset;
tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST;
tpnt->sg_tablesize = NCR_700_SG_SEGMENTS;
tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN;
tpnt->use_clustering = ENABLE_CLUSTERING;
tpnt->slave_configure = NCR_700_slave_configure;
tpnt->slave_destroy = NCR_700_slave_destroy;
tpnt->slave_alloc = NCR_700_slave_alloc;
tpnt->change_queue_depth = NCR_700_change_queue_depth;
tpnt->change_queue_type = NCR_700_change_queue_type;
if(tpnt->name == NULL)
tpnt->name = "53c700";
if(tpnt->proc_name == NULL)
tpnt->proc_name = "53c700";
host = scsi_host_alloc(tpnt, 4);
if (!host)
return NULL;
memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot)
* NCR_700_COMMAND_SLOTS_PER_HOST);
for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) {
dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0]
- (unsigned long)&hostdata->slots[0].SG[0]);
hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset));
if(j == 0)
hostdata->free_list = &hostdata->slots[j];
else
hostdata->slots[j-1].ITL_forw = &hostdata->slots[j];
hostdata->slots[j].state = NCR_700_SLOT_FREE;
}
for (j = 0; j < ARRAY_SIZE(SCRIPT); j++)
script[j] = bS_to_host(SCRIPT[j]);
/* adjust all labels to be bus physical */
for (j = 0; j < PATCHES; j++)
script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]);
/* now patch up fixed addresses. */
script_patch_32(hostdata->dev, script, MessageLocation,
pScript + MSGOUT_OFFSET);
script_patch_32(hostdata->dev, script, StatusAddress,
pScript + STATUS_OFFSET);
script_patch_32(hostdata->dev, script, ReceiveMsgAddress,
pScript + MSGIN_OFFSET);
hostdata->script = script;
hostdata->pScript = pScript;
dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE);
hostdata->state = NCR_700_HOST_FREE;
hostdata->cmd = NULL;
host->max_id = 8;
host->max_lun = NCR_700_MAX_LUNS;
BUG_ON(NCR_700_transport_template == NULL);
host->transportt = NCR_700_transport_template;
host->unique_id = (unsigned long)hostdata->base;
hostdata->eh_complete = NULL;
host->hostdata[0] = (unsigned long)hostdata;
/* kick the chip */
NCR_700_writeb(0xff, host, CTEST9_REG);
if (hostdata->chip710)
hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f;
else
hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f;
hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0);
if (banner == 0) {
printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n");
banner = 1;
}
printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no,
hostdata->chip710 ? "53c710" :
(hostdata->fast ? "53c700-66" : "53c700"),
hostdata->rev, hostdata->differential ?
"(Differential)" : "");
/* reset the chip */
NCR_700_chip_reset(host);
if (scsi_add_host(host, dev)) {
dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n");
scsi_host_put(host);
return NULL;
}
spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD :
SPI_SIGNAL_SE;
return host;
}
int
NCR_700_release(struct Scsi_Host *host)
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
dma_free_noncoherent(hostdata->dev, TOTAL_MEM_SIZE,
hostdata->script, hostdata->pScript);
return 1;
}
static inline __u8
NCR_700_identify(int can_disconnect, __u8 lun)
{
return IDENTIFY_BASE |
((can_disconnect) ? 0x40 : 0) |
(lun & NCR_700_LUN_MASK);
}
/*
* Function : static int data_residual (Scsi_Host *host)
*
* Purpose : return residual data count of what's in the chip. If you
* really want to know what this function is doing, it's almost a
* direct transcription of the algorithm described in the 53c710
* guide, except that the DBC and DFIFO registers are only 6 bits
* wide on a 53c700.
*
* Inputs : host - SCSI host */
static inline int
NCR_700_data_residual (struct Scsi_Host *host) {
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
int count, synchronous = 0;
unsigned int ddir;
if(hostdata->chip710) {
count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) -
(NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f;
} else {
count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) -
(NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f;
}
if(hostdata->fast)
synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f;
/* get the data direction */
ddir = NCR_700_readb(host, CTEST0_REG) & 0x01;
if (ddir) {
/* Receive */
if (synchronous)
count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4;
else
if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL)
++count;
} else {
/* Send */
__u8 sstat = NCR_700_readb(host, SSTAT1_REG);
if (sstat & SODL_REG_FULL)
++count;
if (synchronous && (sstat & SODR_REG_FULL))
++count;
}
#ifdef NCR_700_DEBUG
if(count)
printk("RESIDUAL IS %d (ddir %d)\n", count, ddir);
#endif
return count;
}
/* print out the SCSI wires and corresponding phase from the SBCL register
* in the chip */
static inline char *
sbcl_to_string(__u8 sbcl)
{
int i;
static char ret[256];
ret[0]='\0';
for(i=0; i<8; i++) {
if((1<<i) & sbcl)
strcat(ret, NCR_700_SBCL_bits[i]);
}
strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]);
return ret;
}
static inline __u8
bitmap_to_number(__u8 bitmap)
{
__u8 i;
for(i=0; i<8 && !(bitmap &(1<<i)); i++)
;
return i;
}
/* Pull a slot off the free list */
STATIC struct NCR_700_command_slot *
find_empty_slot(struct NCR_700_Host_Parameters *hostdata)
{
struct NCR_700_command_slot *slot = hostdata->free_list;
if(slot == NULL) {
/* sanity check */
if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST)
printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST);
return NULL;
}
if(slot->state != NCR_700_SLOT_FREE)
/* should panic! */
printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n");
hostdata->free_list = slot->ITL_forw;
slot->ITL_forw = NULL;
/* NOTE: set the state to busy here, not queued, since this
* indicates the slot is in use and cannot be run by the IRQ
* finish routine. If we cannot queue the command when it
* is properly build, we then change to NCR_700_SLOT_QUEUED */
slot->state = NCR_700_SLOT_BUSY;
slot->flags = 0;
hostdata->command_slot_count++;
return slot;
}
STATIC void
free_slot(struct NCR_700_command_slot *slot,
struct NCR_700_Host_Parameters *hostdata)
{
if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) {
printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot);
}
if(slot->state == NCR_700_SLOT_FREE) {
printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot);
}
slot->resume_offset = 0;
slot->cmnd = NULL;
slot->state = NCR_700_SLOT_FREE;
slot->ITL_forw = hostdata->free_list;
hostdata->free_list = slot;
hostdata->command_slot_count--;
}
/* This routine really does very little. The command is indexed on
the ITL and (if tagged) the ITLQ lists in _queuecommand */
STATIC void
save_for_reselection(struct NCR_700_Host_Parameters *hostdata,
struct scsi_cmnd *SCp, __u32 dsp)
{
/* Its just possible that this gets executed twice */
if(SCp != NULL) {
struct NCR_700_command_slot *slot =
(struct NCR_700_command_slot *)SCp->host_scribble;
slot->resume_offset = dsp;
}
hostdata->state = NCR_700_HOST_FREE;
hostdata->cmd = NULL;
}
STATIC inline void
NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp,
struct NCR_700_command_slot *slot)
{
if(SCp->sc_data_direction != DMA_NONE &&
SCp->sc_data_direction != DMA_BIDIRECTIONAL) {
if(SCp->use_sg) {
dma_unmap_sg(hostdata->dev, SCp->request_buffer,
SCp->use_sg, SCp->sc_data_direction);
} else {
dma_unmap_single(hostdata->dev, slot->dma_handle,
SCp->request_bufflen,
SCp->sc_data_direction);
}
}
}
STATIC inline void
NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata,
struct scsi_cmnd *SCp, int result)
{
hostdata->state = NCR_700_HOST_FREE;
hostdata->cmd = NULL;
if(SCp != NULL) {
struct NCR_700_command_slot *slot =
(struct NCR_700_command_slot *)SCp->host_scribble;
dma_unmap_single(hostdata->dev, slot->pCmd,
sizeof(SCp->cmnd), DMA_TO_DEVICE);
if (slot->flags == NCR_700_FLAG_AUTOSENSE) {
char *cmnd = NCR_700_get_sense_cmnd(SCp->device);
#ifdef NCR_700_DEBUG
printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
SCp, SCp->cmnd[7], result);
scsi_print_sense("53c700", SCp);
#endif
dma_unmap_single(hostdata->dev, slot->dma_handle, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE);
/* restore the old result if the request sense was
* successful */
if (result == 0)
result = cmnd[7];
/* restore the original length */
SCp->cmd_len = cmnd[8];
} else
NCR_700_unmap(hostdata, SCp, slot);
free_slot(slot, hostdata);
#ifdef NCR_700_DEBUG
if(NCR_700_get_depth(SCp->device) == 0 ||
NCR_700_get_depth(SCp->device) > SCp->device->queue_depth)
printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n",
NCR_700_get_depth(SCp->device));
#endif /* NCR_700_DEBUG */
NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1);
SCp->host_scribble = NULL;
SCp->result = result;
SCp->scsi_done(SCp);
} else {
printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n");
}
}
STATIC void
NCR_700_internal_bus_reset(struct Scsi_Host *host)
{
/* Bus reset */
NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG);
udelay(50);
NCR_700_writeb(0, host, SCNTL1_REG);
}
STATIC void
NCR_700_chip_setup(struct Scsi_Host *host)
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
__u32 dcntl_extra = 0;
__u8 min_period;
__u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP);
if(hostdata->chip710) {
__u8 burst_disable = 0;
__u8 burst_length = 0;
switch (hostdata->burst_length) {
case 1:
burst_length = BURST_LENGTH_1;
break;
case 2:
burst_length = BURST_LENGTH_2;
break;
case 4:
burst_length = BURST_LENGTH_4;
break;
case 8:
burst_length = BURST_LENGTH_8;
break;
default:
burst_disable = BURST_DISABLE;
break;
}
dcntl_extra = COMPAT_700_MODE;
NCR_700_writeb(dcntl_extra, host, DCNTL_REG);
NCR_700_writeb(burst_length | hostdata->dmode_extra,
host, DMODE_710_REG);
NCR_700_writeb(burst_disable | (hostdata->differential ?
DIFF : 0), host, CTEST7_REG);
NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG);
NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY
| AUTO_ATN, host, SCNTL0_REG);
} else {
NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra,
host, DMODE_700_REG);
NCR_700_writeb(hostdata->differential ?
DIFF : 0, host, CTEST7_REG);
if(hostdata->fast) {
/* this is for 700-66, does nothing on 700 */
NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION
| GENERATE_RECEIVE_PARITY, host,
CTEST8_REG);
} else {
NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY
| PARITY | AUTO_ATN, host, SCNTL0_REG);
}
}
NCR_700_writeb(1 << host->this_id, host, SCID_REG);
NCR_700_writeb(0, host, SBCL_REG);
NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG);
NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT
| RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG);
NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG);
NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG);
if(hostdata->clock > 75) {
printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock);
/* do the best we can, but the async clock will be out
* of spec: sync divider 2, async divider 3 */
DEBUG(("53c700: sync 2 async 3\n"));
NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG);
NCR_700_writeb(ASYNC_DIV_3_0 | dcntl_extra, host, DCNTL_REG);
hostdata->sync_clock = hostdata->clock/2;
} else if(hostdata->clock > 50 && hostdata->clock <= 75) {
/* sync divider 1.5, async divider 3 */
DEBUG(("53c700: sync 1.5 async 3\n"));
NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG);
NCR_700_writeb(ASYNC_DIV_3_0 | dcntl_extra, host, DCNTL_REG);
hostdata->sync_clock = hostdata->clock*2;
hostdata->sync_clock /= 3;
} else if(hostdata->clock > 37 && hostdata->clock <= 50) {
/* sync divider 1, async divider 2 */
DEBUG(("53c700: sync 1 async 2\n"));
NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
NCR_700_writeb(ASYNC_DIV_2_0 | dcntl_extra, host, DCNTL_REG);
hostdata->sync_clock = hostdata->clock;
} else if(hostdata->clock > 25 && hostdata->clock <=37) {
/* sync divider 1, async divider 1.5 */
DEBUG(("53c700: sync 1 async 1.5\n"));
NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
NCR_700_writeb(ASYNC_DIV_1_5 | dcntl_extra, host, DCNTL_REG);
hostdata->sync_clock = hostdata->clock;
} else {
DEBUG(("53c700: sync 1 async 1\n"));
NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG);
NCR_700_writeb(ASYNC_DIV_1_0 | dcntl_extra, host, DCNTL_REG);
/* sync divider 1, async divider 1 */
hostdata->sync_clock = hostdata->clock;
}
/* Calculate the actual minimum period that can be supported
* by our synchronous clock speed. See the 710 manual for
* exact details of this calculation which is based on a
* setting of the SXFER register */
min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock);
hostdata->min_period = NCR_700_MIN_PERIOD;
if(min_period > NCR_700_MIN_PERIOD)
hostdata->min_period = min_period;
}
STATIC void
NCR_700_chip_reset(struct Scsi_Host *host)
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
if(hostdata->chip710) {
NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG);
udelay(100);
NCR_700_writeb(0, host, ISTAT_REG);
} else {
NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG);
udelay(100);
NCR_700_writeb(0, host, DCNTL_REG);
}
mdelay(1000);
NCR_700_chip_setup(host);
}
/* The heart of the message processing engine is that the instruction
* immediately after the INT is the normal case (and so must be CLEAR
* ACK). If we want to do something else, we call that routine in
* scripts and set temp to be the normal case + 8 (skipping the CLEAR
* ACK) so that the routine returns correctly to resume its activity
* */
STATIC __u32
process_extended_message(struct Scsi_Host *host,
struct NCR_700_Host_Parameters *hostdata,
struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
{
__u32 resume_offset = dsp, temp = dsp + 8;
__u8 pun = 0xff, lun = 0xff;
if(SCp != NULL) {
pun = SCp->device->id;
lun = SCp->device->lun;
}
switch(hostdata->msgin[2]) {
case A_SDTR_MSG:
if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
struct scsi_target *starget = SCp->device->sdev_target;
__u8 period = hostdata->msgin[3];
__u8 offset = hostdata->msgin[4];
if(offset == 0 || period == 0) {
offset = 0;
period = 0;
}
spi_offset(starget) = offset;
spi_period(starget) = period;
if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) {
spi_display_xfer_agreement(starget);
NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION);
}
NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
host, SXFER_REG);
} else {
/* SDTR message out of the blue, reject it */
shost_printk(KERN_WARNING, host,
"Unexpected SDTR msg\n");
hostdata->msgout[0] = A_REJECT_MSG;
dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
script_patch_16(hostdata->dev, hostdata->script,
MessageCount, 1);
/* SendMsgOut returns, so set up the return
* address */
resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
}
break;
case A_WDTR_MSG:
printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
host->host_no, pun, lun);
hostdata->msgout[0] = A_REJECT_MSG;
dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
script_patch_16(hostdata->dev, hostdata->script, MessageCount,
1);
resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
break;
default:
printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
host->host_no, pun, lun,
NCR_700_phase[(dsps & 0xf00) >> 8]);
spi_print_msg(hostdata->msgin);
printk("\n");
/* just reject it */
hostdata->msgout[0] = A_REJECT_MSG;
dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
script_patch_16(hostdata->dev, hostdata->script, MessageCount,
1);
/* SendMsgOut returns, so set up the return
* address */
resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
}
NCR_700_writel(temp, host, TEMP_REG);
return resume_offset;
}
STATIC __u32
process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata,
struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps)
{
/* work out where to return to */
__u32 temp = dsp + 8, resume_offset = dsp;
__u8 pun = 0xff, lun = 0xff;
if(SCp != NULL) {
pun = SCp->device->id;
lun = SCp->device->lun;
}
#ifdef NCR_700_DEBUG
printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun,
NCR_700_phase[(dsps & 0xf00) >> 8]);
spi_print_msg(hostdata->msgin);
printk("\n");
#endif
switch(hostdata->msgin[0]) {
case A_EXTENDED_MSG:
resume_offset = process_extended_message(host, hostdata, SCp,
dsp, dsps);
break;
case A_REJECT_MSG:
if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) {
/* Rejected our sync negotiation attempt */
spi_period(SCp->device->sdev_target) =
spi_offset(SCp->device->sdev_target) = 0;
NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
} else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) {
/* rejected our first simple tag message */
scmd_printk(KERN_WARNING, SCp,
"Rejected first tag queue attempt, turning off tag queueing\n");
/* we're done negotiating */
NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION);
hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
SCp->device->tagged_supported = 0;
scsi_deactivate_tcq(SCp->device, host->cmd_per_lun);
} else {
shost_printk(KERN_WARNING, host,
"(%d:%d) Unexpected REJECT Message %s\n",
pun, lun,
NCR_700_phase[(dsps & 0xf00) >> 8]);
/* however, just ignore it */
}
break;
case A_PARITY_ERROR_MSG:
printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no,
pun, lun);
NCR_700_internal_bus_reset(host);
break;
case A_SIMPLE_TAG_MSG:
printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no,
pun, lun, hostdata->msgin[1],
NCR_700_phase[(dsps & 0xf00) >> 8]);
/* just ignore it */
break;
default:
printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ",
host->host_no, pun, lun,
NCR_700_phase[(dsps & 0xf00) >> 8]);
spi_print_msg(hostdata->msgin);
printk("\n");
/* just reject it */
hostdata->msgout[0] = A_REJECT_MSG;
dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE);
script_patch_16(hostdata->dev, hostdata->script, MessageCount,
1);
/* SendMsgOut returns, so set up the return
* address */
resume_offset = hostdata->pScript + Ent_SendMessageWithATN;
break;
}
NCR_700_writel(temp, host, TEMP_REG);
/* set us up to receive another message */
dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE);
return resume_offset;
}
STATIC __u32
process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp,
struct Scsi_Host *host,
struct NCR_700_Host_Parameters *hostdata)
{
__u32 resume_offset = 0;
__u8 pun = 0xff, lun=0xff;
if(SCp != NULL) {
pun = SCp->device->id;
lun = SCp->device->lun;
}
if(dsps == A_GOOD_STATUS_AFTER_STATUS) {
DEBUG((" COMMAND COMPLETE, status=%02x\n",
hostdata->status[0]));
/* OK, if TCQ still under negotiation, we now know it works */
if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION)
NCR_700_set_tag_neg_state(SCp->device,
NCR_700_FINISHED_TAG_NEGOTIATION);
/* check for contingent allegiance contitions */
if(status_byte(hostdata->status[0]) == CHECK_CONDITION ||
status_byte(hostdata->status[0]) == COMMAND_TERMINATED) {
struct NCR_700_command_slot *slot =
(struct NCR_700_command_slot *)SCp->host_scribble;
if(slot->flags == NCR_700_FLAG_AUTOSENSE) {
/* OOPS: bad device, returning another
* contingent allegiance condition */
scmd_printk(KERN_ERR, SCp,
"broken device is looping in contingent allegiance: ignoring\n");
NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
} else {
char *cmnd =
NCR_700_get_sense_cmnd(SCp->device);
#ifdef NCR_DEBUG
scsi_print_command(SCp);
printk(" cmd %p has status %d, requesting sense\n",
SCp, hostdata->status[0]);
#endif
/* we can destroy the command here
* because the contingent allegiance
* condition will cause a retry which
* will re-copy the command from the
* saved data_cmnd. We also unmap any
* data associated with the command
* here */
NCR_700_unmap(hostdata, SCp, slot);
dma_unmap_single(hostdata->dev, slot->pCmd,
sizeof(SCp->cmnd),
DMA_TO_DEVICE);
cmnd[0] = REQUEST_SENSE;
cmnd[1] = (SCp->device->lun & 0x7) << 5;
cmnd[2] = 0;
cmnd[3] = 0;
cmnd[4] = sizeof(SCp->sense_buffer);
cmnd[5] = 0;
/* Here's a quiet hack: the
* REQUEST_SENSE command is six bytes,
* so store a flag indicating that
* this was an internal sense request
* and the original status at the end
* of the command */
cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC;
cmnd[7] = hostdata->status[0];
cmnd[8] = SCp->cmd_len;
SCp->cmd_len = 6; /* command length for
* REQUEST_SENSE */
slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE);
slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE);
slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | sizeof(SCp->sense_buffer));
slot->SG[0].pAddr = bS_to_host(slot->dma_handle);
slot->SG[1].ins = bS_to_host(SCRIPT_RETURN);
slot->SG[1].pAddr = 0;
slot->resume_offset = hostdata->pScript;
dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG[0])*2, DMA_TO_DEVICE);
dma_cache_sync(hostdata->dev, SCp->sense_buffer, sizeof(SCp->sense_buffer), DMA_FROM_DEVICE);
/* queue the command for reissue */
slot->state = NCR_700_SLOT_QUEUED;
slot->flags = NCR_700_FLAG_AUTOSENSE;
hostdata->state = NCR_700_HOST_FREE;
hostdata->cmd = NULL;
}
} else {
// Currently rely on the mid layer evaluation
// of the tag queuing capability
//
//if(status_byte(hostdata->status[0]) == GOOD &&
// SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
// /* Piggy back the tag queueing support
// * on this command */
// dma_sync_single_for_cpu(hostdata->dev,
// slot->dma_handle,
// SCp->request_bufflen,
// DMA_FROM_DEVICE);
// if(((char *)SCp->request_buffer)[7] & 0x02) {
// scmd_printk(KERN_INFO, SCp,
// "Enabling Tag Command Queuing\n");
// hostdata->tag_negotiated |= (1<<scmd_id(SCp));
// NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
// } else {
// NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
// hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
// }
//}
NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]);
}
} else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) {
__u8 i = (dsps & 0xf00) >> 8;
scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n",
NCR_700_phase[i],
sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
scmd_printk(KERN_ERR, SCp, " len = %d, cmd =",
SCp->cmd_len);
scsi_print_command(SCp);
NCR_700_internal_bus_reset(host);
} else if((dsps & 0xfffff000) == A_FATAL) {
int i = (dsps & 0xfff);
printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n",
host->host_no, pun, lun, NCR_700_fatal_messages[i]);
if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) {
printk(KERN_ERR " msg begins %02x %02x\n",
hostdata->msgin[0], hostdata->msgin[1]);
}
NCR_700_internal_bus_reset(host);
} else if((dsps & 0xfffff0f0) == A_DISCONNECT) {
#ifdef NCR_700_DEBUG
__u8 i = (dsps & 0xf00) >> 8;
printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
host->host_no, pun, lun,
i, NCR_700_phase[i]);
#endif
save_for_reselection(hostdata, SCp, dsp);
} else if(dsps == A_RESELECTION_IDENTIFIED) {
__u8 lun;
struct NCR_700_command_slot *slot;
__u8 reselection_id = hostdata->reselection_id;
struct scsi_device *SDp;
lun = hostdata->msgin[0] & 0x1f;
hostdata->reselection_id = 0xff;
DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
host->host_no, reselection_id, lun));
/* clear the reselection indicator */
SDp = __scsi_device_lookup(host, 0, reselection_id, lun);
if(unlikely(SDp == NULL)) {
printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n",
host->host_no, reselection_id, lun);
BUG();
}
if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) {
struct scsi_cmnd *SCp = scsi_find_tag(SDp, hostdata->msgin[2]);
if(unlikely(SCp == NULL)) {
printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n",
host->host_no, reselection_id, lun, hostdata->msgin[2]);
BUG();
}
slot = (struct NCR_700_command_slot *)SCp->host_scribble;
DDEBUG(KERN_DEBUG, SDp,
"reselection is tag %d, slot %p(%d)\n",
hostdata->msgin[2], slot, slot->tag);
} else {
struct scsi_cmnd *SCp = scsi_find_tag(SDp, SCSI_NO_TAG);
if(unlikely(SCp == NULL)) {
sdev_printk(KERN_ERR, SDp,
"no saved request for untagged cmd\n");
BUG();
}
slot = (struct NCR_700_command_slot *)SCp->host_scribble;
}
if(slot == NULL) {
printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
host->host_no, reselection_id, lun,
hostdata->msgin[0], hostdata->msgin[1],
hostdata->msgin[2]);
} else {
if(hostdata->state != NCR_700_HOST_BUSY)
printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n",
host->host_no);
resume_offset = slot->resume_offset;
hostdata->cmd = slot->cmnd;
/* re-patch for this command */
script_patch_32_abs(hostdata->dev, hostdata->script,
CommandAddress, slot->pCmd);
script_patch_16(hostdata->dev, hostdata->script,
CommandCount, slot->cmnd->cmd_len);
script_patch_32_abs(hostdata->dev, hostdata->script,
SGScriptStartAddress,
to32bit(&slot->pSG[0].ins));
/* Note: setting SXFER only works if we're
* still in the MESSAGE phase, so it is vital
* that ACK is still asserted when we process
* the reselection message. The resume offset
* should therefore always clear ACK */
NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device),
host, SXFER_REG);
dma_cache_sync(hostdata->dev, hostdata->msgin,
MSG_ARRAY_SIZE, DMA_FROM_DEVICE);
dma_cache_sync(hostdata->dev, hostdata->msgout,
MSG_ARRAY_SIZE, DMA_TO_DEVICE);
/* I'm just being paranoid here, the command should
* already have been flushed from the cache */
dma_cache_sync(hostdata->dev, slot->cmnd->cmnd,
slot->cmnd->cmd_len, DMA_TO_DEVICE);
}
} else if(dsps == A_RESELECTED_DURING_SELECTION) {
/* This section is full of debugging code because I've
* never managed to reach it. I think what happens is
* that, because the 700 runs with selection
* interrupts enabled the whole time that we take a
* selection interrupt before we manage to get to the
* reselected script interrupt */
__u8 reselection_id = NCR_700_readb(host, SFBR_REG);
struct NCR_700_command_slot *slot;
/* Take out our own ID */
reselection_id &= ~(1<<host->this_id);
/* I've never seen this happen, so keep this as a printk rather
* than a debug */
printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count);
{
/* FIXME: DEBUGGING CODE */
__u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]);
int i;
for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
if(SG >= to32bit(&hostdata->slots[i].pSG[0])
&& SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS]))
break;
}
printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset);
SCp = hostdata->slots[i].cmnd;
}
if(SCp != NULL) {
slot = (struct NCR_700_command_slot *)SCp->host_scribble;
/* change slot from busy to queued to redo command */
slot->state = NCR_700_SLOT_QUEUED;
}
hostdata->cmd = NULL;
if(reselection_id == 0) {
if(hostdata->reselection_id == 0xff) {
printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no);
return 0;
} else {
printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n",
host->host_no);
reselection_id = hostdata->reselection_id;
}
} else {
/* convert to real ID */
reselection_id = bitmap_to_number(reselection_id);
}
hostdata->reselection_id = reselection_id;
/* just in case we have a stale simple tag message, clear it */
hostdata->msgin[1] = 0;
dma_cache_sync(hostdata->dev, hostdata->msgin,
MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL);
if(hostdata->tag_negotiated & (1<<reselection_id)) {
resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
} else {
resume_offset = hostdata->pScript + Ent_GetReselectionData;
}
} else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) {
/* we've just disconnected from the bus, do nothing since
* a return here will re-run the queued command slot
* that may have been interrupted by the initial selection */
DEBUG((" SELECTION COMPLETED\n"));
} else if((dsps & 0xfffff0f0) == A_MSG_IN) {
resume_offset = process_message(host, hostdata, SCp,
dsp, dsps);
} else if((dsps & 0xfffff000) == 0) {
__u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8;
printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
host->host_no, pun, lun, NCR_700_condition[i],
NCR_700_phase[j], dsp - hostdata->pScript);
if(SCp != NULL) {
scsi_print_command(SCp);
if(SCp->use_sg) {
for(i = 0; i < SCp->use_sg + 1; i++) {
printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, ((struct scatterlist *)SCp->request_buffer)[i].length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr);
}
}
}
NCR_700_internal_bus_reset(host);
} else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) {
printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript);
resume_offset = dsp;
} else {
printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
host->host_no, pun, lun, dsps, dsp - hostdata->pScript);
NCR_700_internal_bus_reset(host);
}
return resume_offset;
}
/* We run the 53c700 with selection interrupts always enabled. This
* means that the chip may be selected as soon as the bus frees. On a
* busy bus, this can be before the scripts engine finishes its
* processing. Therefore, part of the selection processing has to be
* to find out what the scripts engine is doing and complete the
* function if necessary (i.e. process the pending disconnect or save
* the interrupted initial selection */
STATIC inline __u32
process_selection(struct Scsi_Host *host, __u32 dsp)
{
__u8 id = 0; /* Squash compiler warning */
int count = 0;
__u32 resume_offset = 0;
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
struct scsi_cmnd *SCp = hostdata->cmd;
__u8 sbcl;
for(count = 0; count < 5; count++) {
id = NCR_700_readb(host, hostdata->chip710 ?
CTEST9_REG : SFBR_REG);
/* Take out our own ID */
id &= ~(1<<host->this_id);
if(id != 0)
break;
udelay(5);
}
sbcl = NCR_700_readb(host, SBCL_REG);
if((sbcl & SBCL_IO) == 0) {
/* mark as having been selected rather than reselected */
id = 0xff;
} else {
/* convert to real ID */
hostdata->reselection_id = id = bitmap_to_number(id);
DEBUG(("scsi%d: Reselected by %d\n",
host->host_no, id));
}
if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) {
struct NCR_700_command_slot *slot =
(struct NCR_700_command_slot *)SCp->host_scribble;
DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset));
switch(dsp - hostdata->pScript) {
case Ent_Disconnect1:
case Ent_Disconnect2:
save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript);
break;
case Ent_Disconnect3:
case Ent_Disconnect4:
save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript);
break;
case Ent_Disconnect5:
case Ent_Disconnect6:
save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript);
break;
case Ent_Disconnect7:
case Ent_Disconnect8:
save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript);
break;
case Ent_Finish1:
case Ent_Finish2:
process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata);
break;
default:
slot->state = NCR_700_SLOT_QUEUED;
break;
}
}
hostdata->state = NCR_700_HOST_BUSY;
hostdata->cmd = NULL;
/* clear any stale simple tag message */
hostdata->msgin[1] = 0;
dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE,
DMA_BIDIRECTIONAL);
if(id == 0xff) {
/* Selected as target, Ignore */
resume_offset = hostdata->pScript + Ent_SelectedAsTarget;
} else if(hostdata->tag_negotiated & (1<<id)) {
resume_offset = hostdata->pScript + Ent_GetReselectionWithTag;
} else {
resume_offset = hostdata->pScript + Ent_GetReselectionData;
}
return resume_offset;
}
static inline void
NCR_700_clear_fifo(struct Scsi_Host *host) {
const struct NCR_700_Host_Parameters *hostdata
= (struct NCR_700_Host_Parameters *)host->hostdata[0];
if(hostdata->chip710) {
NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG);
} else {
NCR_700_writeb(CLR_FIFO, host, DFIFO_REG);
}
}
static inline void
NCR_700_flush_fifo(struct Scsi_Host *host) {
const struct NCR_700_Host_Parameters *hostdata
= (struct NCR_700_Host_Parameters *)host->hostdata[0];
if(hostdata->chip710) {
NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG);
udelay(10);
NCR_700_writeb(0, host, CTEST8_REG);
} else {
NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG);
udelay(10);
NCR_700_writeb(0, host, DFIFO_REG);
}
}
/* The queue lock with interrupts disabled must be held on entry to
* this function */
STATIC int
NCR_700_start_command(struct scsi_cmnd *SCp)
{
struct NCR_700_command_slot *slot =
(struct NCR_700_command_slot *)SCp->host_scribble;
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
__u16 count = 1; /* for IDENTIFY message */
if(hostdata->state != NCR_700_HOST_FREE) {
/* keep this inside the lock to close the race window where
* the running command finishes on another CPU while we don't
* change the state to queued on this one */
slot->state = NCR_700_SLOT_QUEUED;
DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
SCp->device->host->host_no, slot->cmnd, slot));
return 0;
}
hostdata->state = NCR_700_HOST_BUSY;
hostdata->cmd = SCp;
slot->state = NCR_700_SLOT_BUSY;
/* keep interrupts disabled until we have the command correctly
* set up so we cannot take a selection interrupt */
hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE &&
slot->flags != NCR_700_FLAG_AUTOSENSE),
SCp->device->lun);
/* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
* if the negotiated transfer parameters still hold, so
* always renegotiate them */
if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE ||
slot->flags == NCR_700_FLAG_AUTOSENSE) {
NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC);
}
/* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
* If a contingent allegiance condition exists, the device
* will refuse all tags, so send the request sense as untagged
* */
if((hostdata->tag_negotiated & (1<<scmd_id(SCp)))
&& (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE &&
slot->flags != NCR_700_FLAG_AUTOSENSE)) {
count += scsi_populate_tag_msg(SCp, &hostdata->msgout[count]);
}
if(hostdata->fast &&
NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) {
count += spi_populate_sync_msg(&hostdata->msgout[count],
spi_period(SCp->device->sdev_target),
spi_offset(SCp->device->sdev_target));
NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
}
script_patch_16(hostdata->dev, hostdata->script, MessageCount, count);
script_patch_ID(hostdata->dev, hostdata->script,
Device_ID, 1<<scmd_id(SCp));
script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress,
slot->pCmd);
script_patch_16(hostdata->dev, hostdata->script, CommandCount,
SCp->cmd_len);
/* finally plumb the beginning of the SG list into the script
* */
script_patch_32_abs(hostdata->dev, hostdata->script,
SGScriptStartAddress, to32bit(&slot->pSG[0].ins));
NCR_700_clear_fifo(SCp->device->host);
if(slot->resume_offset == 0)
slot->resume_offset = hostdata->pScript;
/* now perform all the writebacks and invalidates */
dma_cache_sync(hostdata->dev, hostdata->msgout, count, DMA_TO_DEVICE);
dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE,
DMA_FROM_DEVICE);
dma_cache_sync(hostdata->dev, SCp->cmnd, SCp->cmd_len, DMA_TO_DEVICE);
dma_cache_sync(hostdata->dev, hostdata->status, 1, DMA_FROM_DEVICE);
/* set the synchronous period/offset */
NCR_700_writeb(NCR_700_get_SXFER(SCp->device),
SCp->device->host, SXFER_REG);
NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG);
NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG);
return 1;
}
irqreturn_t
NCR_700_intr(int irq, void *dev_id)
{
struct Scsi_Host *host = (struct Scsi_Host *)dev_id;
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)host->hostdata[0];
__u8 istat;
__u32 resume_offset = 0;
__u8 pun = 0xff, lun = 0xff;
unsigned long flags;
int handled = 0;
/* Use the host lock to serialise acess to the 53c700
* hardware. Note: In future, we may need to take the queue
* lock to enter the done routines. When that happens, we
* need to ensure that for this driver, the host lock and the
* queue lock point to the same thing. */
spin_lock_irqsave(host->host_lock, flags);
if((istat = NCR_700_readb(host, ISTAT_REG))
& (SCSI_INT_PENDING | DMA_INT_PENDING)) {
__u32 dsps;
__u8 sstat0 = 0, dstat = 0;
__u32 dsp;
struct scsi_cmnd *SCp = hostdata->cmd;
enum NCR_700_Host_State state;
handled = 1;
state = hostdata->state;
SCp = hostdata->cmd;
if(istat & SCSI_INT_PENDING) {
udelay(10);
sstat0 = NCR_700_readb(host, SSTAT0_REG);
}
if(istat & DMA_INT_PENDING) {
udelay(10);
dstat = NCR_700_readb(host, DSTAT_REG);
}
dsps = NCR_700_readl(host, DSPS_REG);
dsp = NCR_700_readl(host, DSP_REG);
DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
host->host_no, istat, sstat0, dstat,
(dsp - (__u32)(hostdata->pScript))/4,
dsp, dsps));
if(SCp != NULL) {
pun = SCp->device->id;
lun = SCp->device->lun;
}
if(sstat0 & SCSI_RESET_DETECTED) {
struct scsi_device *SDp;
int i;
hostdata->state = NCR_700_HOST_BUSY;
printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript);
scsi_report_bus_reset(host, 0);
/* clear all the negotiated parameters */
__shost_for_each_device(SDp, host)
NCR_700_clear_flag(SDp, ~0);
/* clear all the slots and their pending commands */
for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
struct scsi_cmnd *SCp;
struct NCR_700_command_slot *slot =
&hostdata->slots[i];
if(slot->state == NCR_700_SLOT_FREE)
continue;
SCp = slot->cmnd;
printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n",
slot, SCp);
free_slot(slot, hostdata);
SCp->host_scribble = NULL;
NCR_700_set_depth(SCp->device, 0);
/* NOTE: deadlock potential here: we
* rely on mid-layer guarantees that
* scsi_done won't try to issue the
* command again otherwise we'll
* deadlock on the
* hostdata->state_lock */
SCp->result = DID_RESET << 16;
SCp->scsi_done(SCp);
}
mdelay(25);
NCR_700_chip_setup(host);
hostdata->state = NCR_700_HOST_FREE;
hostdata->cmd = NULL;
/* signal back if this was an eh induced reset */
if(hostdata->eh_complete != NULL)
complete(hostdata->eh_complete);
goto out_unlock;
} else if(sstat0 & SELECTION_TIMEOUT) {
DEBUG(("scsi%d: (%d:%d) selection timeout\n",
host->host_no, pun, lun));
NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16);
} else if(sstat0 & PHASE_MISMATCH) {
struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL :
(struct NCR_700_command_slot *)SCp->host_scribble;
if(dsp == Ent_SendMessage + 8 + hostdata->pScript) {
/* It wants to reply to some part of
* our message */
#ifdef NCR_700_DEBUG
__u32 temp = NCR_700_readl(host, TEMP_REG);
int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host));
printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG)));
#endif
resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch;
} else if(dsp >= to32bit(&slot->pSG[0].ins) &&
dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) {
int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff;
int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List);
int residual = NCR_700_data_residual(host);
int i;
#ifdef NCR_700_DEBUG
__u32 naddr = NCR_700_readl(host, DNAD_REG);
printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
host->host_no, pun, lun,
SGcount, data_transfer);
scsi_print_command(SCp);
if(residual) {
printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
host->host_no, pun, lun,
SGcount, data_transfer, residual);
}
#endif
data_transfer += residual;
if(data_transfer != 0) {
int count;
__u32 pAddr;
SGcount--;
count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff);
DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer));
slot->SG[SGcount].ins &= bS_to_host(0xff000000);
slot->SG[SGcount].ins |= bS_to_host(data_transfer);
pAddr = bS_to_cpu(slot->SG[SGcount].pAddr);
pAddr += (count - data_transfer);
#ifdef NCR_700_DEBUG
if(pAddr != naddr) {
printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual);
}
#endif
slot->SG[SGcount].pAddr = bS_to_host(pAddr);
}
/* set the executed moves to nops */
for(i=0; i<SGcount; i++) {
slot->SG[i].ins = bS_to_host(SCRIPT_NOP);
slot->SG[i].pAddr = 0;
}
dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE);
/* and pretend we disconnected after
* the command phase */
resume_offset = hostdata->pScript + Ent_MsgInDuringData;
/* make sure all the data is flushed */
NCR_700_flush_fifo(host);
} else {
__u8 sbcl = NCR_700_readb(host, SBCL_REG);
printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl));
NCR_700_internal_bus_reset(host);
}
} else if(sstat0 & SCSI_GROSS_ERROR) {
printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n",
host->host_no, pun, lun);
NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
} else if(sstat0 & PARITY_ERROR) {
printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n",
host->host_no, pun, lun);
NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
} else if(dstat & SCRIPT_INT_RECEIVED) {
DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
host->host_no, pun, lun));
resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata);
} else if(dstat & (ILGL_INST_DETECTED)) {
printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
" Please email James.Bottomley@HansenPartnership.com with the details\n",
host->host_no, pun, lun,
dsp, dsp - hostdata->pScript);
NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
} else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) {
printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
host->host_no, pun, lun, dstat);
NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16);
}
/* NOTE: selection interrupt processing MUST occur
* after script interrupt processing to correctly cope
* with the case where we process a disconnect and
* then get reselected before we process the
* disconnection */
if(sstat0 & SELECTED) {
/* FIXME: It currently takes at least FOUR
* interrupts to complete a command that
* disconnects: one for the disconnect, one
* for the reselection, one to get the
* reselection data and one to complete the
* command. If we guess the reselected
* command here and prepare it, we only need
* to get a reselection data interrupt if we
* guessed wrongly. Since the interrupt
* overhead is much greater than the command
* setup, this would be an efficient
* optimisation particularly as we probably
* only have one outstanding command on a
* target most of the time */
resume_offset = process_selection(host, dsp);
}
}
if(resume_offset) {
if(hostdata->state != NCR_700_HOST_BUSY) {
printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
host->host_no, resume_offset, resume_offset - hostdata->pScript);
hostdata->state = NCR_700_HOST_BUSY;
}
DEBUG(("Attempting to resume at %x\n", resume_offset));
NCR_700_clear_fifo(host);
NCR_700_writel(resume_offset, host, DSP_REG);
}
/* There is probably a technical no-no about this: If we're a
* shared interrupt and we got this interrupt because the
* other device needs servicing not us, we're still going to
* check our queued commands here---of course, there shouldn't
* be any outstanding.... */
if(hostdata->state == NCR_700_HOST_FREE) {
int i;
for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) {
/* fairness: always run the queue from the last
* position we left off */
int j = (i + hostdata->saved_slot_position)
% NCR_700_COMMAND_SLOTS_PER_HOST;
if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED)
continue;
if(NCR_700_start_command(hostdata->slots[j].cmnd)) {
DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
host->host_no, &hostdata->slots[j],
hostdata->slots[j].cmnd));
hostdata->saved_slot_position = j + 1;
}
break;
}
}
out_unlock:
spin_unlock_irqrestore(host->host_lock, flags);
return IRQ_RETVAL(handled);
}
STATIC int
NCR_700_queuecommand(struct scsi_cmnd *SCp, void (*done)(struct scsi_cmnd *))
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
__u32 move_ins;
enum dma_data_direction direction;
struct NCR_700_command_slot *slot;
if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) {
/* We're over our allocation, this should never happen
* since we report the max allocation to the mid layer */
printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no);
return 1;
}
/* check for untagged commands. We cannot have any outstanding
* commands if we accept them. Commands could be untagged because:
*
* - The tag negotiated bitmap is clear
* - The blk layer sent and untagged command
*/
if(NCR_700_get_depth(SCp->device) != 0
&& (!(hostdata->tag_negotiated & (1<<scmd_id(SCp)))
|| !blk_rq_tagged(SCp->request))) {
CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n",
NCR_700_get_depth(SCp->device));
return SCSI_MLQUEUE_DEVICE_BUSY;
}
if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) {
CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n",
NCR_700_get_depth(SCp->device));
return SCSI_MLQUEUE_DEVICE_BUSY;
}
NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1);
/* begin the command here */
/* no need to check for NULL, test for command_slot_count above
* ensures a slot is free */
slot = find_empty_slot(hostdata);
slot->cmnd = SCp;
SCp->scsi_done = done;
SCp->host_scribble = (unsigned char *)slot;
SCp->SCp.ptr = NULL;
SCp->SCp.buffer = NULL;
#ifdef NCR_700_DEBUG
printk("53c700: scsi%d, command ", SCp->device->host->host_no);
scsi_print_command(SCp);
#endif
if(blk_rq_tagged(SCp->request)
&& (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0
&& NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) {
scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n");
hostdata->tag_negotiated |= (1<<scmd_id(SCp));
NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION);
}
/* here we may have to process an untagged command. The gate
* above ensures that this will be the only one outstanding,
* so clear the tag negotiated bit.
*
* FIXME: This will royally screw up on multiple LUN devices
* */
if(!blk_rq_tagged(SCp->request)
&& (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) {
scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n");
hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
}
if((hostdata->tag_negotiated &(1<<scmd_id(SCp)))
&& scsi_get_tag_type(SCp->device)) {
slot->tag = SCp->request->tag;
CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n",
slot->tag, slot);
} else {
slot->tag = SCSI_NO_TAG;
/* must populate current_cmnd for scsi_find_tag to work */
SCp->device->current_cmnd = SCp;
}
/* sanity check: some of the commands generated by the mid-layer
* have an eccentric idea of their sc_data_direction */
if(!SCp->use_sg && !SCp->request_bufflen
&& SCp->sc_data_direction != DMA_NONE) {
#ifdef NCR_700_DEBUG
printk("53c700: Command");
scsi_print_command(SCp);
printk("Has wrong data direction %d\n", SCp->sc_data_direction);
#endif
SCp->sc_data_direction = DMA_NONE;
}
switch (SCp->cmnd[0]) {
case REQUEST_SENSE:
/* clear the internal sense magic */
SCp->cmnd[6] = 0;
/* fall through */
default:
/* OK, get it from the command */
switch(SCp->sc_data_direction) {
case DMA_BIDIRECTIONAL:
default:
printk(KERN_ERR "53c700: Unknown command for data direction ");
scsi_print_command(SCp);
move_ins = 0;
break;
case DMA_NONE:
move_ins = 0;
break;
case DMA_FROM_DEVICE:
move_ins = SCRIPT_MOVE_DATA_IN;
break;
case DMA_TO_DEVICE:
move_ins = SCRIPT_MOVE_DATA_OUT;
break;
}
}
/* now build the scatter gather list */
direction = SCp->sc_data_direction;
if(move_ins != 0) {
int i;
int sg_count;
dma_addr_t vPtr = 0;
__u32 count = 0;
if(SCp->use_sg) {
sg_count = dma_map_sg(hostdata->dev,
SCp->request_buffer, SCp->use_sg,
direction);
} else {
vPtr = dma_map_single(hostdata->dev,
SCp->request_buffer,
SCp->request_bufflen,
direction);
count = SCp->request_bufflen;
slot->dma_handle = vPtr;
sg_count = 1;
}
for(i = 0; i < sg_count; i++) {
if(SCp->use_sg) {
struct scatterlist *sg = SCp->request_buffer;
vPtr = sg_dma_address(&sg[i]);
count = sg_dma_len(&sg[i]);
}
slot->SG[i].ins = bS_to_host(move_ins | count);
DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
i, count, slot->SG[i].ins, (unsigned long)vPtr));
slot->SG[i].pAddr = bS_to_host(vPtr);
}
slot->SG[i].ins = bS_to_host(SCRIPT_RETURN);
slot->SG[i].pAddr = 0;
dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE);
DEBUG((" SETTING %08lx to %x\n",
(&slot->pSG[i].ins),
slot->SG[i].ins));
}
slot->resume_offset = 0;
slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd,
sizeof(SCp->cmnd), DMA_TO_DEVICE);
NCR_700_start_command(SCp);
return 0;
}
STATIC int
NCR_700_abort(struct scsi_cmnd * SCp)
{
struct NCR_700_command_slot *slot;
scmd_printk(KERN_INFO, SCp,
"New error handler wants to abort command\n\t");
scsi_print_command(SCp);
slot = (struct NCR_700_command_slot *)SCp->host_scribble;
if(slot == NULL)
/* no outstanding command to abort */
return SUCCESS;
if(SCp->cmnd[0] == TEST_UNIT_READY) {
/* FIXME: This is because of a problem in the new
* error handler. When it is in error recovery, it
* will send a TUR to a device it thinks may still be
* showing a problem. If the TUR isn't responded to,
* it will abort it and mark the device off line.
* Unfortunately, it does no other error recovery, so
* this would leave us with an outstanding command
* occupying a slot. Rather than allow this to
* happen, we issue a bus reset to force all
* outstanding commands to terminate here. */
NCR_700_internal_bus_reset(SCp->device->host);
/* still drop through and return failed */
}
return FAILED;
}
STATIC int
NCR_700_bus_reset(struct scsi_cmnd * SCp)
{
DECLARE_COMPLETION_ONSTACK(complete);
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0];
scmd_printk(KERN_INFO, SCp,
"New error handler wants BUS reset, cmd %p\n\t", SCp);
scsi_print_command(SCp);
/* In theory, eh_complete should always be null because the
* eh is single threaded, but just in case we're handling a
* reset via sg or something */
spin_lock_irq(SCp->device->host->host_lock);
while (hostdata->eh_complete != NULL) {
spin_unlock_irq(SCp->device->host->host_lock);
msleep_interruptible(100);
spin_lock_irq(SCp->device->host->host_lock);
}
hostdata->eh_complete = &complete;
NCR_700_internal_bus_reset(SCp->device->host);
spin_unlock_irq(SCp->device->host->host_lock);
wait_for_completion(&complete);
spin_lock_irq(SCp->device->host->host_lock);
hostdata->eh_complete = NULL;
/* Revalidate the transport parameters of the failing device */
if(hostdata->fast)
spi_schedule_dv_device(SCp->device);
spin_unlock_irq(SCp->device->host->host_lock);
return SUCCESS;
}
STATIC int
NCR_700_host_reset(struct scsi_cmnd * SCp)
{
scmd_printk(KERN_INFO, SCp, "New error handler wants HOST reset\n\t");
scsi_print_command(SCp);
spin_lock_irq(SCp->device->host->host_lock);
NCR_700_internal_bus_reset(SCp->device->host);
NCR_700_chip_reset(SCp->device->host);
spin_unlock_irq(SCp->device->host->host_lock);
return SUCCESS;
}
STATIC void
NCR_700_set_period(struct scsi_target *STp, int period)
{
struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SHp->hostdata[0];
if(!hostdata->fast)
return;
if(period < hostdata->min_period)
period = hostdata->min_period;
spi_period(STp) = period;
spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
}
STATIC void
NCR_700_set_offset(struct scsi_target *STp, int offset)
{
struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent);
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SHp->hostdata[0];
int max_offset = hostdata->chip710
? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET;
if(!hostdata->fast)
return;
if(offset > max_offset)
offset = max_offset;
/* if we're currently async, make sure the period is reasonable */
if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period ||
spi_period(STp) > 0xff))
spi_period(STp) = hostdata->min_period;
spi_offset(STp) = offset;
spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC |
NCR_700_DEV_BEGIN_SYNC_NEGOTIATION);
spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION;
}
STATIC int
NCR_700_slave_alloc(struct scsi_device *SDp)
{
SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters),
GFP_KERNEL);
if (!SDp->hostdata)
return -ENOMEM;
return 0;
}
STATIC int
NCR_700_slave_configure(struct scsi_device *SDp)
{
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
/* to do here: allocate memory; build a queue_full list */
if(SDp->tagged_supported) {
scsi_set_tag_type(SDp, MSG_ORDERED_TAG);
scsi_activate_tcq(SDp, NCR_700_DEFAULT_TAGS);
NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION);
} else {
/* initialise to default depth */
scsi_adjust_queue_depth(SDp, 0, SDp->host->cmd_per_lun);
}
if(hostdata->fast) {
/* Find the correct offset and period via domain validation */
if (!spi_initial_dv(SDp->sdev_target))
spi_dv_device(SDp);
} else {
spi_offset(SDp->sdev_target) = 0;
spi_period(SDp->sdev_target) = 0;
}
return 0;
}
STATIC void
NCR_700_slave_destroy(struct scsi_device *SDp)
{
kfree(SDp->hostdata);
SDp->hostdata = NULL;
}
static int
NCR_700_change_queue_depth(struct scsi_device *SDp, int depth)
{
if (depth > NCR_700_MAX_TAGS)
depth = NCR_700_MAX_TAGS;
scsi_adjust_queue_depth(SDp, scsi_get_tag_type(SDp), depth);
return depth;
}
static int NCR_700_change_queue_type(struct scsi_device *SDp, int tag_type)
{
int change_tag = ((tag_type ==0 && scsi_get_tag_type(SDp) != 0)
|| (tag_type != 0 && scsi_get_tag_type(SDp) == 0));
struct NCR_700_Host_Parameters *hostdata =
(struct NCR_700_Host_Parameters *)SDp->host->hostdata[0];
scsi_set_tag_type(SDp, tag_type);
/* We have a global (per target) flag to track whether TCQ is
* enabled, so we'll be turning it off for the entire target here.
* our tag algorithm will fail if we mix tagged and untagged commands,
* so quiesce the device before doing this */
if (change_tag)
scsi_target_quiesce(SDp->sdev_target);
if (!tag_type) {
/* shift back to the default unqueued number of commands
* (the user can still raise this) */
scsi_deactivate_tcq(SDp, SDp->host->cmd_per_lun);
hostdata->tag_negotiated &= ~(1 << sdev_id(SDp));
} else {
/* Here, we cleared the negotiation flag above, so this
* will force the driver to renegotiate */
scsi_activate_tcq(SDp, SDp->queue_depth);
if (change_tag)
NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION);
}
if (change_tag)
scsi_target_resume(SDp->sdev_target);
return tag_type;
}
static ssize_t
NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_device *SDp = to_scsi_device(dev);
return snprintf(buf, 20, "%d\n", NCR_700_get_depth(SDp));
}
static struct device_attribute NCR_700_active_tags_attr = {
.attr = {
.name = "active_tags",
.mode = S_IRUGO,
},
.show = NCR_700_show_active_tags,
};
STATIC struct device_attribute *NCR_700_dev_attrs[] = {
&NCR_700_active_tags_attr,
NULL,
};
EXPORT_SYMBOL(NCR_700_detect);
EXPORT_SYMBOL(NCR_700_release);
EXPORT_SYMBOL(NCR_700_intr);
static struct spi_function_template NCR_700_transport_functions = {
.set_period = NCR_700_set_period,
.show_period = 1,
.set_offset = NCR_700_set_offset,
.show_offset = 1,
};
static int __init NCR_700_init(void)
{
NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions);
if(!NCR_700_transport_template)
return -ENODEV;
return 0;
}
static void __exit NCR_700_exit(void)
{
spi_release_transport(NCR_700_transport_template);
}
module_init(NCR_700_init);
module_exit(NCR_700_exit);