OpenCloudOS-Kernel/arch/arm/mach-tegra/dma.c

824 lines
21 KiB
C

/*
* arch/arm/mach-tegra/dma.c
*
* System DMA driver for NVIDIA Tegra SoCs
*
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <mach/dma.h>
#include <mach/irqs.h>
#include <mach/iomap.h>
#include <mach/suspend.h>
#include "apbio.h"
#define APB_DMA_GEN 0x000
#define GEN_ENABLE (1<<31)
#define APB_DMA_CNTRL 0x010
#define APB_DMA_IRQ_MASK 0x01c
#define APB_DMA_IRQ_MASK_SET 0x020
#define APB_DMA_CHAN_CSR 0x000
#define CSR_ENB (1<<31)
#define CSR_IE_EOC (1<<30)
#define CSR_HOLD (1<<29)
#define CSR_DIR (1<<28)
#define CSR_ONCE (1<<27)
#define CSR_FLOW (1<<21)
#define CSR_REQ_SEL_SHIFT 16
#define CSR_WCOUNT_SHIFT 2
#define CSR_WCOUNT_MASK 0xFFFC
#define APB_DMA_CHAN_STA 0x004
#define STA_BUSY (1<<31)
#define STA_ISE_EOC (1<<30)
#define STA_HALT (1<<29)
#define STA_PING_PONG (1<<28)
#define STA_COUNT_SHIFT 2
#define STA_COUNT_MASK 0xFFFC
#define APB_DMA_CHAN_AHB_PTR 0x010
#define APB_DMA_CHAN_AHB_SEQ 0x014
#define AHB_SEQ_INTR_ENB (1<<31)
#define AHB_SEQ_BUS_WIDTH_SHIFT 28
#define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT)
#define AHB_SEQ_DATA_SWAP (1<<27)
#define AHB_SEQ_BURST_MASK (0x7<<24)
#define AHB_SEQ_BURST_1 (4<<24)
#define AHB_SEQ_BURST_4 (5<<24)
#define AHB_SEQ_BURST_8 (6<<24)
#define AHB_SEQ_DBL_BUF (1<<19)
#define AHB_SEQ_WRAP_SHIFT 16
#define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT)
#define APB_DMA_CHAN_APB_PTR 0x018
#define APB_DMA_CHAN_APB_SEQ 0x01c
#define APB_SEQ_BUS_WIDTH_SHIFT 28
#define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT)
#define APB_SEQ_DATA_SWAP (1<<27)
#define APB_SEQ_WRAP_SHIFT 16
#define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT)
#define TEGRA_SYSTEM_DMA_CH_NR 16
#define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4
#define TEGRA_SYSTEM_DMA_CH_MIN 0
#define TEGRA_SYSTEM_DMA_CH_MAX \
(TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1)
#define NV_DMA_MAX_TRASFER_SIZE 0x10000
static const unsigned int ahb_addr_wrap_table[8] = {
0, 32, 64, 128, 256, 512, 1024, 2048
};
static const unsigned int apb_addr_wrap_table[8] = {
0, 1, 2, 4, 8, 16, 32, 64
};
static const unsigned int bus_width_table[5] = {
8, 16, 32, 64, 128
};
#define TEGRA_DMA_NAME_SIZE 16
struct tegra_dma_channel {
struct list_head list;
int id;
spinlock_t lock;
char name[TEGRA_DMA_NAME_SIZE];
void __iomem *addr;
int mode;
int irq;
int req_transfer_count;
};
#define NV_DMA_MAX_CHANNELS 32
static bool tegra_dma_initialized;
static DEFINE_MUTEX(tegra_dma_lock);
static DEFINE_SPINLOCK(enable_lock);
static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS);
static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS];
static void tegra_dma_update_hw(struct tegra_dma_channel *ch,
struct tegra_dma_req *req);
static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch,
struct tegra_dma_req *req);
static void tegra_dma_stop(struct tegra_dma_channel *ch);
void tegra_dma_flush(struct tegra_dma_channel *ch)
{
}
EXPORT_SYMBOL(tegra_dma_flush);
void tegra_dma_dequeue(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
if (tegra_dma_is_empty(ch))
return;
req = list_entry(ch->list.next, typeof(*req), node);
tegra_dma_dequeue_req(ch, req);
return;
}
static void tegra_dma_stop(struct tegra_dma_channel *ch)
{
u32 csr;
u32 status;
csr = readl(ch->addr + APB_DMA_CHAN_CSR);
csr &= ~CSR_IE_EOC;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
csr &= ~CSR_ENB;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
status = readl(ch->addr + APB_DMA_CHAN_STA);
if (status & STA_ISE_EOC)
writel(status, ch->addr + APB_DMA_CHAN_STA);
}
static int tegra_dma_cancel(struct tegra_dma_channel *ch)
{
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
while (!list_empty(&ch->list))
list_del(ch->list.next);
tegra_dma_stop(ch);
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
static unsigned int get_channel_status(struct tegra_dma_channel *ch,
struct tegra_dma_req *req, bool is_stop_dma)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
unsigned int status;
if (is_stop_dma) {
/*
* STOP the DMA and get the transfer count.
* Getting the transfer count is tricky.
* - Globally disable DMA on all channels
* - Read the channel's status register to know the number
* of pending bytes to be transfered.
* - Stop the dma channel
* - Globally re-enable DMA to resume other transfers
*/
spin_lock(&enable_lock);
writel(0, addr + APB_DMA_GEN);
udelay(20);
status = readl(ch->addr + APB_DMA_CHAN_STA);
tegra_dma_stop(ch);
writel(GEN_ENABLE, addr + APB_DMA_GEN);
spin_unlock(&enable_lock);
if (status & STA_ISE_EOC) {
pr_err("Got Dma Int here clearing");
writel(status, ch->addr + APB_DMA_CHAN_STA);
}
req->status = TEGRA_DMA_REQ_ERROR_ABORTED;
} else {
status = readl(ch->addr + APB_DMA_CHAN_STA);
}
return status;
}
/* should be called with the channel lock held */
static unsigned int dma_active_count(struct tegra_dma_channel *ch,
struct tegra_dma_req *req, unsigned int status)
{
unsigned int to_transfer;
unsigned int req_transfer_count;
unsigned int bytes_transferred;
to_transfer = ((status & STA_COUNT_MASK) >> STA_COUNT_SHIFT) + 1;
req_transfer_count = ch->req_transfer_count + 1;
bytes_transferred = req_transfer_count;
if (status & STA_BUSY)
bytes_transferred -= to_transfer;
/*
* In continuous transfer mode, DMA only tracks the count of the
* half DMA buffer. So, if the DMA already finished half the DMA
* then add the half buffer to the completed count.
*/
if (ch->mode & TEGRA_DMA_MODE_CONTINOUS) {
if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL)
bytes_transferred += req_transfer_count;
if (status & STA_ISE_EOC)
bytes_transferred += req_transfer_count;
}
bytes_transferred *= 4;
return bytes_transferred;
}
int tegra_dma_dequeue_req(struct tegra_dma_channel *ch,
struct tegra_dma_req *_req)
{
unsigned int status;
struct tegra_dma_req *req = NULL;
int found = 0;
unsigned long irq_flags;
int stop = 0;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_entry(ch->list.next, struct tegra_dma_req, node) == _req)
stop = 1;
list_for_each_entry(req, &ch->list, node) {
if (req == _req) {
list_del(&req->node);
found = 1;
break;
}
}
if (!found) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
if (!stop)
goto skip_stop_dma;
status = get_channel_status(ch, req, true);
req->bytes_transferred = dma_active_count(ch, req, status);
if (!list_empty(&ch->list)) {
/* if the list is not empty, queue the next request */
struct tegra_dma_req *next_req;
next_req = list_entry(ch->list.next,
typeof(*next_req), node);
tegra_dma_update_hw(ch, next_req);
}
skip_stop_dma:
req->status = -TEGRA_DMA_REQ_ERROR_ABORTED;
spin_unlock_irqrestore(&ch->lock, irq_flags);
/* Callback should be called without any lock */
req->complete(req);
return 0;
}
EXPORT_SYMBOL(tegra_dma_dequeue_req);
bool tegra_dma_is_empty(struct tegra_dma_channel *ch)
{
unsigned long irq_flags;
bool is_empty;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list))
is_empty = true;
else
is_empty = false;
spin_unlock_irqrestore(&ch->lock, irq_flags);
return is_empty;
}
EXPORT_SYMBOL(tegra_dma_is_empty);
bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch,
struct tegra_dma_req *_req)
{
unsigned long irq_flags;
struct tegra_dma_req *req;
spin_lock_irqsave(&ch->lock, irq_flags);
list_for_each_entry(req, &ch->list, node) {
if (req == _req) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return true;
}
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
return false;
}
EXPORT_SYMBOL(tegra_dma_is_req_inflight);
int tegra_dma_enqueue_req(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
unsigned long irq_flags;
struct tegra_dma_req *_req;
int start_dma = 0;
if (req->size > NV_DMA_MAX_TRASFER_SIZE ||
req->source_addr & 0x3 || req->dest_addr & 0x3) {
pr_err("Invalid DMA request for channel %d\n", ch->id);
return -EINVAL;
}
spin_lock_irqsave(&ch->lock, irq_flags);
list_for_each_entry(_req, &ch->list, node) {
if (req == _req) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return -EEXIST;
}
}
req->bytes_transferred = 0;
req->status = 0;
req->buffer_status = 0;
if (list_empty(&ch->list))
start_dma = 1;
list_add_tail(&req->node, &ch->list);
if (start_dma)
tegra_dma_update_hw(ch, req);
spin_unlock_irqrestore(&ch->lock, irq_flags);
return 0;
}
EXPORT_SYMBOL(tegra_dma_enqueue_req);
struct tegra_dma_channel *tegra_dma_allocate_channel(int mode)
{
int channel;
struct tegra_dma_channel *ch = NULL;
if (!tegra_dma_initialized)
return NULL;
mutex_lock(&tegra_dma_lock);
/* first channel is the shared channel */
if (mode & TEGRA_DMA_SHARED) {
channel = TEGRA_SYSTEM_DMA_CH_MIN;
} else {
channel = find_first_zero_bit(channel_usage,
ARRAY_SIZE(dma_channels));
if (channel >= ARRAY_SIZE(dma_channels))
goto out;
}
__set_bit(channel, channel_usage);
ch = &dma_channels[channel];
ch->mode = mode;
out:
mutex_unlock(&tegra_dma_lock);
return ch;
}
EXPORT_SYMBOL(tegra_dma_allocate_channel);
void tegra_dma_free_channel(struct tegra_dma_channel *ch)
{
if (ch->mode & TEGRA_DMA_SHARED)
return;
tegra_dma_cancel(ch);
mutex_lock(&tegra_dma_lock);
__clear_bit(ch->id, channel_usage);
mutex_unlock(&tegra_dma_lock);
}
EXPORT_SYMBOL(tegra_dma_free_channel);
static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
u32 apb_ptr;
u32 ahb_ptr;
if (req->to_memory) {
apb_ptr = req->source_addr;
ahb_ptr = req->dest_addr;
} else {
apb_ptr = req->dest_addr;
ahb_ptr = req->source_addr;
}
writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR);
writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR);
req->status = TEGRA_DMA_REQ_INFLIGHT;
return;
}
static void tegra_dma_update_hw(struct tegra_dma_channel *ch,
struct tegra_dma_req *req)
{
int ahb_addr_wrap;
int apb_addr_wrap;
int ahb_bus_width;
int apb_bus_width;
int index;
u32 ahb_seq;
u32 apb_seq;
u32 ahb_ptr;
u32 apb_ptr;
u32 csr;
csr = CSR_IE_EOC | CSR_FLOW;
ahb_seq = AHB_SEQ_INTR_ENB | AHB_SEQ_BURST_1;
apb_seq = 0;
csr |= req->req_sel << CSR_REQ_SEL_SHIFT;
/* One shot mode is always single buffered,
* continuous mode is always double buffered
* */
if (ch->mode & TEGRA_DMA_MODE_ONESHOT) {
csr |= CSR_ONCE;
ch->req_transfer_count = (req->size >> 2) - 1;
} else {
ahb_seq |= AHB_SEQ_DBL_BUF;
/* In double buffered mode, we set the size to half the
* requested size and interrupt when half the buffer
* is full */
ch->req_transfer_count = (req->size >> 3) - 1;
}
csr |= ch->req_transfer_count << CSR_WCOUNT_SHIFT;
if (req->to_memory) {
apb_ptr = req->source_addr;
ahb_ptr = req->dest_addr;
apb_addr_wrap = req->source_wrap;
ahb_addr_wrap = req->dest_wrap;
apb_bus_width = req->source_bus_width;
ahb_bus_width = req->dest_bus_width;
} else {
csr |= CSR_DIR;
apb_ptr = req->dest_addr;
ahb_ptr = req->source_addr;
apb_addr_wrap = req->dest_wrap;
ahb_addr_wrap = req->source_wrap;
apb_bus_width = req->dest_bus_width;
ahb_bus_width = req->source_bus_width;
}
apb_addr_wrap >>= 2;
ahb_addr_wrap >>= 2;
/* set address wrap for APB size */
index = 0;
do {
if (apb_addr_wrap_table[index] == apb_addr_wrap)
break;
index++;
} while (index < ARRAY_SIZE(apb_addr_wrap_table));
BUG_ON(index == ARRAY_SIZE(apb_addr_wrap_table));
apb_seq |= index << APB_SEQ_WRAP_SHIFT;
/* set address wrap for AHB size */
index = 0;
do {
if (ahb_addr_wrap_table[index] == ahb_addr_wrap)
break;
index++;
} while (index < ARRAY_SIZE(ahb_addr_wrap_table));
BUG_ON(index == ARRAY_SIZE(ahb_addr_wrap_table));
ahb_seq |= index << AHB_SEQ_WRAP_SHIFT;
for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) {
if (bus_width_table[index] == ahb_bus_width)
break;
}
BUG_ON(index == ARRAY_SIZE(bus_width_table));
ahb_seq |= index << AHB_SEQ_BUS_WIDTH_SHIFT;
for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) {
if (bus_width_table[index] == apb_bus_width)
break;
}
BUG_ON(index == ARRAY_SIZE(bus_width_table));
apb_seq |= index << APB_SEQ_BUS_WIDTH_SHIFT;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
writel(apb_seq, ch->addr + APB_DMA_CHAN_APB_SEQ);
writel(apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR);
writel(ahb_seq, ch->addr + APB_DMA_CHAN_AHB_SEQ);
writel(ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR);
csr |= CSR_ENB;
writel(csr, ch->addr + APB_DMA_CHAN_CSR);
req->status = TEGRA_DMA_REQ_INFLIGHT;
}
static void handle_oneshot_dma(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list)) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return;
}
req = list_entry(ch->list.next, typeof(*req), node);
if (req) {
int bytes_transferred;
bytes_transferred = ch->req_transfer_count;
bytes_transferred += 1;
bytes_transferred <<= 2;
list_del(&req->node);
req->bytes_transferred = bytes_transferred;
req->status = TEGRA_DMA_REQ_SUCCESS;
spin_unlock_irqrestore(&ch->lock, irq_flags);
/* Callback should be called without any lock */
pr_debug("%s: transferred %d bytes\n", __func__,
req->bytes_transferred);
req->complete(req);
spin_lock_irqsave(&ch->lock, irq_flags);
}
if (!list_empty(&ch->list)) {
req = list_entry(ch->list.next, typeof(*req), node);
/* the complete function we just called may have enqueued
another req, in which case dma has already started */
if (req->status != TEGRA_DMA_REQ_INFLIGHT)
tegra_dma_update_hw(ch, req);
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
}
static void handle_continuous_dma(struct tegra_dma_channel *ch)
{
struct tegra_dma_req *req;
unsigned long irq_flags;
spin_lock_irqsave(&ch->lock, irq_flags);
if (list_empty(&ch->list)) {
spin_unlock_irqrestore(&ch->lock, irq_flags);
return;
}
req = list_entry(ch->list.next, typeof(*req), node);
if (req) {
if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_EMPTY) {
bool is_dma_ping_complete;
is_dma_ping_complete = (readl(ch->addr + APB_DMA_CHAN_STA)
& STA_PING_PONG) ? true : false;
if (req->to_memory)
is_dma_ping_complete = !is_dma_ping_complete;
/* Out of sync - Release current buffer */
if (!is_dma_ping_complete) {
int bytes_transferred;
bytes_transferred = ch->req_transfer_count;
bytes_transferred += 1;
bytes_transferred <<= 3;
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL;
req->bytes_transferred = bytes_transferred;
req->status = TEGRA_DMA_REQ_SUCCESS;
tegra_dma_stop(ch);
if (!list_is_last(&req->node, &ch->list)) {
struct tegra_dma_req *next_req;
next_req = list_entry(req->node.next,
typeof(*next_req), node);
tegra_dma_update_hw(ch, next_req);
}
list_del(&req->node);
/* DMA lock is NOT held when callbak is called */
spin_unlock_irqrestore(&ch->lock, irq_flags);
req->complete(req);
return;
}
/* Load the next request into the hardware, if available
* */
if (!list_is_last(&req->node, &ch->list)) {
struct tegra_dma_req *next_req;
next_req = list_entry(req->node.next,
typeof(*next_req), node);
tegra_dma_update_hw_partial(ch, next_req);
}
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL;
req->status = TEGRA_DMA_REQ_SUCCESS;
/* DMA lock is NOT held when callback is called */
spin_unlock_irqrestore(&ch->lock, irq_flags);
if (likely(req->threshold))
req->threshold(req);
return;
} else if (req->buffer_status ==
TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) {
/* Callback when the buffer is completely full (i.e on
* the second interrupt */
int bytes_transferred;
bytes_transferred = ch->req_transfer_count;
bytes_transferred += 1;
bytes_transferred <<= 3;
req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL;
req->bytes_transferred = bytes_transferred;
req->status = TEGRA_DMA_REQ_SUCCESS;
list_del(&req->node);
/* DMA lock is NOT held when callbak is called */
spin_unlock_irqrestore(&ch->lock, irq_flags);
req->complete(req);
return;
} else {
BUG();
}
}
spin_unlock_irqrestore(&ch->lock, irq_flags);
}
static irqreturn_t dma_isr(int irq, void *data)
{
struct tegra_dma_channel *ch = data;
unsigned long status;
status = readl(ch->addr + APB_DMA_CHAN_STA);
if (status & STA_ISE_EOC)
writel(status, ch->addr + APB_DMA_CHAN_STA);
else {
pr_warning("Got a spurious ISR for DMA channel %d\n", ch->id);
return IRQ_HANDLED;
}
return IRQ_WAKE_THREAD;
}
static irqreturn_t dma_thread_fn(int irq, void *data)
{
struct tegra_dma_channel *ch = data;
if (ch->mode & TEGRA_DMA_MODE_ONESHOT)
handle_oneshot_dma(ch);
else
handle_continuous_dma(ch);
return IRQ_HANDLED;
}
int __init tegra_dma_init(void)
{
int ret = 0;
int i;
unsigned int irq;
void __iomem *addr;
struct clk *c;
bitmap_fill(channel_usage, NV_DMA_MAX_CHANNELS);
c = clk_get_sys("tegra-dma", NULL);
if (IS_ERR(c)) {
pr_err("Unable to get clock for APB DMA\n");
ret = PTR_ERR(c);
goto fail;
}
ret = clk_enable(c);
if (ret != 0) {
pr_err("Unable to enable clock for APB DMA\n");
goto fail;
}
addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
writel(GEN_ENABLE, addr + APB_DMA_GEN);
writel(0, addr + APB_DMA_CNTRL);
writel(0xFFFFFFFFul >> (31 - TEGRA_SYSTEM_DMA_CH_MAX),
addr + APB_DMA_IRQ_MASK_SET);
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
ch->id = i;
snprintf(ch->name, TEGRA_DMA_NAME_SIZE, "dma_channel_%d", i);
ch->addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
spin_lock_init(&ch->lock);
INIT_LIST_HEAD(&ch->list);
irq = INT_APB_DMA_CH0 + i;
ret = request_threaded_irq(irq, dma_isr, dma_thread_fn, 0,
dma_channels[i].name, ch);
if (ret) {
pr_err("Failed to register IRQ %d for DMA %d\n",
irq, i);
goto fail;
}
ch->irq = irq;
__clear_bit(i, channel_usage);
}
/* mark the shared channel allocated */
__set_bit(TEGRA_SYSTEM_DMA_CH_MIN, channel_usage);
tegra_dma_initialized = true;
return 0;
fail:
writel(0, addr + APB_DMA_GEN);
for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) {
struct tegra_dma_channel *ch = &dma_channels[i];
if (ch->irq)
free_irq(ch->irq, ch);
}
return ret;
}
postcore_initcall(tegra_dma_init);
#ifdef CONFIG_PM
static u32 apb_dma[5*TEGRA_SYSTEM_DMA_CH_NR + 3];
void tegra_dma_suspend(void)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
u32 *ctx = apb_dma;
int i;
*ctx++ = readl(addr + APB_DMA_GEN);
*ctx++ = readl(addr + APB_DMA_CNTRL);
*ctx++ = readl(addr + APB_DMA_IRQ_MASK);
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) {
addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
*ctx++ = readl(addr + APB_DMA_CHAN_CSR);
*ctx++ = readl(addr + APB_DMA_CHAN_AHB_PTR);
*ctx++ = readl(addr + APB_DMA_CHAN_AHB_SEQ);
*ctx++ = readl(addr + APB_DMA_CHAN_APB_PTR);
*ctx++ = readl(addr + APB_DMA_CHAN_APB_SEQ);
}
}
void tegra_dma_resume(void)
{
void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
u32 *ctx = apb_dma;
int i;
writel(*ctx++, addr + APB_DMA_GEN);
writel(*ctx++, addr + APB_DMA_CNTRL);
writel(*ctx++, addr + APB_DMA_IRQ_MASK);
for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) {
addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE +
TEGRA_APB_DMA_CH0_SIZE * i);
writel(*ctx++, addr + APB_DMA_CHAN_CSR);
writel(*ctx++, addr + APB_DMA_CHAN_AHB_PTR);
writel(*ctx++, addr + APB_DMA_CHAN_AHB_SEQ);
writel(*ctx++, addr + APB_DMA_CHAN_APB_PTR);
writel(*ctx++, addr + APB_DMA_CHAN_APB_SEQ);
}
}
#endif