1706 lines
45 KiB
C
1706 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Stress userfaultfd syscall.
|
|
*
|
|
* Copyright (C) 2015 Red Hat, Inc.
|
|
*
|
|
* This test allocates two virtual areas and bounces the physical
|
|
* memory across the two virtual areas (from area_src to area_dst)
|
|
* using userfaultfd.
|
|
*
|
|
* There are three threads running per CPU:
|
|
*
|
|
* 1) one per-CPU thread takes a per-page pthread_mutex in a random
|
|
* page of the area_dst (while the physical page may still be in
|
|
* area_src), and increments a per-page counter in the same page,
|
|
* and checks its value against a verification region.
|
|
*
|
|
* 2) another per-CPU thread handles the userfaults generated by
|
|
* thread 1 above. userfaultfd blocking reads or poll() modes are
|
|
* exercised interleaved.
|
|
*
|
|
* 3) one last per-CPU thread transfers the memory in the background
|
|
* at maximum bandwidth (if not already transferred by thread
|
|
* 2). Each cpu thread takes cares of transferring a portion of the
|
|
* area.
|
|
*
|
|
* When all threads of type 3 completed the transfer, one bounce is
|
|
* complete. area_src and area_dst are then swapped. All threads are
|
|
* respawned and so the bounce is immediately restarted in the
|
|
* opposite direction.
|
|
*
|
|
* per-CPU threads 1 by triggering userfaults inside
|
|
* pthread_mutex_lock will also verify the atomicity of the memory
|
|
* transfer (UFFDIO_COPY).
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <time.h>
|
|
#include <signal.h>
|
|
#include <poll.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/wait.h>
|
|
#include <pthread.h>
|
|
#include <linux/userfaultfd.h>
|
|
#include <setjmp.h>
|
|
#include <stdbool.h>
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdint.h>
|
|
#include <sys/random.h>
|
|
|
|
#include "../kselftest.h"
|
|
|
|
#ifdef __NR_userfaultfd
|
|
|
|
static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
|
|
|
|
#define BOUNCE_RANDOM (1<<0)
|
|
#define BOUNCE_RACINGFAULTS (1<<1)
|
|
#define BOUNCE_VERIFY (1<<2)
|
|
#define BOUNCE_POLL (1<<3)
|
|
static int bounces;
|
|
|
|
#define TEST_ANON 1
|
|
#define TEST_HUGETLB 2
|
|
#define TEST_SHMEM 3
|
|
static int test_type;
|
|
|
|
/* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */
|
|
#define ALARM_INTERVAL_SECS 10
|
|
static volatile bool test_uffdio_copy_eexist = true;
|
|
static volatile bool test_uffdio_zeropage_eexist = true;
|
|
/* Whether to test uffd write-protection */
|
|
static bool test_uffdio_wp = false;
|
|
/* Whether to test uffd minor faults */
|
|
static bool test_uffdio_minor = false;
|
|
|
|
static bool map_shared;
|
|
static int shm_fd;
|
|
static int huge_fd;
|
|
static char *huge_fd_off0;
|
|
static unsigned long long *count_verify;
|
|
static int uffd = -1;
|
|
static int uffd_flags, finished, *pipefd;
|
|
static char *area_src, *area_src_alias, *area_dst, *area_dst_alias;
|
|
static char *zeropage;
|
|
pthread_attr_t attr;
|
|
|
|
/* Userfaultfd test statistics */
|
|
struct uffd_stats {
|
|
int cpu;
|
|
unsigned long missing_faults;
|
|
unsigned long wp_faults;
|
|
unsigned long minor_faults;
|
|
};
|
|
|
|
/* pthread_mutex_t starts at page offset 0 */
|
|
#define area_mutex(___area, ___nr) \
|
|
((pthread_mutex_t *) ((___area) + (___nr)*page_size))
|
|
/*
|
|
* count is placed in the page after pthread_mutex_t naturally aligned
|
|
* to avoid non alignment faults on non-x86 archs.
|
|
*/
|
|
#define area_count(___area, ___nr) \
|
|
((volatile unsigned long long *) ((unsigned long) \
|
|
((___area) + (___nr)*page_size + \
|
|
sizeof(pthread_mutex_t) + \
|
|
sizeof(unsigned long long) - 1) & \
|
|
~(unsigned long)(sizeof(unsigned long long) \
|
|
- 1)))
|
|
|
|
const char *examples =
|
|
"# Run anonymous memory test on 100MiB region with 99999 bounces:\n"
|
|
"./userfaultfd anon 100 99999\n\n"
|
|
"# Run share memory test on 1GiB region with 99 bounces:\n"
|
|
"./userfaultfd shmem 1000 99\n\n"
|
|
"# Run hugetlb memory test on 256MiB region with 50 bounces (using /dev/hugepages/hugefile):\n"
|
|
"./userfaultfd hugetlb 256 50 /dev/hugepages/hugefile\n\n"
|
|
"# Run the same hugetlb test but using shmem:\n"
|
|
"./userfaultfd hugetlb_shared 256 50 /dev/hugepages/hugefile\n\n"
|
|
"# 10MiB-~6GiB 999 bounces anonymous test, "
|
|
"continue forever unless an error triggers\n"
|
|
"while ./userfaultfd anon $[RANDOM % 6000 + 10] 999; do true; done\n\n";
|
|
|
|
static void usage(void)
|
|
{
|
|
fprintf(stderr, "\nUsage: ./userfaultfd <test type> <MiB> <bounces> "
|
|
"[hugetlbfs_file]\n\n");
|
|
fprintf(stderr, "Supported <test type>: anon, hugetlb, "
|
|
"hugetlb_shared, shmem\n\n");
|
|
fprintf(stderr, "Examples:\n\n");
|
|
fprintf(stderr, "%s", examples);
|
|
exit(1);
|
|
}
|
|
|
|
#define _err(fmt, ...) \
|
|
do { \
|
|
int ret = errno; \
|
|
fprintf(stderr, "ERROR: " fmt, ##__VA_ARGS__); \
|
|
fprintf(stderr, " (errno=%d, line=%d)\n", \
|
|
ret, __LINE__); \
|
|
} while (0)
|
|
|
|
#define err(fmt, ...) \
|
|
do { \
|
|
_err(fmt, ##__VA_ARGS__); \
|
|
exit(1); \
|
|
} while (0)
|
|
|
|
static void uffd_stats_reset(struct uffd_stats *uffd_stats,
|
|
unsigned long n_cpus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n_cpus; i++) {
|
|
uffd_stats[i].cpu = i;
|
|
uffd_stats[i].missing_faults = 0;
|
|
uffd_stats[i].wp_faults = 0;
|
|
uffd_stats[i].minor_faults = 0;
|
|
}
|
|
}
|
|
|
|
static void uffd_stats_report(struct uffd_stats *stats, int n_cpus)
|
|
{
|
|
int i;
|
|
unsigned long long miss_total = 0, wp_total = 0, minor_total = 0;
|
|
|
|
for (i = 0; i < n_cpus; i++) {
|
|
miss_total += stats[i].missing_faults;
|
|
wp_total += stats[i].wp_faults;
|
|
minor_total += stats[i].minor_faults;
|
|
}
|
|
|
|
printf("userfaults: ");
|
|
if (miss_total) {
|
|
printf("%llu missing (", miss_total);
|
|
for (i = 0; i < n_cpus; i++)
|
|
printf("%lu+", stats[i].missing_faults);
|
|
printf("\b) ");
|
|
}
|
|
if (wp_total) {
|
|
printf("%llu wp (", wp_total);
|
|
for (i = 0; i < n_cpus; i++)
|
|
printf("%lu+", stats[i].wp_faults);
|
|
printf("\b) ");
|
|
}
|
|
if (minor_total) {
|
|
printf("%llu minor (", minor_total);
|
|
for (i = 0; i < n_cpus; i++)
|
|
printf("%lu+", stats[i].minor_faults);
|
|
printf("\b)");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void anon_release_pages(char *rel_area)
|
|
{
|
|
if (madvise(rel_area, nr_pages * page_size, MADV_DONTNEED))
|
|
err("madvise(MADV_DONTNEED) failed");
|
|
}
|
|
|
|
static void anon_allocate_area(void **alloc_area)
|
|
{
|
|
*alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
|
if (*alloc_area == MAP_FAILED)
|
|
err("mmap of anonymous memory failed");
|
|
}
|
|
|
|
static void noop_alias_mapping(__u64 *start, size_t len, unsigned long offset)
|
|
{
|
|
}
|
|
|
|
static void hugetlb_release_pages(char *rel_area)
|
|
{
|
|
if (fallocate(huge_fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
|
|
rel_area == huge_fd_off0 ? 0 : nr_pages * page_size,
|
|
nr_pages * page_size))
|
|
err("fallocate() failed");
|
|
}
|
|
|
|
static void hugetlb_allocate_area(void **alloc_area)
|
|
{
|
|
void *area_alias = NULL;
|
|
char **alloc_area_alias;
|
|
|
|
*alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
|
|
(map_shared ? MAP_SHARED : MAP_PRIVATE) |
|
|
MAP_HUGETLB,
|
|
huge_fd, *alloc_area == area_src ? 0 :
|
|
nr_pages * page_size);
|
|
if (*alloc_area == MAP_FAILED)
|
|
err("mmap of hugetlbfs file failed");
|
|
|
|
if (map_shared) {
|
|
area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_HUGETLB,
|
|
huge_fd, *alloc_area == area_src ? 0 :
|
|
nr_pages * page_size);
|
|
if (area_alias == MAP_FAILED)
|
|
err("mmap of hugetlb file alias failed");
|
|
}
|
|
|
|
if (*alloc_area == area_src) {
|
|
huge_fd_off0 = *alloc_area;
|
|
alloc_area_alias = &area_src_alias;
|
|
} else {
|
|
alloc_area_alias = &area_dst_alias;
|
|
}
|
|
if (area_alias)
|
|
*alloc_area_alias = area_alias;
|
|
}
|
|
|
|
static void hugetlb_alias_mapping(__u64 *start, size_t len, unsigned long offset)
|
|
{
|
|
if (!map_shared)
|
|
return;
|
|
/*
|
|
* We can't zap just the pagetable with hugetlbfs because
|
|
* MADV_DONTEED won't work. So exercise -EEXIST on a alias
|
|
* mapping where the pagetables are not established initially,
|
|
* this way we'll exercise the -EEXEC at the fs level.
|
|
*/
|
|
*start = (unsigned long) area_dst_alias + offset;
|
|
}
|
|
|
|
static void shmem_release_pages(char *rel_area)
|
|
{
|
|
if (madvise(rel_area, nr_pages * page_size, MADV_REMOVE))
|
|
err("madvise(MADV_REMOVE) failed");
|
|
}
|
|
|
|
static void shmem_allocate_area(void **alloc_area)
|
|
{
|
|
void *area_alias = NULL;
|
|
bool is_src = alloc_area == (void **)&area_src;
|
|
unsigned long offset = is_src ? 0 : nr_pages * page_size;
|
|
|
|
*alloc_area = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, shm_fd, offset);
|
|
if (*alloc_area == MAP_FAILED)
|
|
err("mmap of memfd failed");
|
|
|
|
area_alias = mmap(NULL, nr_pages * page_size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, shm_fd, offset);
|
|
if (area_alias == MAP_FAILED)
|
|
err("mmap of memfd alias failed");
|
|
|
|
if (is_src)
|
|
area_src_alias = area_alias;
|
|
else
|
|
area_dst_alias = area_alias;
|
|
}
|
|
|
|
static void shmem_alias_mapping(__u64 *start, size_t len, unsigned long offset)
|
|
{
|
|
*start = (unsigned long)area_dst_alias + offset;
|
|
}
|
|
|
|
struct uffd_test_ops {
|
|
void (*allocate_area)(void **alloc_area);
|
|
void (*release_pages)(char *rel_area);
|
|
void (*alias_mapping)(__u64 *start, size_t len, unsigned long offset);
|
|
};
|
|
|
|
static struct uffd_test_ops anon_uffd_test_ops = {
|
|
.allocate_area = anon_allocate_area,
|
|
.release_pages = anon_release_pages,
|
|
.alias_mapping = noop_alias_mapping,
|
|
};
|
|
|
|
static struct uffd_test_ops shmem_uffd_test_ops = {
|
|
.allocate_area = shmem_allocate_area,
|
|
.release_pages = shmem_release_pages,
|
|
.alias_mapping = shmem_alias_mapping,
|
|
};
|
|
|
|
static struct uffd_test_ops hugetlb_uffd_test_ops = {
|
|
.allocate_area = hugetlb_allocate_area,
|
|
.release_pages = hugetlb_release_pages,
|
|
.alias_mapping = hugetlb_alias_mapping,
|
|
};
|
|
|
|
static struct uffd_test_ops *uffd_test_ops;
|
|
|
|
static inline uint64_t uffd_minor_feature(void)
|
|
{
|
|
if (test_type == TEST_HUGETLB && map_shared)
|
|
return UFFD_FEATURE_MINOR_HUGETLBFS;
|
|
else if (test_type == TEST_SHMEM)
|
|
return UFFD_FEATURE_MINOR_SHMEM;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t get_expected_ioctls(uint64_t mode)
|
|
{
|
|
uint64_t ioctls = UFFD_API_RANGE_IOCTLS;
|
|
|
|
if (test_type == TEST_HUGETLB)
|
|
ioctls &= ~(1 << _UFFDIO_ZEROPAGE);
|
|
|
|
if (!((mode & UFFDIO_REGISTER_MODE_WP) && test_uffdio_wp))
|
|
ioctls &= ~(1 << _UFFDIO_WRITEPROTECT);
|
|
|
|
if (!((mode & UFFDIO_REGISTER_MODE_MINOR) && test_uffdio_minor))
|
|
ioctls &= ~(1 << _UFFDIO_CONTINUE);
|
|
|
|
return ioctls;
|
|
}
|
|
|
|
static void assert_expected_ioctls_present(uint64_t mode, uint64_t ioctls)
|
|
{
|
|
uint64_t expected = get_expected_ioctls(mode);
|
|
uint64_t actual = ioctls & expected;
|
|
|
|
if (actual != expected) {
|
|
err("missing ioctl(s): expected %"PRIx64" actual: %"PRIx64,
|
|
expected, actual);
|
|
}
|
|
}
|
|
|
|
static void userfaultfd_open(uint64_t *features)
|
|
{
|
|
struct uffdio_api uffdio_api;
|
|
|
|
uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK | UFFD_USER_MODE_ONLY);
|
|
if (uffd < 0)
|
|
err("userfaultfd syscall not available in this kernel");
|
|
uffd_flags = fcntl(uffd, F_GETFD, NULL);
|
|
|
|
uffdio_api.api = UFFD_API;
|
|
uffdio_api.features = *features;
|
|
if (ioctl(uffd, UFFDIO_API, &uffdio_api))
|
|
err("UFFDIO_API failed.\nPlease make sure to "
|
|
"run with either root or ptrace capability.");
|
|
if (uffdio_api.api != UFFD_API)
|
|
err("UFFDIO_API error: %" PRIu64, (uint64_t)uffdio_api.api);
|
|
|
|
*features = uffdio_api.features;
|
|
}
|
|
|
|
static inline void munmap_area(void **area)
|
|
{
|
|
if (*area)
|
|
if (munmap(*area, nr_pages * page_size))
|
|
err("munmap");
|
|
|
|
*area = NULL;
|
|
}
|
|
|
|
static void uffd_test_ctx_clear(void)
|
|
{
|
|
size_t i;
|
|
|
|
if (pipefd) {
|
|
for (i = 0; i < nr_cpus * 2; ++i) {
|
|
if (close(pipefd[i]))
|
|
err("close pipefd");
|
|
}
|
|
free(pipefd);
|
|
pipefd = NULL;
|
|
}
|
|
|
|
if (count_verify) {
|
|
free(count_verify);
|
|
count_verify = NULL;
|
|
}
|
|
|
|
if (uffd != -1) {
|
|
if (close(uffd))
|
|
err("close uffd");
|
|
uffd = -1;
|
|
}
|
|
|
|
huge_fd_off0 = NULL;
|
|
munmap_area((void **)&area_src);
|
|
munmap_area((void **)&area_src_alias);
|
|
munmap_area((void **)&area_dst);
|
|
munmap_area((void **)&area_dst_alias);
|
|
}
|
|
|
|
static void uffd_test_ctx_init(uint64_t features)
|
|
{
|
|
unsigned long nr, cpu;
|
|
|
|
uffd_test_ctx_clear();
|
|
|
|
uffd_test_ops->allocate_area((void **)&area_src);
|
|
uffd_test_ops->allocate_area((void **)&area_dst);
|
|
|
|
userfaultfd_open(&features);
|
|
|
|
count_verify = malloc(nr_pages * sizeof(unsigned long long));
|
|
if (!count_verify)
|
|
err("count_verify");
|
|
|
|
for (nr = 0; nr < nr_pages; nr++) {
|
|
*area_mutex(area_src, nr) =
|
|
(pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER;
|
|
count_verify[nr] = *area_count(area_src, nr) = 1;
|
|
/*
|
|
* In the transition between 255 to 256, powerpc will
|
|
* read out of order in my_bcmp and see both bytes as
|
|
* zero, so leave a placeholder below always non-zero
|
|
* after the count, to avoid my_bcmp to trigger false
|
|
* positives.
|
|
*/
|
|
*(area_count(area_src, nr) + 1) = 1;
|
|
}
|
|
|
|
/*
|
|
* After initialization of area_src, we must explicitly release pages
|
|
* for area_dst to make sure it's fully empty. Otherwise we could have
|
|
* some area_dst pages be errornously initialized with zero pages,
|
|
* hence we could hit memory corruption later in the test.
|
|
*
|
|
* One example is when THP is globally enabled, above allocate_area()
|
|
* calls could have the two areas merged into a single VMA (as they
|
|
* will have the same VMA flags so they're mergeable). When we
|
|
* initialize the area_src above, it's possible that some part of
|
|
* area_dst could have been faulted in via one huge THP that will be
|
|
* shared between area_src and area_dst. It could cause some of the
|
|
* area_dst won't be trapped by missing userfaults.
|
|
*
|
|
* This release_pages() will guarantee even if that happened, we'll
|
|
* proactively split the thp and drop any accidentally initialized
|
|
* pages within area_dst.
|
|
*/
|
|
uffd_test_ops->release_pages(area_dst);
|
|
|
|
pipefd = malloc(sizeof(int) * nr_cpus * 2);
|
|
if (!pipefd)
|
|
err("pipefd");
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
if (pipe2(&pipefd[cpu * 2], O_CLOEXEC | O_NONBLOCK))
|
|
err("pipe");
|
|
}
|
|
|
|
static int my_bcmp(char *str1, char *str2, size_t n)
|
|
{
|
|
unsigned long i;
|
|
for (i = 0; i < n; i++)
|
|
if (str1[i] != str2[i])
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void wp_range(int ufd, __u64 start, __u64 len, bool wp)
|
|
{
|
|
struct uffdio_writeprotect prms;
|
|
|
|
/* Write protection page faults */
|
|
prms.range.start = start;
|
|
prms.range.len = len;
|
|
/* Undo write-protect, do wakeup after that */
|
|
prms.mode = wp ? UFFDIO_WRITEPROTECT_MODE_WP : 0;
|
|
|
|
if (ioctl(ufd, UFFDIO_WRITEPROTECT, &prms))
|
|
err("clear WP failed: address=0x%"PRIx64, (uint64_t)start);
|
|
}
|
|
|
|
static void continue_range(int ufd, __u64 start, __u64 len)
|
|
{
|
|
struct uffdio_continue req;
|
|
int ret;
|
|
|
|
req.range.start = start;
|
|
req.range.len = len;
|
|
req.mode = 0;
|
|
|
|
if (ioctl(ufd, UFFDIO_CONTINUE, &req))
|
|
err("UFFDIO_CONTINUE failed for address 0x%" PRIx64,
|
|
(uint64_t)start);
|
|
|
|
/*
|
|
* Error handling within the kernel for continue is subtly different
|
|
* from copy or zeropage, so it may be a source of bugs. Trigger an
|
|
* error (-EEXIST) on purpose, to verify doing so doesn't cause a BUG.
|
|
*/
|
|
req.mapped = 0;
|
|
ret = ioctl(ufd, UFFDIO_CONTINUE, &req);
|
|
if (ret >= 0 || req.mapped != -EEXIST)
|
|
err("failed to exercise UFFDIO_CONTINUE error handling, ret=%d, mapped=%" PRId64,
|
|
ret, (int64_t) req.mapped);
|
|
}
|
|
|
|
static void *locking_thread(void *arg)
|
|
{
|
|
unsigned long cpu = (unsigned long) arg;
|
|
unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
|
|
unsigned long long count;
|
|
|
|
if (!(bounces & BOUNCE_RANDOM)) {
|
|
page_nr = -bounces;
|
|
if (!(bounces & BOUNCE_RACINGFAULTS))
|
|
page_nr += cpu * nr_pages_per_cpu;
|
|
}
|
|
|
|
while (!finished) {
|
|
if (bounces & BOUNCE_RANDOM) {
|
|
if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr))
|
|
err("getrandom failed");
|
|
} else
|
|
page_nr += 1;
|
|
page_nr %= nr_pages;
|
|
pthread_mutex_lock(area_mutex(area_dst, page_nr));
|
|
count = *area_count(area_dst, page_nr);
|
|
if (count != count_verify[page_nr])
|
|
err("page_nr %lu memory corruption %llu %llu",
|
|
page_nr, count, count_verify[page_nr]);
|
|
count++;
|
|
*area_count(area_dst, page_nr) = count_verify[page_nr] = count;
|
|
pthread_mutex_unlock(area_mutex(area_dst, page_nr));
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void retry_copy_page(int ufd, struct uffdio_copy *uffdio_copy,
|
|
unsigned long offset)
|
|
{
|
|
uffd_test_ops->alias_mapping(&uffdio_copy->dst,
|
|
uffdio_copy->len,
|
|
offset);
|
|
if (ioctl(ufd, UFFDIO_COPY, uffdio_copy)) {
|
|
/* real retval in ufdio_copy.copy */
|
|
if (uffdio_copy->copy != -EEXIST)
|
|
err("UFFDIO_COPY retry error: %"PRId64,
|
|
(int64_t)uffdio_copy->copy);
|
|
} else {
|
|
err("UFFDIO_COPY retry unexpected: %"PRId64,
|
|
(int64_t)uffdio_copy->copy);
|
|
}
|
|
}
|
|
|
|
static void wake_range(int ufd, unsigned long addr, unsigned long len)
|
|
{
|
|
struct uffdio_range uffdio_wake;
|
|
|
|
uffdio_wake.start = addr;
|
|
uffdio_wake.len = len;
|
|
|
|
if (ioctl(ufd, UFFDIO_WAKE, &uffdio_wake))
|
|
fprintf(stderr, "error waking %lu\n",
|
|
addr), exit(1);
|
|
}
|
|
|
|
static int __copy_page(int ufd, unsigned long offset, bool retry)
|
|
{
|
|
struct uffdio_copy uffdio_copy;
|
|
|
|
if (offset >= nr_pages * page_size)
|
|
err("unexpected offset %lu\n", offset);
|
|
uffdio_copy.dst = (unsigned long) area_dst + offset;
|
|
uffdio_copy.src = (unsigned long) area_src + offset;
|
|
uffdio_copy.len = page_size;
|
|
if (test_uffdio_wp)
|
|
uffdio_copy.mode = UFFDIO_COPY_MODE_WP;
|
|
else
|
|
uffdio_copy.mode = 0;
|
|
uffdio_copy.copy = 0;
|
|
if (ioctl(ufd, UFFDIO_COPY, &uffdio_copy)) {
|
|
/* real retval in ufdio_copy.copy */
|
|
if (uffdio_copy.copy != -EEXIST)
|
|
err("UFFDIO_COPY error: %"PRId64,
|
|
(int64_t)uffdio_copy.copy);
|
|
wake_range(ufd, uffdio_copy.dst, page_size);
|
|
} else if (uffdio_copy.copy != page_size) {
|
|
err("UFFDIO_COPY error: %"PRId64, (int64_t)uffdio_copy.copy);
|
|
} else {
|
|
if (test_uffdio_copy_eexist && retry) {
|
|
test_uffdio_copy_eexist = false;
|
|
retry_copy_page(ufd, &uffdio_copy, offset);
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int copy_page_retry(int ufd, unsigned long offset)
|
|
{
|
|
return __copy_page(ufd, offset, true);
|
|
}
|
|
|
|
static int copy_page(int ufd, unsigned long offset)
|
|
{
|
|
return __copy_page(ufd, offset, false);
|
|
}
|
|
|
|
static int uffd_read_msg(int ufd, struct uffd_msg *msg)
|
|
{
|
|
int ret = read(uffd, msg, sizeof(*msg));
|
|
|
|
if (ret != sizeof(*msg)) {
|
|
if (ret < 0) {
|
|
if (errno == EAGAIN)
|
|
return 1;
|
|
err("blocking read error");
|
|
} else {
|
|
err("short read");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uffd_handle_page_fault(struct uffd_msg *msg,
|
|
struct uffd_stats *stats)
|
|
{
|
|
unsigned long offset;
|
|
|
|
if (msg->event != UFFD_EVENT_PAGEFAULT)
|
|
err("unexpected msg event %u", msg->event);
|
|
|
|
if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP) {
|
|
/* Write protect page faults */
|
|
wp_range(uffd, msg->arg.pagefault.address, page_size, false);
|
|
stats->wp_faults++;
|
|
} else if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) {
|
|
uint8_t *area;
|
|
int b;
|
|
|
|
/*
|
|
* Minor page faults
|
|
*
|
|
* To prove we can modify the original range for testing
|
|
* purposes, we're going to bit flip this range before
|
|
* continuing.
|
|
*
|
|
* Note that this requires all minor page fault tests operate on
|
|
* area_dst (non-UFFD-registered) and area_dst_alias
|
|
* (UFFD-registered).
|
|
*/
|
|
|
|
area = (uint8_t *)(area_dst +
|
|
((char *)msg->arg.pagefault.address -
|
|
area_dst_alias));
|
|
for (b = 0; b < page_size; ++b)
|
|
area[b] = ~area[b];
|
|
continue_range(uffd, msg->arg.pagefault.address, page_size);
|
|
stats->minor_faults++;
|
|
} else {
|
|
/* Missing page faults */
|
|
if (msg->arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
|
|
err("unexpected write fault");
|
|
|
|
offset = (char *)(unsigned long)msg->arg.pagefault.address - area_dst;
|
|
offset &= ~(page_size-1);
|
|
|
|
if (copy_page(uffd, offset))
|
|
stats->missing_faults++;
|
|
}
|
|
}
|
|
|
|
static void *uffd_poll_thread(void *arg)
|
|
{
|
|
struct uffd_stats *stats = (struct uffd_stats *)arg;
|
|
unsigned long cpu = stats->cpu;
|
|
struct pollfd pollfd[2];
|
|
struct uffd_msg msg;
|
|
struct uffdio_register uffd_reg;
|
|
int ret;
|
|
char tmp_chr;
|
|
|
|
pollfd[0].fd = uffd;
|
|
pollfd[0].events = POLLIN;
|
|
pollfd[1].fd = pipefd[cpu*2];
|
|
pollfd[1].events = POLLIN;
|
|
|
|
for (;;) {
|
|
ret = poll(pollfd, 2, -1);
|
|
if (ret <= 0)
|
|
err("poll error: %d", ret);
|
|
if (pollfd[1].revents & POLLIN) {
|
|
if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
|
|
err("read pipefd error");
|
|
break;
|
|
}
|
|
if (!(pollfd[0].revents & POLLIN))
|
|
err("pollfd[0].revents %d", pollfd[0].revents);
|
|
if (uffd_read_msg(uffd, &msg))
|
|
continue;
|
|
switch (msg.event) {
|
|
default:
|
|
err("unexpected msg event %u\n", msg.event);
|
|
break;
|
|
case UFFD_EVENT_PAGEFAULT:
|
|
uffd_handle_page_fault(&msg, stats);
|
|
break;
|
|
case UFFD_EVENT_FORK:
|
|
close(uffd);
|
|
uffd = msg.arg.fork.ufd;
|
|
pollfd[0].fd = uffd;
|
|
break;
|
|
case UFFD_EVENT_REMOVE:
|
|
uffd_reg.range.start = msg.arg.remove.start;
|
|
uffd_reg.range.len = msg.arg.remove.end -
|
|
msg.arg.remove.start;
|
|
if (ioctl(uffd, UFFDIO_UNREGISTER, &uffd_reg.range))
|
|
err("remove failure");
|
|
break;
|
|
case UFFD_EVENT_REMAP:
|
|
area_dst = (char *)(unsigned long)msg.arg.remap.to;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
static void *uffd_read_thread(void *arg)
|
|
{
|
|
struct uffd_stats *stats = (struct uffd_stats *)arg;
|
|
struct uffd_msg msg;
|
|
|
|
pthread_mutex_unlock(&uffd_read_mutex);
|
|
/* from here cancellation is ok */
|
|
|
|
for (;;) {
|
|
if (uffd_read_msg(uffd, &msg))
|
|
continue;
|
|
uffd_handle_page_fault(&msg, stats);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *background_thread(void *arg)
|
|
{
|
|
unsigned long cpu = (unsigned long) arg;
|
|
unsigned long page_nr, start_nr, mid_nr, end_nr;
|
|
|
|
start_nr = cpu * nr_pages_per_cpu;
|
|
end_nr = (cpu+1) * nr_pages_per_cpu;
|
|
mid_nr = (start_nr + end_nr) / 2;
|
|
|
|
/* Copy the first half of the pages */
|
|
for (page_nr = start_nr; page_nr < mid_nr; page_nr++)
|
|
copy_page_retry(uffd, page_nr * page_size);
|
|
|
|
/*
|
|
* If we need to test uffd-wp, set it up now. Then we'll have
|
|
* at least the first half of the pages mapped already which
|
|
* can be write-protected for testing
|
|
*/
|
|
if (test_uffdio_wp)
|
|
wp_range(uffd, (unsigned long)area_dst + start_nr * page_size,
|
|
nr_pages_per_cpu * page_size, true);
|
|
|
|
/*
|
|
* Continue the 2nd half of the page copying, handling write
|
|
* protection faults if any
|
|
*/
|
|
for (page_nr = mid_nr; page_nr < end_nr; page_nr++)
|
|
copy_page_retry(uffd, page_nr * page_size);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int stress(struct uffd_stats *uffd_stats)
|
|
{
|
|
unsigned long cpu;
|
|
pthread_t locking_threads[nr_cpus];
|
|
pthread_t uffd_threads[nr_cpus];
|
|
pthread_t background_threads[nr_cpus];
|
|
|
|
finished = 0;
|
|
for (cpu = 0; cpu < nr_cpus; cpu++) {
|
|
if (pthread_create(&locking_threads[cpu], &attr,
|
|
locking_thread, (void *)cpu))
|
|
return 1;
|
|
if (bounces & BOUNCE_POLL) {
|
|
if (pthread_create(&uffd_threads[cpu], &attr,
|
|
uffd_poll_thread,
|
|
(void *)&uffd_stats[cpu]))
|
|
return 1;
|
|
} else {
|
|
if (pthread_create(&uffd_threads[cpu], &attr,
|
|
uffd_read_thread,
|
|
(void *)&uffd_stats[cpu]))
|
|
return 1;
|
|
pthread_mutex_lock(&uffd_read_mutex);
|
|
}
|
|
if (pthread_create(&background_threads[cpu], &attr,
|
|
background_thread, (void *)cpu))
|
|
return 1;
|
|
}
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
if (pthread_join(background_threads[cpu], NULL))
|
|
return 1;
|
|
|
|
/*
|
|
* Be strict and immediately zap area_src, the whole area has
|
|
* been transferred already by the background treads. The
|
|
* area_src could then be faulted in in a racy way by still
|
|
* running uffdio_threads reading zeropages after we zapped
|
|
* area_src (but they're guaranteed to get -EEXIST from
|
|
* UFFDIO_COPY without writing zero pages into area_dst
|
|
* because the background threads already completed).
|
|
*/
|
|
uffd_test_ops->release_pages(area_src);
|
|
|
|
finished = 1;
|
|
for (cpu = 0; cpu < nr_cpus; cpu++)
|
|
if (pthread_join(locking_threads[cpu], NULL))
|
|
return 1;
|
|
|
|
for (cpu = 0; cpu < nr_cpus; cpu++) {
|
|
char c;
|
|
if (bounces & BOUNCE_POLL) {
|
|
if (write(pipefd[cpu*2+1], &c, 1) != 1)
|
|
err("pipefd write error");
|
|
if (pthread_join(uffd_threads[cpu],
|
|
(void *)&uffd_stats[cpu]))
|
|
return 1;
|
|
} else {
|
|
if (pthread_cancel(uffd_threads[cpu]))
|
|
return 1;
|
|
if (pthread_join(uffd_threads[cpu], NULL))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
sigjmp_buf jbuf, *sigbuf;
|
|
|
|
static void sighndl(int sig, siginfo_t *siginfo, void *ptr)
|
|
{
|
|
if (sig == SIGBUS) {
|
|
if (sigbuf)
|
|
siglongjmp(*sigbuf, 1);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For non-cooperative userfaultfd test we fork() a process that will
|
|
* generate pagefaults, will mremap the area monitored by the
|
|
* userfaultfd and at last this process will release the monitored
|
|
* area.
|
|
* For the anonymous and shared memory the area is divided into two
|
|
* parts, the first part is accessed before mremap, and the second
|
|
* part is accessed after mremap. Since hugetlbfs does not support
|
|
* mremap, the entire monitored area is accessed in a single pass for
|
|
* HUGETLB_TEST.
|
|
* The release of the pages currently generates event for shmem and
|
|
* anonymous memory (UFFD_EVENT_REMOVE), hence it is not checked
|
|
* for hugetlb.
|
|
* For signal test(UFFD_FEATURE_SIGBUS), signal_test = 1, we register
|
|
* monitored area, generate pagefaults and test that signal is delivered.
|
|
* Use UFFDIO_COPY to allocate missing page and retry. For signal_test = 2
|
|
* test robustness use case - we release monitored area, fork a process
|
|
* that will generate pagefaults and verify signal is generated.
|
|
* This also tests UFFD_FEATURE_EVENT_FORK event along with the signal
|
|
* feature. Using monitor thread, verify no userfault events are generated.
|
|
*/
|
|
static int faulting_process(int signal_test)
|
|
{
|
|
unsigned long nr;
|
|
unsigned long long count;
|
|
unsigned long split_nr_pages;
|
|
unsigned long lastnr;
|
|
struct sigaction act;
|
|
unsigned long signalled = 0;
|
|
|
|
if (test_type != TEST_HUGETLB)
|
|
split_nr_pages = (nr_pages + 1) / 2;
|
|
else
|
|
split_nr_pages = nr_pages;
|
|
|
|
if (signal_test) {
|
|
sigbuf = &jbuf;
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_sigaction = sighndl;
|
|
act.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGBUS, &act, 0))
|
|
err("sigaction");
|
|
lastnr = (unsigned long)-1;
|
|
}
|
|
|
|
for (nr = 0; nr < split_nr_pages; nr++) {
|
|
int steps = 1;
|
|
unsigned long offset = nr * page_size;
|
|
|
|
if (signal_test) {
|
|
if (sigsetjmp(*sigbuf, 1) != 0) {
|
|
if (steps == 1 && nr == lastnr)
|
|
err("Signal repeated");
|
|
|
|
lastnr = nr;
|
|
if (signal_test == 1) {
|
|
if (steps == 1) {
|
|
/* This is a MISSING request */
|
|
steps++;
|
|
if (copy_page(uffd, offset))
|
|
signalled++;
|
|
} else {
|
|
/* This is a WP request */
|
|
assert(steps == 2);
|
|
wp_range(uffd,
|
|
(__u64)area_dst +
|
|
offset,
|
|
page_size, false);
|
|
}
|
|
} else {
|
|
signalled++;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
count = *area_count(area_dst, nr);
|
|
if (count != count_verify[nr])
|
|
err("nr %lu memory corruption %llu %llu\n",
|
|
nr, count, count_verify[nr]);
|
|
/*
|
|
* Trigger write protection if there is by writing
|
|
* the same value back.
|
|
*/
|
|
*area_count(area_dst, nr) = count;
|
|
}
|
|
|
|
if (signal_test)
|
|
return signalled != split_nr_pages;
|
|
|
|
if (test_type == TEST_HUGETLB)
|
|
return 0;
|
|
|
|
area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size,
|
|
MREMAP_MAYMOVE | MREMAP_FIXED, area_src);
|
|
if (area_dst == MAP_FAILED)
|
|
err("mremap");
|
|
/* Reset area_src since we just clobbered it */
|
|
area_src = NULL;
|
|
|
|
for (; nr < nr_pages; nr++) {
|
|
count = *area_count(area_dst, nr);
|
|
if (count != count_verify[nr]) {
|
|
err("nr %lu memory corruption %llu %llu\n",
|
|
nr, count, count_verify[nr]);
|
|
}
|
|
/*
|
|
* Trigger write protection if there is by writing
|
|
* the same value back.
|
|
*/
|
|
*area_count(area_dst, nr) = count;
|
|
}
|
|
|
|
uffd_test_ops->release_pages(area_dst);
|
|
|
|
for (nr = 0; nr < nr_pages; nr++)
|
|
if (my_bcmp(area_dst + nr * page_size, zeropage, page_size))
|
|
err("nr %lu is not zero", nr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void retry_uffdio_zeropage(int ufd,
|
|
struct uffdio_zeropage *uffdio_zeropage,
|
|
unsigned long offset)
|
|
{
|
|
uffd_test_ops->alias_mapping(&uffdio_zeropage->range.start,
|
|
uffdio_zeropage->range.len,
|
|
offset);
|
|
if (ioctl(ufd, UFFDIO_ZEROPAGE, uffdio_zeropage)) {
|
|
if (uffdio_zeropage->zeropage != -EEXIST)
|
|
err("UFFDIO_ZEROPAGE error: %"PRId64,
|
|
(int64_t)uffdio_zeropage->zeropage);
|
|
} else {
|
|
err("UFFDIO_ZEROPAGE error: %"PRId64,
|
|
(int64_t)uffdio_zeropage->zeropage);
|
|
}
|
|
}
|
|
|
|
static int __uffdio_zeropage(int ufd, unsigned long offset, bool retry)
|
|
{
|
|
struct uffdio_zeropage uffdio_zeropage;
|
|
int ret;
|
|
bool has_zeropage = get_expected_ioctls(0) & (1 << _UFFDIO_ZEROPAGE);
|
|
__s64 res;
|
|
|
|
if (offset >= nr_pages * page_size)
|
|
err("unexpected offset %lu", offset);
|
|
uffdio_zeropage.range.start = (unsigned long) area_dst + offset;
|
|
uffdio_zeropage.range.len = page_size;
|
|
uffdio_zeropage.mode = 0;
|
|
ret = ioctl(ufd, UFFDIO_ZEROPAGE, &uffdio_zeropage);
|
|
res = uffdio_zeropage.zeropage;
|
|
if (ret) {
|
|
/* real retval in ufdio_zeropage.zeropage */
|
|
if (has_zeropage)
|
|
err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)res);
|
|
else if (res != -EINVAL)
|
|
err("UFFDIO_ZEROPAGE not -EINVAL");
|
|
} else if (has_zeropage) {
|
|
if (res != page_size) {
|
|
err("UFFDIO_ZEROPAGE unexpected size");
|
|
} else {
|
|
if (test_uffdio_zeropage_eexist && retry) {
|
|
test_uffdio_zeropage_eexist = false;
|
|
retry_uffdio_zeropage(ufd, &uffdio_zeropage,
|
|
offset);
|
|
}
|
|
return 1;
|
|
}
|
|
} else
|
|
err("UFFDIO_ZEROPAGE succeeded");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uffdio_zeropage(int ufd, unsigned long offset)
|
|
{
|
|
return __uffdio_zeropage(ufd, offset, false);
|
|
}
|
|
|
|
/* exercise UFFDIO_ZEROPAGE */
|
|
static int userfaultfd_zeropage_test(void)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
|
|
printf("testing UFFDIO_ZEROPAGE: ");
|
|
fflush(stdout);
|
|
|
|
uffd_test_ctx_init(0);
|
|
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (test_uffdio_wp)
|
|
uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure");
|
|
|
|
assert_expected_ioctls_present(
|
|
uffdio_register.mode, uffdio_register.ioctls);
|
|
|
|
if (uffdio_zeropage(uffd, 0))
|
|
if (my_bcmp(area_dst, zeropage, page_size))
|
|
err("zeropage is not zero");
|
|
|
|
printf("done.\n");
|
|
return 0;
|
|
}
|
|
|
|
static int userfaultfd_events_test(void)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
pthread_t uffd_mon;
|
|
int err, features;
|
|
pid_t pid;
|
|
char c;
|
|
struct uffd_stats stats = { 0 };
|
|
|
|
printf("testing events (fork, remap, remove): ");
|
|
fflush(stdout);
|
|
|
|
features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP |
|
|
UFFD_FEATURE_EVENT_REMOVE;
|
|
uffd_test_ctx_init(features);
|
|
|
|
fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
|
|
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (test_uffdio_wp)
|
|
uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure");
|
|
|
|
assert_expected_ioctls_present(
|
|
uffdio_register.mode, uffdio_register.ioctls);
|
|
|
|
if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats))
|
|
err("uffd_poll_thread create");
|
|
|
|
pid = fork();
|
|
if (pid < 0)
|
|
err("fork");
|
|
|
|
if (!pid)
|
|
exit(faulting_process(0));
|
|
|
|
waitpid(pid, &err, 0);
|
|
if (err)
|
|
err("faulting process failed");
|
|
if (write(pipefd[1], &c, sizeof(c)) != sizeof(c))
|
|
err("pipe write");
|
|
if (pthread_join(uffd_mon, NULL))
|
|
return 1;
|
|
|
|
uffd_stats_report(&stats, 1);
|
|
|
|
return stats.missing_faults != nr_pages;
|
|
}
|
|
|
|
static int userfaultfd_sig_test(void)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
unsigned long userfaults;
|
|
pthread_t uffd_mon;
|
|
int err, features;
|
|
pid_t pid;
|
|
char c;
|
|
struct uffd_stats stats = { 0 };
|
|
|
|
printf("testing signal delivery: ");
|
|
fflush(stdout);
|
|
|
|
features = UFFD_FEATURE_EVENT_FORK|UFFD_FEATURE_SIGBUS;
|
|
uffd_test_ctx_init(features);
|
|
|
|
fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
|
|
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (test_uffdio_wp)
|
|
uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure");
|
|
|
|
assert_expected_ioctls_present(
|
|
uffdio_register.mode, uffdio_register.ioctls);
|
|
|
|
if (faulting_process(1))
|
|
err("faulting process failed");
|
|
|
|
uffd_test_ops->release_pages(area_dst);
|
|
|
|
if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats))
|
|
err("uffd_poll_thread create");
|
|
|
|
pid = fork();
|
|
if (pid < 0)
|
|
err("fork");
|
|
|
|
if (!pid)
|
|
exit(faulting_process(2));
|
|
|
|
waitpid(pid, &err, 0);
|
|
if (err)
|
|
err("faulting process failed");
|
|
if (write(pipefd[1], &c, sizeof(c)) != sizeof(c))
|
|
err("pipe write");
|
|
if (pthread_join(uffd_mon, (void **)&userfaults))
|
|
return 1;
|
|
|
|
printf("done.\n");
|
|
if (userfaults)
|
|
err("Signal test failed, userfaults: %ld", userfaults);
|
|
|
|
return userfaults != 0;
|
|
}
|
|
|
|
static int userfaultfd_minor_test(void)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
unsigned long p;
|
|
pthread_t uffd_mon;
|
|
uint8_t expected_byte;
|
|
void *expected_page;
|
|
char c;
|
|
struct uffd_stats stats = { 0 };
|
|
|
|
if (!test_uffdio_minor)
|
|
return 0;
|
|
|
|
printf("testing minor faults: ");
|
|
fflush(stdout);
|
|
|
|
uffd_test_ctx_init(uffd_minor_feature());
|
|
|
|
uffdio_register.range.start = (unsigned long)area_dst_alias;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MINOR;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure");
|
|
|
|
assert_expected_ioctls_present(
|
|
uffdio_register.mode, uffdio_register.ioctls);
|
|
|
|
/*
|
|
* After registering with UFFD, populate the non-UFFD-registered side of
|
|
* the shared mapping. This should *not* trigger any UFFD minor faults.
|
|
*/
|
|
for (p = 0; p < nr_pages; ++p) {
|
|
memset(area_dst + (p * page_size), p % ((uint8_t)-1),
|
|
page_size);
|
|
}
|
|
|
|
if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &stats))
|
|
err("uffd_poll_thread create");
|
|
|
|
/*
|
|
* Read each of the pages back using the UFFD-registered mapping. We
|
|
* expect that the first time we touch a page, it will result in a minor
|
|
* fault. uffd_poll_thread will resolve the fault by bit-flipping the
|
|
* page's contents, and then issuing a CONTINUE ioctl.
|
|
*/
|
|
|
|
if (posix_memalign(&expected_page, page_size, page_size))
|
|
err("out of memory");
|
|
|
|
for (p = 0; p < nr_pages; ++p) {
|
|
expected_byte = ~((uint8_t)(p % ((uint8_t)-1)));
|
|
memset(expected_page, expected_byte, page_size);
|
|
if (my_bcmp(expected_page, area_dst_alias + (p * page_size),
|
|
page_size))
|
|
err("unexpected page contents after minor fault");
|
|
}
|
|
|
|
if (write(pipefd[1], &c, sizeof(c)) != sizeof(c))
|
|
err("pipe write");
|
|
if (pthread_join(uffd_mon, NULL))
|
|
return 1;
|
|
|
|
uffd_stats_report(&stats, 1);
|
|
|
|
return stats.missing_faults != 0 || stats.minor_faults != nr_pages;
|
|
}
|
|
|
|
#define BIT_ULL(nr) (1ULL << (nr))
|
|
#define PM_SOFT_DIRTY BIT_ULL(55)
|
|
#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
|
|
#define PM_UFFD_WP BIT_ULL(57)
|
|
#define PM_FILE BIT_ULL(61)
|
|
#define PM_SWAP BIT_ULL(62)
|
|
#define PM_PRESENT BIT_ULL(63)
|
|
|
|
static int pagemap_open(void)
|
|
{
|
|
int fd = open("/proc/self/pagemap", O_RDONLY);
|
|
|
|
if (fd < 0)
|
|
err("open pagemap");
|
|
|
|
return fd;
|
|
}
|
|
|
|
static uint64_t pagemap_read_vaddr(int fd, void *vaddr)
|
|
{
|
|
uint64_t value;
|
|
int ret;
|
|
|
|
ret = pread(fd, &value, sizeof(uint64_t),
|
|
((uint64_t)vaddr >> 12) * sizeof(uint64_t));
|
|
if (ret != sizeof(uint64_t))
|
|
err("pread() on pagemap failed");
|
|
|
|
return value;
|
|
}
|
|
|
|
/* This macro let __LINE__ works in err() */
|
|
#define pagemap_check_wp(value, wp) do { \
|
|
if (!!(value & PM_UFFD_WP) != wp) \
|
|
err("pagemap uffd-wp bit error: 0x%"PRIx64, value); \
|
|
} while (0)
|
|
|
|
static int pagemap_test_fork(bool present)
|
|
{
|
|
pid_t child = fork();
|
|
uint64_t value;
|
|
int fd, result;
|
|
|
|
if (!child) {
|
|
/* Open the pagemap fd of the child itself */
|
|
fd = pagemap_open();
|
|
value = pagemap_read_vaddr(fd, area_dst);
|
|
/*
|
|
* After fork() uffd-wp bit should be gone as long as we're
|
|
* without UFFD_FEATURE_EVENT_FORK
|
|
*/
|
|
pagemap_check_wp(value, false);
|
|
/* Succeed */
|
|
exit(0);
|
|
}
|
|
waitpid(child, &result, 0);
|
|
return result;
|
|
}
|
|
|
|
static void userfaultfd_pagemap_test(unsigned int test_pgsize)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
int pagemap_fd;
|
|
uint64_t value;
|
|
|
|
/* Pagemap tests uffd-wp only */
|
|
if (!test_uffdio_wp)
|
|
return;
|
|
|
|
/* Not enough memory to test this page size */
|
|
if (test_pgsize > nr_pages * page_size)
|
|
return;
|
|
|
|
printf("testing uffd-wp with pagemap (pgsize=%u): ", test_pgsize);
|
|
/* Flush so it doesn't flush twice in parent/child later */
|
|
fflush(stdout);
|
|
|
|
uffd_test_ctx_init(0);
|
|
|
|
if (test_pgsize > page_size) {
|
|
/* This is a thp test */
|
|
if (madvise(area_dst, nr_pages * page_size, MADV_HUGEPAGE))
|
|
err("madvise(MADV_HUGEPAGE) failed");
|
|
} else if (test_pgsize == page_size) {
|
|
/* This is normal page test; force no thp */
|
|
if (madvise(area_dst, nr_pages * page_size, MADV_NOHUGEPAGE))
|
|
err("madvise(MADV_NOHUGEPAGE) failed");
|
|
}
|
|
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_WP;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failed");
|
|
|
|
pagemap_fd = pagemap_open();
|
|
|
|
/* Touch the page */
|
|
*area_dst = 1;
|
|
wp_range(uffd, (uint64_t)area_dst, test_pgsize, true);
|
|
value = pagemap_read_vaddr(pagemap_fd, area_dst);
|
|
pagemap_check_wp(value, true);
|
|
/* Make sure uffd-wp bit dropped when fork */
|
|
if (pagemap_test_fork(true))
|
|
err("Detected stall uffd-wp bit in child");
|
|
|
|
/* Exclusive required or PAGEOUT won't work */
|
|
if (!(value & PM_MMAP_EXCLUSIVE))
|
|
err("multiple mapping detected: 0x%"PRIx64, value);
|
|
|
|
if (madvise(area_dst, test_pgsize, MADV_PAGEOUT))
|
|
err("madvise(MADV_PAGEOUT) failed");
|
|
|
|
/* Uffd-wp should persist even swapped out */
|
|
value = pagemap_read_vaddr(pagemap_fd, area_dst);
|
|
pagemap_check_wp(value, true);
|
|
/* Make sure uffd-wp bit dropped when fork */
|
|
if (pagemap_test_fork(false))
|
|
err("Detected stall uffd-wp bit in child");
|
|
|
|
/* Unprotect; this tests swap pte modifications */
|
|
wp_range(uffd, (uint64_t)area_dst, page_size, false);
|
|
value = pagemap_read_vaddr(pagemap_fd, area_dst);
|
|
pagemap_check_wp(value, false);
|
|
|
|
/* Fault in the page from disk */
|
|
*area_dst = 2;
|
|
value = pagemap_read_vaddr(pagemap_fd, area_dst);
|
|
pagemap_check_wp(value, false);
|
|
|
|
close(pagemap_fd);
|
|
printf("done\n");
|
|
}
|
|
|
|
static int userfaultfd_stress(void)
|
|
{
|
|
void *area;
|
|
char *tmp_area;
|
|
unsigned long nr;
|
|
struct uffdio_register uffdio_register;
|
|
struct uffd_stats uffd_stats[nr_cpus];
|
|
|
|
uffd_test_ctx_init(0);
|
|
|
|
if (posix_memalign(&area, page_size, page_size))
|
|
err("out of memory");
|
|
zeropage = area;
|
|
bzero(zeropage, page_size);
|
|
|
|
pthread_mutex_lock(&uffd_read_mutex);
|
|
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setstacksize(&attr, 16*1024*1024);
|
|
|
|
while (bounces--) {
|
|
printf("bounces: %d, mode:", bounces);
|
|
if (bounces & BOUNCE_RANDOM)
|
|
printf(" rnd");
|
|
if (bounces & BOUNCE_RACINGFAULTS)
|
|
printf(" racing");
|
|
if (bounces & BOUNCE_VERIFY)
|
|
printf(" ver");
|
|
if (bounces & BOUNCE_POLL)
|
|
printf(" poll");
|
|
else
|
|
printf(" read");
|
|
printf(", ");
|
|
fflush(stdout);
|
|
|
|
if (bounces & BOUNCE_POLL)
|
|
fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
|
|
else
|
|
fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
|
|
|
|
/* register */
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
uffdio_register.range.len = nr_pages * page_size;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (test_uffdio_wp)
|
|
uffdio_register.mode |= UFFDIO_REGISTER_MODE_WP;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure");
|
|
assert_expected_ioctls_present(
|
|
uffdio_register.mode, uffdio_register.ioctls);
|
|
|
|
if (area_dst_alias) {
|
|
uffdio_register.range.start = (unsigned long)
|
|
area_dst_alias;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
err("register failure alias");
|
|
}
|
|
|
|
/*
|
|
* The madvise done previously isn't enough: some
|
|
* uffd_thread could have read userfaults (one of
|
|
* those already resolved by the background thread)
|
|
* and it may be in the process of calling
|
|
* UFFDIO_COPY. UFFDIO_COPY will read the zapped
|
|
* area_src and it would map a zero page in it (of
|
|
* course such a UFFDIO_COPY is perfectly safe as it'd
|
|
* return -EEXIST). The problem comes at the next
|
|
* bounce though: that racing UFFDIO_COPY would
|
|
* generate zeropages in the area_src, so invalidating
|
|
* the previous MADV_DONTNEED. Without this additional
|
|
* MADV_DONTNEED those zeropages leftovers in the
|
|
* area_src would lead to -EEXIST failure during the
|
|
* next bounce, effectively leaving a zeropage in the
|
|
* area_dst.
|
|
*
|
|
* Try to comment this out madvise to see the memory
|
|
* corruption being caught pretty quick.
|
|
*
|
|
* khugepaged is also inhibited to collapse THP after
|
|
* MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
|
|
* required to MADV_DONTNEED here.
|
|
*/
|
|
uffd_test_ops->release_pages(area_dst);
|
|
|
|
uffd_stats_reset(uffd_stats, nr_cpus);
|
|
|
|
/* bounce pass */
|
|
if (stress(uffd_stats))
|
|
return 1;
|
|
|
|
/* Clear all the write protections if there is any */
|
|
if (test_uffdio_wp)
|
|
wp_range(uffd, (unsigned long)area_dst,
|
|
nr_pages * page_size, false);
|
|
|
|
/* unregister */
|
|
if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range))
|
|
err("unregister failure");
|
|
if (area_dst_alias) {
|
|
uffdio_register.range.start = (unsigned long) area_dst;
|
|
if (ioctl(uffd, UFFDIO_UNREGISTER,
|
|
&uffdio_register.range))
|
|
err("unregister failure alias");
|
|
}
|
|
|
|
/* verification */
|
|
if (bounces & BOUNCE_VERIFY)
|
|
for (nr = 0; nr < nr_pages; nr++)
|
|
if (*area_count(area_dst, nr) != count_verify[nr])
|
|
err("error area_count %llu %llu %lu\n",
|
|
*area_count(area_src, nr),
|
|
count_verify[nr], nr);
|
|
|
|
/* prepare next bounce */
|
|
tmp_area = area_src;
|
|
area_src = area_dst;
|
|
area_dst = tmp_area;
|
|
|
|
tmp_area = area_src_alias;
|
|
area_src_alias = area_dst_alias;
|
|
area_dst_alias = tmp_area;
|
|
|
|
uffd_stats_report(uffd_stats, nr_cpus);
|
|
}
|
|
|
|
if (test_type == TEST_ANON) {
|
|
/*
|
|
* shmem/hugetlb won't be able to run since they have different
|
|
* behavior on fork() (file-backed memory normally drops ptes
|
|
* directly when fork), meanwhile the pagemap test will verify
|
|
* pgtable entry of fork()ed child.
|
|
*/
|
|
userfaultfd_pagemap_test(page_size);
|
|
/*
|
|
* Hard-code for x86_64 for now for 2M THP, as x86_64 is
|
|
* currently the only one that supports uffd-wp
|
|
*/
|
|
userfaultfd_pagemap_test(page_size * 512);
|
|
}
|
|
|
|
return userfaultfd_zeropage_test() || userfaultfd_sig_test()
|
|
|| userfaultfd_events_test() || userfaultfd_minor_test();
|
|
}
|
|
|
|
/*
|
|
* Copied from mlock2-tests.c
|
|
*/
|
|
unsigned long default_huge_page_size(void)
|
|
{
|
|
unsigned long hps = 0;
|
|
char *line = NULL;
|
|
size_t linelen = 0;
|
|
FILE *f = fopen("/proc/meminfo", "r");
|
|
|
|
if (!f)
|
|
return 0;
|
|
while (getline(&line, &linelen, f) > 0) {
|
|
if (sscanf(line, "Hugepagesize: %lu kB", &hps) == 1) {
|
|
hps <<= 10;
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(line);
|
|
fclose(f);
|
|
return hps;
|
|
}
|
|
|
|
static void set_test_type(const char *type)
|
|
{
|
|
uint64_t features = UFFD_API_FEATURES;
|
|
|
|
if (!strcmp(type, "anon")) {
|
|
test_type = TEST_ANON;
|
|
uffd_test_ops = &anon_uffd_test_ops;
|
|
/* Only enable write-protect test for anonymous test */
|
|
test_uffdio_wp = true;
|
|
} else if (!strcmp(type, "hugetlb")) {
|
|
test_type = TEST_HUGETLB;
|
|
uffd_test_ops = &hugetlb_uffd_test_ops;
|
|
} else if (!strcmp(type, "hugetlb_shared")) {
|
|
map_shared = true;
|
|
test_type = TEST_HUGETLB;
|
|
uffd_test_ops = &hugetlb_uffd_test_ops;
|
|
/* Minor faults require shared hugetlb; only enable here. */
|
|
test_uffdio_minor = true;
|
|
} else if (!strcmp(type, "shmem")) {
|
|
map_shared = true;
|
|
test_type = TEST_SHMEM;
|
|
uffd_test_ops = &shmem_uffd_test_ops;
|
|
test_uffdio_minor = true;
|
|
} else {
|
|
err("Unknown test type: %s", type);
|
|
}
|
|
|
|
if (test_type == TEST_HUGETLB)
|
|
page_size = default_huge_page_size();
|
|
else
|
|
page_size = sysconf(_SC_PAGE_SIZE);
|
|
|
|
if (!page_size)
|
|
err("Unable to determine page size");
|
|
if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2
|
|
> page_size)
|
|
err("Impossible to run this test");
|
|
|
|
/*
|
|
* Whether we can test certain features depends not just on test type,
|
|
* but also on whether or not this particular kernel supports the
|
|
* feature.
|
|
*/
|
|
|
|
userfaultfd_open(&features);
|
|
|
|
test_uffdio_wp = test_uffdio_wp &&
|
|
(features & UFFD_FEATURE_PAGEFAULT_FLAG_WP);
|
|
test_uffdio_minor = test_uffdio_minor &&
|
|
(features & uffd_minor_feature());
|
|
|
|
close(uffd);
|
|
uffd = -1;
|
|
}
|
|
|
|
static void sigalrm(int sig)
|
|
{
|
|
if (sig != SIGALRM)
|
|
abort();
|
|
test_uffdio_copy_eexist = true;
|
|
test_uffdio_zeropage_eexist = true;
|
|
alarm(ALARM_INTERVAL_SECS);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if (argc < 4)
|
|
usage();
|
|
|
|
if (signal(SIGALRM, sigalrm) == SIG_ERR)
|
|
err("failed to arm SIGALRM");
|
|
alarm(ALARM_INTERVAL_SECS);
|
|
|
|
set_test_type(argv[1]);
|
|
|
|
nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
|
|
nr_pages_per_cpu = atol(argv[2]) * 1024*1024 / page_size /
|
|
nr_cpus;
|
|
if (!nr_pages_per_cpu) {
|
|
_err("invalid MiB");
|
|
usage();
|
|
}
|
|
|
|
bounces = atoi(argv[3]);
|
|
if (bounces <= 0) {
|
|
_err("invalid bounces");
|
|
usage();
|
|
}
|
|
nr_pages = nr_pages_per_cpu * nr_cpus;
|
|
|
|
if (test_type == TEST_HUGETLB) {
|
|
if (argc < 5)
|
|
usage();
|
|
huge_fd = open(argv[4], O_CREAT | O_RDWR, 0755);
|
|
if (huge_fd < 0)
|
|
err("Open of %s failed", argv[4]);
|
|
if (ftruncate(huge_fd, 0))
|
|
err("ftruncate %s to size 0 failed", argv[4]);
|
|
} else if (test_type == TEST_SHMEM) {
|
|
shm_fd = memfd_create(argv[0], 0);
|
|
if (shm_fd < 0)
|
|
err("memfd_create");
|
|
if (ftruncate(shm_fd, nr_pages * page_size * 2))
|
|
err("ftruncate");
|
|
if (fallocate(shm_fd,
|
|
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
|
|
nr_pages * page_size * 2))
|
|
err("fallocate");
|
|
}
|
|
printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
|
|
nr_pages, nr_pages_per_cpu);
|
|
return userfaultfd_stress();
|
|
}
|
|
|
|
#else /* __NR_userfaultfd */
|
|
|
|
#warning "missing __NR_userfaultfd definition"
|
|
|
|
int main(void)
|
|
{
|
|
printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n");
|
|
return KSFT_SKIP;
|
|
}
|
|
|
|
#endif /* __NR_userfaultfd */
|