OpenCloudOS-Kernel/drivers/dma/dmatest.c

987 lines
26 KiB
C

/*
* DMA Engine test module
*
* Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2013 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/freezer.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/wait.h>
static unsigned int test_buf_size = 16384;
module_param(test_buf_size, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer");
static char test_channel[20];
module_param_string(channel, test_channel, sizeof(test_channel),
S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)");
static char test_device[32];
module_param_string(device, test_device, sizeof(test_device),
S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)");
static unsigned int threads_per_chan = 1;
module_param(threads_per_chan, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(threads_per_chan,
"Number of threads to start per channel (default: 1)");
static unsigned int max_channels;
module_param(max_channels, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_channels,
"Maximum number of channels to use (default: all)");
static unsigned int iterations;
module_param(iterations, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(iterations,
"Iterations before stopping test (default: infinite)");
static unsigned int xor_sources = 3;
module_param(xor_sources, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(xor_sources,
"Number of xor source buffers (default: 3)");
static unsigned int pq_sources = 3;
module_param(pq_sources, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pq_sources,
"Number of p+q source buffers (default: 3)");
static int timeout = 3000;
module_param(timeout, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), "
"Pass -1 for infinite timeout");
static bool noverify;
module_param(noverify, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(noverify, "Disable random data setup and verification");
static bool verbose;
module_param(verbose, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(verbose, "Enable \"success\" result messages (default: off)");
/**
* struct dmatest_params - test parameters.
* @buf_size: size of the memcpy test buffer
* @channel: bus ID of the channel to test
* @device: bus ID of the DMA Engine to test
* @threads_per_chan: number of threads to start per channel
* @max_channels: maximum number of channels to use
* @iterations: iterations before stopping test
* @xor_sources: number of xor source buffers
* @pq_sources: number of p+q source buffers
* @timeout: transfer timeout in msec, -1 for infinite timeout
*/
struct dmatest_params {
unsigned int buf_size;
char channel[20];
char device[32];
unsigned int threads_per_chan;
unsigned int max_channels;
unsigned int iterations;
unsigned int xor_sources;
unsigned int pq_sources;
int timeout;
bool noverify;
};
/**
* struct dmatest_info - test information.
* @params: test parameters
* @lock: access protection to the fields of this structure
*/
static struct dmatest_info {
/* Test parameters */
struct dmatest_params params;
/* Internal state */
struct list_head channels;
unsigned int nr_channels;
struct mutex lock;
bool did_init;
} test_info = {
.channels = LIST_HEAD_INIT(test_info.channels),
.lock = __MUTEX_INITIALIZER(test_info.lock),
};
static int dmatest_run_set(const char *val, const struct kernel_param *kp);
static int dmatest_run_get(char *val, const struct kernel_param *kp);
static struct kernel_param_ops run_ops = {
.set = dmatest_run_set,
.get = dmatest_run_get,
};
static bool dmatest_run;
module_param_cb(run, &run_ops, &dmatest_run, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(run, "Run the test (default: false)");
/* Maximum amount of mismatched bytes in buffer to print */
#define MAX_ERROR_COUNT 32
/*
* Initialization patterns. All bytes in the source buffer has bit 7
* set, all bytes in the destination buffer has bit 7 cleared.
*
* Bit 6 is set for all bytes which are to be copied by the DMA
* engine. Bit 5 is set for all bytes which are to be overwritten by
* the DMA engine.
*
* The remaining bits are the inverse of a counter which increments by
* one for each byte address.
*/
#define PATTERN_SRC 0x80
#define PATTERN_DST 0x00
#define PATTERN_COPY 0x40
#define PATTERN_OVERWRITE 0x20
#define PATTERN_COUNT_MASK 0x1f
struct dmatest_thread {
struct list_head node;
struct dmatest_info *info;
struct task_struct *task;
struct dma_chan *chan;
u8 **srcs;
u8 **dsts;
enum dma_transaction_type type;
bool done;
};
struct dmatest_chan {
struct list_head node;
struct dma_chan *chan;
struct list_head threads;
};
static DECLARE_WAIT_QUEUE_HEAD(thread_wait);
static bool wait;
static bool is_threaded_test_run(struct dmatest_info *info)
{
struct dmatest_chan *dtc;
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
list_for_each_entry(thread, &dtc->threads, node) {
if (!thread->done)
return true;
}
}
return false;
}
static int dmatest_wait_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
struct dmatest_params *params = &info->params;
if (params->iterations)
wait_event(thread_wait, !is_threaded_test_run(info));
wait = true;
return param_get_bool(val, kp);
}
static struct kernel_param_ops wait_ops = {
.get = dmatest_wait_get,
.set = param_set_bool,
};
module_param_cb(wait, &wait_ops, &wait, S_IRUGO);
MODULE_PARM_DESC(wait, "Wait for tests to complete (default: false)");
static bool dmatest_match_channel(struct dmatest_params *params,
struct dma_chan *chan)
{
if (params->channel[0] == '\0')
return true;
return strcmp(dma_chan_name(chan), params->channel) == 0;
}
static bool dmatest_match_device(struct dmatest_params *params,
struct dma_device *device)
{
if (params->device[0] == '\0')
return true;
return strcmp(dev_name(device->dev), params->device) == 0;
}
static unsigned long dmatest_random(void)
{
unsigned long buf;
prandom_bytes(&buf, sizeof(buf));
return buf;
}
static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++)
buf[i] = PATTERN_SRC | PATTERN_COPY
| (~i & PATTERN_COUNT_MASK);
for ( ; i < buf_size; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
buf++;
}
}
static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++)
buf[i] = PATTERN_DST | PATTERN_OVERWRITE
| (~i & PATTERN_COUNT_MASK);
for ( ; i < buf_size; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
}
}
static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index,
unsigned int counter, bool is_srcbuf)
{
u8 diff = actual ^ pattern;
u8 expected = pattern | (~counter & PATTERN_COUNT_MASK);
const char *thread_name = current->comm;
if (is_srcbuf)
pr_warn("%s: srcbuf[0x%x] overwritten! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else if ((pattern & PATTERN_COPY)
&& (diff & (PATTERN_COPY | PATTERN_OVERWRITE)))
pr_warn("%s: dstbuf[0x%x] not copied! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else if (diff & PATTERN_SRC)
pr_warn("%s: dstbuf[0x%x] was copied! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else
pr_warn("%s: dstbuf[0x%x] mismatch! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
}
static unsigned int dmatest_verify(u8 **bufs, unsigned int start,
unsigned int end, unsigned int counter, u8 pattern,
bool is_srcbuf)
{
unsigned int i;
unsigned int error_count = 0;
u8 actual;
u8 expected;
u8 *buf;
unsigned int counter_orig = counter;
for (; (buf = *bufs); bufs++) {
counter = counter_orig;
for (i = start; i < end; i++) {
actual = buf[i];
expected = pattern | (~counter & PATTERN_COUNT_MASK);
if (actual != expected) {
if (error_count < MAX_ERROR_COUNT)
dmatest_mismatch(actual, pattern, i,
counter, is_srcbuf);
error_count++;
}
counter++;
}
}
if (error_count > MAX_ERROR_COUNT)
pr_warn("%s: %u errors suppressed\n",
current->comm, error_count - MAX_ERROR_COUNT);
return error_count;
}
/* poor man's completion - we want to use wait_event_freezable() on it */
struct dmatest_done {
bool done;
wait_queue_head_t *wait;
};
static void dmatest_callback(void *arg)
{
struct dmatest_done *done = arg;
done->done = true;
wake_up_all(done->wait);
}
static unsigned int min_odd(unsigned int x, unsigned int y)
{
unsigned int val = min(x, y);
return val % 2 ? val : val - 1;
}
static void result(const char *err, unsigned int n, unsigned int src_off,
unsigned int dst_off, unsigned int len, unsigned long data)
{
pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)",
current->comm, n, err, src_off, dst_off, len, data);
}
static void dbg_result(const char *err, unsigned int n, unsigned int src_off,
unsigned int dst_off, unsigned int len,
unsigned long data)
{
pr_debug("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)",
current->comm, n, err, src_off, dst_off, len, data);
}
#define verbose_result(err, n, src_off, dst_off, len, data) ({ \
if (verbose) \
result(err, n, src_off, dst_off, len, data); \
else \
dbg_result(err, n, src_off, dst_off, len, data); \
})
static unsigned long long dmatest_persec(s64 runtime, unsigned int val)
{
unsigned long long per_sec = 1000000;
if (runtime <= 0)
return 0;
/* drop precision until runtime is 32-bits */
while (runtime > UINT_MAX) {
runtime >>= 1;
per_sec <<= 1;
}
per_sec *= val;
do_div(per_sec, runtime);
return per_sec;
}
static unsigned long long dmatest_KBs(s64 runtime, unsigned long long len)
{
return dmatest_persec(runtime, len >> 10);
}
/*
* This function repeatedly tests DMA transfers of various lengths and
* offsets for a given operation type until it is told to exit by
* kthread_stop(). There may be multiple threads running this function
* in parallel for a single channel, and there may be multiple channels
* being tested in parallel.
*
* Before each test, the source and destination buffer is initialized
* with a known pattern. This pattern is different depending on
* whether it's in an area which is supposed to be copied or
* overwritten, and different in the source and destination buffers.
* So if the DMA engine doesn't copy exactly what we tell it to copy,
* we'll notice.
*/
static int dmatest_func(void *data)
{
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_wait);
struct dmatest_thread *thread = data;
struct dmatest_done done = { .wait = &done_wait };
struct dmatest_info *info;
struct dmatest_params *params;
struct dma_chan *chan;
struct dma_device *dev;
unsigned int src_off, dst_off, len;
unsigned int error_count;
unsigned int failed_tests = 0;
unsigned int total_tests = 0;
dma_cookie_t cookie;
enum dma_status status;
enum dma_ctrl_flags flags;
u8 *pq_coefs = NULL;
int ret;
int src_cnt;
int dst_cnt;
int i;
ktime_t ktime;
s64 runtime = 0;
unsigned long long total_len = 0;
set_freezable();
ret = -ENOMEM;
smp_rmb();
info = thread->info;
params = &info->params;
chan = thread->chan;
dev = chan->device;
if (thread->type == DMA_MEMCPY)
src_cnt = dst_cnt = 1;
else if (thread->type == DMA_XOR) {
/* force odd to ensure dst = src */
src_cnt = min_odd(params->xor_sources | 1, dev->max_xor);
dst_cnt = 1;
} else if (thread->type == DMA_PQ) {
/* force odd to ensure dst = src */
src_cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0));
dst_cnt = 2;
pq_coefs = kmalloc(params->pq_sources+1, GFP_KERNEL);
if (!pq_coefs)
goto err_thread_type;
for (i = 0; i < src_cnt; i++)
pq_coefs[i] = 1;
} else
goto err_thread_type;
thread->srcs = kcalloc(src_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->srcs)
goto err_srcs;
for (i = 0; i < src_cnt; i++) {
thread->srcs[i] = kmalloc(params->buf_size, GFP_KERNEL);
if (!thread->srcs[i])
goto err_srcbuf;
}
thread->srcs[i] = NULL;
thread->dsts = kcalloc(dst_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->dsts)
goto err_dsts;
for (i = 0; i < dst_cnt; i++) {
thread->dsts[i] = kmalloc(params->buf_size, GFP_KERNEL);
if (!thread->dsts[i])
goto err_dstbuf;
}
thread->dsts[i] = NULL;
set_user_nice(current, 10);
/*
* src and dst buffers are freed by ourselves below
*/
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
ktime = ktime_get();
while (!kthread_should_stop()
&& !(params->iterations && total_tests >= params->iterations)) {
struct dma_async_tx_descriptor *tx = NULL;
struct dmaengine_unmap_data *um;
dma_addr_t srcs[src_cnt];
dma_addr_t *dsts;
u8 align = 0;
total_tests++;
/* honor alignment restrictions */
if (thread->type == DMA_MEMCPY)
align = dev->copy_align;
else if (thread->type == DMA_XOR)
align = dev->xor_align;
else if (thread->type == DMA_PQ)
align = dev->pq_align;
if (1 << align > params->buf_size) {
pr_err("%u-byte buffer too small for %d-byte alignment\n",
params->buf_size, 1 << align);
break;
}
if (params->noverify) {
len = params->buf_size;
src_off = 0;
dst_off = 0;
} else {
len = dmatest_random() % params->buf_size + 1;
len = (len >> align) << align;
if (!len)
len = 1 << align;
src_off = dmatest_random() % (params->buf_size - len + 1);
dst_off = dmatest_random() % (params->buf_size - len + 1);
src_off = (src_off >> align) << align;
dst_off = (dst_off >> align) << align;
dmatest_init_srcs(thread->srcs, src_off, len,
params->buf_size);
dmatest_init_dsts(thread->dsts, dst_off, len,
params->buf_size);
}
len = (len >> align) << align;
if (!len)
len = 1 << align;
total_len += len;
um = dmaengine_get_unmap_data(dev->dev, src_cnt+dst_cnt,
GFP_KERNEL);
if (!um) {
failed_tests++;
result("unmap data NULL", total_tests,
src_off, dst_off, len, ret);
continue;
}
um->len = params->buf_size;
for (i = 0; i < src_cnt; i++) {
void *buf = thread->srcs[i];
struct page *pg = virt_to_page(buf);
unsigned pg_off = (unsigned long) buf & ~PAGE_MASK;
um->addr[i] = dma_map_page(dev->dev, pg, pg_off,
um->len, DMA_TO_DEVICE);
srcs[i] = um->addr[i] + src_off;
ret = dma_mapping_error(dev->dev, um->addr[i]);
if (ret) {
dmaengine_unmap_put(um);
result("src mapping error", total_tests,
src_off, dst_off, len, ret);
failed_tests++;
continue;
}
um->to_cnt++;
}
/* map with DMA_BIDIRECTIONAL to force writeback/invalidate */
dsts = &um->addr[src_cnt];
for (i = 0; i < dst_cnt; i++) {
void *buf = thread->dsts[i];
struct page *pg = virt_to_page(buf);
unsigned pg_off = (unsigned long) buf & ~PAGE_MASK;
dsts[i] = dma_map_page(dev->dev, pg, pg_off, um->len,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(dev->dev, dsts[i]);
if (ret) {
dmaengine_unmap_put(um);
result("dst mapping error", total_tests,
src_off, dst_off, len, ret);
failed_tests++;
continue;
}
um->bidi_cnt++;
}
if (thread->type == DMA_MEMCPY)
tx = dev->device_prep_dma_memcpy(chan,
dsts[0] + dst_off,
srcs[0], len, flags);
else if (thread->type == DMA_XOR)
tx = dev->device_prep_dma_xor(chan,
dsts[0] + dst_off,
srcs, src_cnt,
len, flags);
else if (thread->type == DMA_PQ) {
dma_addr_t dma_pq[dst_cnt];
for (i = 0; i < dst_cnt; i++)
dma_pq[i] = dsts[i] + dst_off;
tx = dev->device_prep_dma_pq(chan, dma_pq, srcs,
src_cnt, pq_coefs,
len, flags);
}
if (!tx) {
dmaengine_unmap_put(um);
result("prep error", total_tests, src_off,
dst_off, len, ret);
msleep(100);
failed_tests++;
continue;
}
done.done = false;
tx->callback = dmatest_callback;
tx->callback_param = &done;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dmaengine_unmap_put(um);
result("submit error", total_tests, src_off,
dst_off, len, ret);
msleep(100);
failed_tests++;
continue;
}
dma_async_issue_pending(chan);
wait_event_freezable_timeout(done_wait, done.done,
msecs_to_jiffies(params->timeout));
status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
if (!done.done) {
/*
* We're leaving the timed out dma operation with
* dangling pointer to done_wait. To make this
* correct, we'll need to allocate wait_done for
* each test iteration and perform "who's gonna
* free it this time?" dancing. For now, just
* leave it dangling.
*/
dmaengine_unmap_put(um);
result("test timed out", total_tests, src_off, dst_off,
len, 0);
failed_tests++;
continue;
} else if (status != DMA_COMPLETE) {
dmaengine_unmap_put(um);
result(status == DMA_ERROR ?
"completion error status" :
"completion busy status", total_tests, src_off,
dst_off, len, ret);
failed_tests++;
continue;
}
dmaengine_unmap_put(um);
if (params->noverify) {
verbose_result("test passed", total_tests, src_off,
dst_off, len, 0);
continue;
}
pr_debug("%s: verifying source buffer...\n", current->comm);
error_count = dmatest_verify(thread->srcs, 0, src_off,
0, PATTERN_SRC, true);
error_count += dmatest_verify(thread->srcs, src_off,
src_off + len, src_off,
PATTERN_SRC | PATTERN_COPY, true);
error_count += dmatest_verify(thread->srcs, src_off + len,
params->buf_size, src_off + len,
PATTERN_SRC, true);
pr_debug("%s: verifying dest buffer...\n", current->comm);
error_count += dmatest_verify(thread->dsts, 0, dst_off,
0, PATTERN_DST, false);
error_count += dmatest_verify(thread->dsts, dst_off,
dst_off + len, src_off,
PATTERN_SRC | PATTERN_COPY, false);
error_count += dmatest_verify(thread->dsts, dst_off + len,
params->buf_size, dst_off + len,
PATTERN_DST, false);
if (error_count) {
result("data error", total_tests, src_off, dst_off,
len, error_count);
failed_tests++;
} else {
verbose_result("test passed", total_tests, src_off,
dst_off, len, 0);
}
}
runtime = ktime_us_delta(ktime_get(), ktime);
ret = 0;
for (i = 0; thread->dsts[i]; i++)
kfree(thread->dsts[i]);
err_dstbuf:
kfree(thread->dsts);
err_dsts:
for (i = 0; thread->srcs[i]; i++)
kfree(thread->srcs[i]);
err_srcbuf:
kfree(thread->srcs);
err_srcs:
kfree(pq_coefs);
err_thread_type:
pr_info("%s: summary %u tests, %u failures %llu iops %llu KB/s (%d)\n",
current->comm, total_tests, failed_tests,
dmatest_persec(runtime, total_tests),
dmatest_KBs(runtime, total_len), ret);
/* terminate all transfers on specified channels */
if (ret)
dmaengine_terminate_all(chan);
thread->done = true;
wake_up(&thread_wait);
return ret;
}
static void dmatest_cleanup_channel(struct dmatest_chan *dtc)
{
struct dmatest_thread *thread;
struct dmatest_thread *_thread;
int ret;
list_for_each_entry_safe(thread, _thread, &dtc->threads, node) {
ret = kthread_stop(thread->task);
pr_debug("thread %s exited with status %d\n",
thread->task->comm, ret);
list_del(&thread->node);
put_task_struct(thread->task);
kfree(thread);
}
/* terminate all transfers on specified channels */
dmaengine_terminate_all(dtc->chan);
kfree(dtc);
}
static int dmatest_add_threads(struct dmatest_info *info,
struct dmatest_chan *dtc, enum dma_transaction_type type)
{
struct dmatest_params *params = &info->params;
struct dmatest_thread *thread;
struct dma_chan *chan = dtc->chan;
char *op;
unsigned int i;
if (type == DMA_MEMCPY)
op = "copy";
else if (type == DMA_XOR)
op = "xor";
else if (type == DMA_PQ)
op = "pq";
else
return -EINVAL;
for (i = 0; i < params->threads_per_chan; i++) {
thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL);
if (!thread) {
pr_warn("No memory for %s-%s%u\n",
dma_chan_name(chan), op, i);
break;
}
thread->info = info;
thread->chan = dtc->chan;
thread->type = type;
smp_wmb();
thread->task = kthread_create(dmatest_func, thread, "%s-%s%u",
dma_chan_name(chan), op, i);
if (IS_ERR(thread->task)) {
pr_warn("Failed to create thread %s-%s%u\n",
dma_chan_name(chan), op, i);
kfree(thread);
break;
}
/* srcbuf and dstbuf are allocated by the thread itself */
get_task_struct(thread->task);
list_add_tail(&thread->node, &dtc->threads);
wake_up_process(thread->task);
}
return i;
}
static int dmatest_add_channel(struct dmatest_info *info,
struct dma_chan *chan)
{
struct dmatest_chan *dtc;
struct dma_device *dma_dev = chan->device;
unsigned int thread_count = 0;
int cnt;
dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL);
if (!dtc) {
pr_warn("No memory for %s\n", dma_chan_name(chan));
return -ENOMEM;
}
dtc->chan = chan;
INIT_LIST_HEAD(&dtc->threads);
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY);
thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_XOR);
thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_PQ);
thread_count += cnt > 0 ? cnt : 0;
}
pr_info("Started %u threads using %s\n",
thread_count, dma_chan_name(chan));
list_add_tail(&dtc->node, &info->channels);
info->nr_channels++;
return 0;
}
static bool filter(struct dma_chan *chan, void *param)
{
struct dmatest_params *params = param;
if (!dmatest_match_channel(params, chan) ||
!dmatest_match_device(params, chan->device))
return false;
else
return true;
}
static void request_channels(struct dmatest_info *info,
enum dma_transaction_type type)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(type, mask);
for (;;) {
struct dmatest_params *params = &info->params;
struct dma_chan *chan;
chan = dma_request_channel(mask, filter, params);
if (chan) {
if (dmatest_add_channel(info, chan)) {
dma_release_channel(chan);
break; /* add_channel failed, punt */
}
} else
break; /* no more channels available */
if (params->max_channels &&
info->nr_channels >= params->max_channels)
break; /* we have all we need */
}
}
static void run_threaded_test(struct dmatest_info *info)
{
struct dmatest_params *params = &info->params;
/* Copy test parameters */
params->buf_size = test_buf_size;
strlcpy(params->channel, strim(test_channel), sizeof(params->channel));
strlcpy(params->device, strim(test_device), sizeof(params->device));
params->threads_per_chan = threads_per_chan;
params->max_channels = max_channels;
params->iterations = iterations;
params->xor_sources = xor_sources;
params->pq_sources = pq_sources;
params->timeout = timeout;
params->noverify = noverify;
request_channels(info, DMA_MEMCPY);
request_channels(info, DMA_XOR);
request_channels(info, DMA_PQ);
}
static void stop_threaded_test(struct dmatest_info *info)
{
struct dmatest_chan *dtc, *_dtc;
struct dma_chan *chan;
list_for_each_entry_safe(dtc, _dtc, &info->channels, node) {
list_del(&dtc->node);
chan = dtc->chan;
dmatest_cleanup_channel(dtc);
pr_debug("dropped channel %s\n", dma_chan_name(chan));
dma_release_channel(chan);
}
info->nr_channels = 0;
}
static void restart_threaded_test(struct dmatest_info *info, bool run)
{
/* we might be called early to set run=, defer running until all
* parameters have been evaluated
*/
if (!info->did_init)
return;
/* Stop any running test first */
stop_threaded_test(info);
/* Run test with new parameters */
run_threaded_test(info);
}
static int dmatest_run_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
mutex_lock(&info->lock);
if (is_threaded_test_run(info)) {
dmatest_run = true;
} else {
stop_threaded_test(info);
dmatest_run = false;
}
mutex_unlock(&info->lock);
return param_get_bool(val, kp);
}
static int dmatest_run_set(const char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
int ret;
mutex_lock(&info->lock);
ret = param_set_bool(val, kp);
if (ret) {
mutex_unlock(&info->lock);
return ret;
}
if (is_threaded_test_run(info))
ret = -EBUSY;
else if (dmatest_run)
restart_threaded_test(info, dmatest_run);
mutex_unlock(&info->lock);
return ret;
}
static int __init dmatest_init(void)
{
struct dmatest_info *info = &test_info;
struct dmatest_params *params = &info->params;
if (dmatest_run) {
mutex_lock(&info->lock);
run_threaded_test(info);
mutex_unlock(&info->lock);
}
if (params->iterations && wait)
wait_event(thread_wait, !is_threaded_test_run(info));
/* module parameters are stable, inittime tests are started,
* let userspace take over 'run' control
*/
info->did_init = true;
return 0;
}
/* when compiled-in wait for drivers to load first */
late_initcall(dmatest_init);
static void __exit dmatest_exit(void)
{
struct dmatest_info *info = &test_info;
mutex_lock(&info->lock);
stop_threaded_test(info);
mutex_unlock(&info->lock);
}
module_exit(dmatest_exit);
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL v2");