OpenCloudOS-Kernel/drivers/net/e2100.c

491 lines
14 KiB
C

/* e2100.c: A Cabletron E2100 series ethernet driver for linux. */
/*
Written 1993-1994 by Donald Becker.
Copyright 1994 by Donald Becker.
Copyright 1993 United States Government as represented by the
Director, National Security Agency. This software may be used and
distributed according to the terms of the GNU General Public License,
incorporated herein by reference.
This is a driver for the Cabletron E2100 series ethercards.
The Author may be reached as becker@scyld.com, or C/O
Scyld Computing Corporation
410 Severn Ave., Suite 210
Annapolis MD 21403
The E2100 series ethercard is a fairly generic shared memory 8390
implementation. The only unusual aspect is the way the shared memory
registers are set: first you do an inb() in what is normally the
station address region, and the low three bits of next outb() *address*
is used as the write value for that register. Either someone wasn't
too used to dem bit en bites, or they were trying to obfuscate the
programming interface.
There is an additional complication when setting the window on the packet
buffer. You must first do a read into the packet buffer region with the
low 8 address bits the address setting the page for the start of the packet
buffer window, and then do the above operation. See mem_on() for details.
One bug on the chip is that even a hard reset won't disable the memory
window, usually resulting in a hung machine if mem_off() isn't called.
If this happens, you must power down the machine for about 30 seconds.
*/
static const char version[] =
"e2100.c:v1.01 7/21/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include "8390.h"
#define DRV_NAME "e2100"
static int e21_probe_list[] = {0x300, 0x280, 0x380, 0x220, 0};
/* Offsets from the base_addr.
Read from the ASIC register, and the low three bits of the next outb()
address is used to set the corresponding register. */
#define E21_NIC_OFFSET 0 /* Offset to the 8390 NIC. */
#define E21_ASIC 0x10
#define E21_MEM_ENABLE 0x10
#define E21_MEM_ON 0x05 /* Enable memory in 16 bit mode. */
#define E21_MEM_ON_8 0x07 /* Enable memory in 8 bit mode. */
#define E21_MEM_BASE 0x11
#define E21_IRQ_LOW 0x12 /* The low three bits of the IRQ number. */
#define E21_IRQ_HIGH 0x14 /* The high IRQ bit and media select ... */
#define E21_MEDIA 0x14 /* (alias). */
#define E21_ALT_IFPORT 0x02 /* Set to use the other (BNC,AUI) port. */
#define E21_BIG_MEM 0x04 /* Use a bigger (64K) buffer (we don't) */
#define E21_SAPROM 0x10 /* Offset to station address data. */
#define E21_IO_EXTENT 0x20
static inline void mem_on(short port, volatile char __iomem *mem_base,
unsigned char start_page )
{
/* This is a little weird: set the shared memory window by doing a
read. The low address bits specify the starting page. */
readb(mem_base+start_page);
inb(port + E21_MEM_ENABLE);
outb(E21_MEM_ON, port + E21_MEM_ENABLE + E21_MEM_ON);
}
static inline void mem_off(short port)
{
inb(port + E21_MEM_ENABLE);
outb(0x00, port + E21_MEM_ENABLE);
}
/* In other drivers I put the TX pages first, but the E2100 window circuitry
is designed to have a 4K Tx region last. The windowing circuitry wraps the
window at 0x2fff->0x0000 so that the packets at e.g. 0x2f00 in the RX ring
appear contiguously in the window. */
#define E21_RX_START_PG 0x00 /* First page of RX buffer */
#define E21_RX_STOP_PG 0x30 /* Last page +1 of RX ring */
#define E21_BIG_RX_STOP_PG 0xF0 /* Last page +1 of RX ring */
#define E21_TX_START_PG E21_RX_STOP_PG /* First page of TX buffer */
static int e21_probe1(struct net_device *dev, int ioaddr);
static int e21_open(struct net_device *dev);
static void e21_reset_8390(struct net_device *dev);
static void e21_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset);
static void e21_block_output(struct net_device *dev, int count,
const unsigned char *buf, int start_page);
static void e21_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr,
int ring_page);
static int e21_open(struct net_device *dev);
static int e21_close(struct net_device *dev);
/* Probe for the E2100 series ethercards. These cards have an 8390 at the
base address and the station address at both offset 0x10 and 0x18. I read
the station address from offset 0x18 to avoid the dataport of NE2000
ethercards, and look for Ctron's unique ID (first three octets of the
station address).
*/
static int __init do_e2100_probe(struct net_device *dev)
{
int *port;
int base_addr = dev->base_addr;
int irq = dev->irq;
if (base_addr > 0x1ff) /* Check a single specified location. */
return e21_probe1(dev, base_addr);
else if (base_addr != 0) /* Don't probe at all. */
return -ENXIO;
for (port = e21_probe_list; *port; port++) {
dev->irq = irq;
if (e21_probe1(dev, *port) == 0)
return 0;
}
return -ENODEV;
}
#ifndef MODULE
struct net_device * __init e2100_probe(int unit)
{
struct net_device *dev = alloc_ei_netdev();
int err;
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
err = do_e2100_probe(dev);
if (err)
goto out;
return dev;
out:
free_netdev(dev);
return ERR_PTR(err);
}
#endif
static const struct net_device_ops e21_netdev_ops = {
.ndo_open = e21_open,
.ndo_stop = e21_close,
.ndo_start_xmit = ei_start_xmit,
.ndo_tx_timeout = ei_tx_timeout,
.ndo_get_stats = ei_get_stats,
.ndo_set_multicast_list = ei_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ei_poll,
#endif
};
static int __init e21_probe1(struct net_device *dev, int ioaddr)
{
int i, status, retval;
unsigned char *station_addr = dev->dev_addr;
static unsigned version_printed;
if (!request_region(ioaddr, E21_IO_EXTENT, DRV_NAME))
return -EBUSY;
/* First check the station address for the Ctron prefix. */
if (inb(ioaddr + E21_SAPROM + 0) != 0x00 ||
inb(ioaddr + E21_SAPROM + 1) != 0x00 ||
inb(ioaddr + E21_SAPROM + 2) != 0x1d) {
retval = -ENODEV;
goto out;
}
/* Verify by making certain that there is a 8390 at there. */
outb(E8390_NODMA + E8390_STOP, ioaddr);
udelay(1); /* we want to delay one I/O cycle - which is 2MHz */
status = inb(ioaddr);
if (status != 0x21 && status != 0x23) {
retval = -ENODEV;
goto out;
}
/* Read the station address PROM. */
for (i = 0; i < 6; i++)
station_addr[i] = inb(ioaddr + E21_SAPROM + i);
inb(ioaddr + E21_MEDIA); /* Point to media selection. */
outb(0, ioaddr + E21_ASIC); /* and disable the secondary interface. */
if (ei_debug && version_printed++ == 0)
printk(version);
for (i = 0; i < 6; i++)
printk(" %02X", station_addr[i]);
if (dev->irq < 2) {
int irqlist[] = {15, 11, 10, 12, 5, 9, 3, 4};
for (i = 0; i < ARRAY_SIZE(irqlist); i++)
if (request_irq (irqlist[i], NULL, 0, "bogus", NULL) != -EBUSY) {
dev->irq = irqlist[i];
break;
}
if (i >= ARRAY_SIZE(irqlist)) {
printk(" unable to get IRQ %d.\n", dev->irq);
retval = -EAGAIN;
goto out;
}
} else if (dev->irq == 2) /* Fixup luser bogosity: IRQ2 is really IRQ9 */
dev->irq = 9;
/* The 8390 is at the base address. */
dev->base_addr = ioaddr;
ei_status.name = "E2100";
ei_status.word16 = 1;
ei_status.tx_start_page = E21_TX_START_PG;
ei_status.rx_start_page = E21_RX_START_PG;
ei_status.stop_page = E21_RX_STOP_PG;
ei_status.saved_irq = dev->irq;
/* Check the media port used. The port can be passed in on the
low mem_end bits. */
if (dev->mem_end & 15)
dev->if_port = dev->mem_end & 7;
else {
dev->if_port = 0;
inb(ioaddr + E21_MEDIA); /* Turn automatic media detection on. */
for(i = 0; i < 6; i++)
if (station_addr[i] != inb(ioaddr + E21_SAPROM + 8 + i)) {
dev->if_port = 1;
break;
}
}
/* Never map in the E21 shared memory unless you are actively using it.
Also, the shared memory has effective only one setting -- spread all
over the 128K region! */
if (dev->mem_start == 0)
dev->mem_start = 0xd0000;
ei_status.mem = ioremap(dev->mem_start, 2*1024);
if (!ei_status.mem) {
printk("unable to remap memory\n");
retval = -EAGAIN;
goto out;
}
#ifdef notdef
/* These values are unused. The E2100 has a 2K window into the packet
buffer. The window can be set to start on any page boundary. */
ei_status.rmem_start = dev->mem_start + TX_PAGES*256;
dev->mem_end = ei_status.rmem_end = dev->mem_start + 2*1024;
#endif
printk(", IRQ %d, %s media, memory @ %#lx.\n", dev->irq,
dev->if_port ? "secondary" : "primary", dev->mem_start);
ei_status.reset_8390 = &e21_reset_8390;
ei_status.block_input = &e21_block_input;
ei_status.block_output = &e21_block_output;
ei_status.get_8390_hdr = &e21_get_8390_hdr;
dev->netdev_ops = &e21_netdev_ops;
NS8390_init(dev, 0);
retval = register_netdev(dev);
if (retval)
goto out;
return 0;
out:
release_region(ioaddr, E21_IO_EXTENT);
return retval;
}
static int
e21_open(struct net_device *dev)
{
short ioaddr = dev->base_addr;
int retval;
if ((retval = request_irq(dev->irq, ei_interrupt, 0, dev->name, dev)))
return retval;
/* Set the interrupt line and memory base on the hardware. */
inb(ioaddr + E21_IRQ_LOW);
outb(0, ioaddr + E21_ASIC + (dev->irq & 7));
inb(ioaddr + E21_IRQ_HIGH); /* High IRQ bit, and if_port. */
outb(0, ioaddr + E21_ASIC + (dev->irq > 7 ? 1:0)
+ (dev->if_port ? E21_ALT_IFPORT : 0));
inb(ioaddr + E21_MEM_BASE);
outb(0, ioaddr + E21_ASIC + ((dev->mem_start >> 17) & 7));
ei_open(dev);
return 0;
}
static void
e21_reset_8390(struct net_device *dev)
{
short ioaddr = dev->base_addr;
outb(0x01, ioaddr);
if (ei_debug > 1) printk("resetting the E2180x3 t=%ld...", jiffies);
ei_status.txing = 0;
/* Set up the ASIC registers, just in case something changed them. */
if (ei_debug > 1) printk("reset done\n");
return;
}
/* Grab the 8390 specific header. We put the 2k window so the header page
appears at the start of the shared memory. */
static void
e21_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page)
{
short ioaddr = dev->base_addr;
char __iomem *shared_mem = ei_status.mem;
mem_on(ioaddr, shared_mem, ring_page);
#ifdef notdef
/* Officially this is what we are doing, but the readl() is faster */
memcpy_fromio(hdr, shared_mem, sizeof(struct e8390_pkt_hdr));
#else
((unsigned int*)hdr)[0] = readl(shared_mem);
#endif
/* Turn off memory access: we would need to reprogram the window anyway. */
mem_off(ioaddr);
}
/* Block input and output are easy on shared memory ethercards.
The E21xx makes block_input() especially easy by wrapping the top
ring buffer to the bottom automatically. */
static void
e21_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset)
{
short ioaddr = dev->base_addr;
char __iomem *shared_mem = ei_status.mem;
mem_on(ioaddr, shared_mem, (ring_offset>>8));
memcpy_fromio(skb->data, ei_status.mem + (ring_offset & 0xff), count);
mem_off(ioaddr);
}
static void
e21_block_output(struct net_device *dev, int count, const unsigned char *buf,
int start_page)
{
short ioaddr = dev->base_addr;
volatile char __iomem *shared_mem = ei_status.mem;
/* Set the shared memory window start by doing a read, with the low address
bits specifying the starting page. */
readb(shared_mem + start_page);
mem_on(ioaddr, shared_mem, start_page);
memcpy_toio(shared_mem, buf, count);
mem_off(ioaddr);
}
static int
e21_close(struct net_device *dev)
{
short ioaddr = dev->base_addr;
if (ei_debug > 1)
printk("%s: Shutting down ethercard.\n", dev->name);
free_irq(dev->irq, dev);
dev->irq = ei_status.saved_irq;
/* Shut off the interrupt line and secondary interface. */
inb(ioaddr + E21_IRQ_LOW);
outb(0, ioaddr + E21_ASIC);
inb(ioaddr + E21_IRQ_HIGH); /* High IRQ bit, and if_port. */
outb(0, ioaddr + E21_ASIC);
ei_close(dev);
/* Double-check that the memory has been turned off, because really
really bad things happen if it isn't. */
mem_off(ioaddr);
return 0;
}
#ifdef MODULE
#define MAX_E21_CARDS 4 /* Max number of E21 cards per module */
static struct net_device *dev_e21[MAX_E21_CARDS];
static int io[MAX_E21_CARDS];
static int irq[MAX_E21_CARDS];
static int mem[MAX_E21_CARDS];
static int xcvr[MAX_E21_CARDS]; /* choose int. or ext. xcvr */
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
module_param_array(mem, int, NULL, 0);
module_param_array(xcvr, int, NULL, 0);
MODULE_PARM_DESC(io, "I/O base address(es)");
MODULE_PARM_DESC(irq, "IRQ number(s)");
MODULE_PARM_DESC(mem, " memory base address(es)");
MODULE_PARM_DESC(xcvr, "transceiver(s) (0=internal, 1=external)");
MODULE_DESCRIPTION("Cabletron E2100 ISA ethernet driver");
MODULE_LICENSE("GPL");
/* This is set up so that only a single autoprobe takes place per call.
ISA device autoprobes on a running machine are not recommended. */
int __init init_module(void)
{
struct net_device *dev;
int this_dev, found = 0;
for (this_dev = 0; this_dev < MAX_E21_CARDS; this_dev++) {
if (io[this_dev] == 0) {
if (this_dev != 0) break; /* only autoprobe 1st one */
printk(KERN_NOTICE "e2100.c: Presently autoprobing (not recommended) for a single card.\n");
}
dev = alloc_ei_netdev();
if (!dev)
break;
dev->irq = irq[this_dev];
dev->base_addr = io[this_dev];
dev->mem_start = mem[this_dev];
dev->mem_end = xcvr[this_dev]; /* low 4bits = xcvr sel. */
if (do_e2100_probe(dev) == 0) {
dev_e21[found++] = dev;
continue;
}
free_netdev(dev);
printk(KERN_WARNING "e2100.c: No E2100 card found (i/o = 0x%x).\n", io[this_dev]);
break;
}
if (found)
return 0;
return -ENXIO;
}
static void cleanup_card(struct net_device *dev)
{
/* NB: e21_close() handles free_irq */
iounmap(ei_status.mem);
release_region(dev->base_addr, E21_IO_EXTENT);
}
void __exit
cleanup_module(void)
{
int this_dev;
for (this_dev = 0; this_dev < MAX_E21_CARDS; this_dev++) {
struct net_device *dev = dev_e21[this_dev];
if (dev) {
unregister_netdev(dev);
cleanup_card(dev);
free_netdev(dev);
}
}
}
#endif /* MODULE */