OpenCloudOS-Kernel/tools/testing/selftests/kvm/lib/x86_64/processor.c

1582 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* tools/testing/selftests/kvm/lib/x86_64/processor.c
*
* Copyright (C) 2018, Google LLC.
*/
#include "test_util.h"
#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"
#ifndef NUM_INTERRUPTS
#define NUM_INTERRUPTS 256
#endif
#define DEFAULT_CODE_SELECTOR 0x8
#define DEFAULT_DATA_SELECTOR 0x10
vm_vaddr_t exception_handlers;
/* Virtual translation table structure declarations */
struct pageUpperEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t ignored_06:1;
uint64_t page_size:1;
uint64_t ignored_11_08:4;
uint64_t pfn:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
struct pageTableEntry {
uint64_t present:1;
uint64_t writable:1;
uint64_t user:1;
uint64_t write_through:1;
uint64_t cache_disable:1;
uint64_t accessed:1;
uint64_t dirty:1;
uint64_t reserved_07:1;
uint64_t global:1;
uint64_t ignored_11_09:3;
uint64_t pfn:40;
uint64_t ignored_62_52:11;
uint64_t execute_disable:1;
};
void regs_dump(FILE *stream, struct kvm_regs *regs,
uint8_t indent)
{
fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
"rcx: 0x%.16llx rdx: 0x%.16llx\n",
indent, "",
regs->rax, regs->rbx, regs->rcx, regs->rdx);
fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
"rsp: 0x%.16llx rbp: 0x%.16llx\n",
indent, "",
regs->rsi, regs->rdi, regs->rsp, regs->rbp);
fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
"r10: 0x%.16llx r11: 0x%.16llx\n",
indent, "",
regs->r8, regs->r9, regs->r10, regs->r11);
fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
"r14: 0x%.16llx r15: 0x%.16llx\n",
indent, "",
regs->r12, regs->r13, regs->r14, regs->r15);
fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
indent, "",
regs->rip, regs->rflags);
}
/*
* Segment Dump
*
* Input Args:
* stream - Output FILE stream
* segment - KVM segment
* indent - Left margin indent amount
*
* Output Args: None
*
* Return: None
*
* Dumps the state of the KVM segment given by @segment, to the FILE stream
* given by @stream.
*/
static void segment_dump(FILE *stream, struct kvm_segment *segment,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
"selector: 0x%.4x type: 0x%.2x\n",
indent, "", segment->base, segment->limit,
segment->selector, segment->type);
fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
indent, "", segment->present, segment->dpl,
segment->db, segment->s, segment->l);
fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
"unusable: 0x%.2x padding: 0x%.2x\n",
indent, "", segment->g, segment->avl,
segment->unusable, segment->padding);
}
/*
* dtable Dump
*
* Input Args:
* stream - Output FILE stream
* dtable - KVM dtable
* indent - Left margin indent amount
*
* Output Args: None
*
* Return: None
*
* Dumps the state of the KVM dtable given by @dtable, to the FILE stream
* given by @stream.
*/
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
uint8_t indent)
{
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
"padding: 0x%.4x 0x%.4x 0x%.4x\n",
indent, "", dtable->base, dtable->limit,
dtable->padding[0], dtable->padding[1], dtable->padding[2]);
}
void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
uint8_t indent)
{
unsigned int i;
fprintf(stream, "%*scs:\n", indent, "");
segment_dump(stream, &sregs->cs, indent + 2);
fprintf(stream, "%*sds:\n", indent, "");
segment_dump(stream, &sregs->ds, indent + 2);
fprintf(stream, "%*ses:\n", indent, "");
segment_dump(stream, &sregs->es, indent + 2);
fprintf(stream, "%*sfs:\n", indent, "");
segment_dump(stream, &sregs->fs, indent + 2);
fprintf(stream, "%*sgs:\n", indent, "");
segment_dump(stream, &sregs->gs, indent + 2);
fprintf(stream, "%*sss:\n", indent, "");
segment_dump(stream, &sregs->ss, indent + 2);
fprintf(stream, "%*str:\n", indent, "");
segment_dump(stream, &sregs->tr, indent + 2);
fprintf(stream, "%*sldt:\n", indent, "");
segment_dump(stream, &sregs->ldt, indent + 2);
fprintf(stream, "%*sgdt:\n", indent, "");
dtable_dump(stream, &sregs->gdt, indent + 2);
fprintf(stream, "%*sidt:\n", indent, "");
dtable_dump(stream, &sregs->idt, indent + 2);
fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
"cr3: 0x%.16llx cr4: 0x%.16llx\n",
indent, "",
sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
"apic_base: 0x%.16llx\n",
indent, "",
sregs->cr8, sregs->efer, sregs->apic_base);
fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
fprintf(stream, "%*s%.16llx\n", indent + 2, "",
sregs->interrupt_bitmap[i]);
}
}
void virt_pgd_alloc(struct kvm_vm *vm)
{
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
/* If needed, create page map l4 table. */
if (!vm->pgd_created) {
vm->pgd = vm_alloc_page_table(vm);
vm->pgd_created = true;
}
}
static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
int level)
{
uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
return &page_table[index];
}
static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
uint64_t pt_pfn,
uint64_t vaddr,
uint64_t paddr,
int level,
enum x86_page_size page_size)
{
struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
if (!pte->present) {
pte->writable = true;
pte->present = true;
pte->page_size = (level == page_size);
if (pte->page_size)
pte->pfn = paddr >> vm->page_shift;
else
pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
} else {
/*
* Entry already present. Assert that the caller doesn't want
* a hugepage at this level, and that there isn't a hugepage at
* this level.
*/
TEST_ASSERT(level != page_size,
"Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
page_size, vaddr);
TEST_ASSERT(!pte->page_size,
"Cannot create page table at level: %u, vaddr: 0x%lx\n",
level, vaddr);
}
return pte;
}
void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
enum x86_page_size page_size)
{
const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
struct pageUpperEntry *pml4e, *pdpe, *pde;
struct pageTableEntry *pte;
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
"Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT((vaddr % pg_size) == 0,
"Virtual address not aligned,\n"
"vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx", vaddr);
TEST_ASSERT((paddr % pg_size) == 0,
"Physical address not aligned,\n"
" paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
/*
* Allocate upper level page tables, if not already present. Return
* early if a hugepage was created.
*/
pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
vaddr, paddr, 3, page_size);
if (pml4e->page_size)
return;
pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
if (pdpe->page_size)
return;
pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
if (pde->page_size)
return;
/* Fill in page table entry. */
pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
TEST_ASSERT(!pte->present,
"PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
pte->pfn = paddr >> vm->page_shift;
pte->writable = true;
pte->present = 1;
}
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
__virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
}
static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
uint64_t vaddr)
{
uint16_t index[4];
struct pageUpperEntry *pml4e, *pdpe, *pde;
struct pageTableEntry *pte;
struct kvm_cpuid_entry2 *entry;
struct kvm_sregs sregs;
int max_phy_addr;
/* Set the bottom 52 bits. */
uint64_t rsvd_mask = 0x000fffffffffffff;
entry = kvm_get_supported_cpuid_index(0x80000008, 0);
max_phy_addr = entry->eax & 0x000000ff;
/* Clear the bottom bits of the reserved mask. */
rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
/*
* SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
* with 4-Level Paging and 5-Level Paging".
* If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
* the XD flag (bit 63) is reserved.
*/
vcpu_sregs_get(vm, vcpuid, &sregs);
if ((sregs.efer & EFER_NX) == 0) {
rsvd_mask |= (1ull << 63);
}
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx",
vaddr);
/*
* Based on the mode check above there are 48 bits in the vaddr, so
* shift 16 to sign extend the last bit (bit-47),
*/
TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
"Canonical check failed. The virtual address is invalid.");
index[0] = (vaddr >> 12) & 0x1ffu;
index[1] = (vaddr >> 21) & 0x1ffu;
index[2] = (vaddr >> 30) & 0x1ffu;
index[3] = (vaddr >> 39) & 0x1ffu;
pml4e = addr_gpa2hva(vm, vm->pgd);
TEST_ASSERT(pml4e[index[3]].present,
"Expected pml4e to be present for gva: 0x%08lx", vaddr);
TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
(rsvd_mask | (1ull << 7))) == 0,
"Unexpected reserved bits set.");
pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
TEST_ASSERT(pdpe[index[2]].present,
"Expected pdpe to be present for gva: 0x%08lx", vaddr);
TEST_ASSERT(pdpe[index[2]].page_size == 0,
"Expected pdpe to map a pde not a 1-GByte page.");
TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
"Unexpected reserved bits set.");
pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
TEST_ASSERT(pde[index[1]].present,
"Expected pde to be present for gva: 0x%08lx", vaddr);
TEST_ASSERT(pde[index[1]].page_size == 0,
"Expected pde to map a pte not a 2-MByte page.");
TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
"Unexpected reserved bits set.");
pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
TEST_ASSERT(pte[index[0]].present,
"Expected pte to be present for gva: 0x%08lx", vaddr);
return &pte[index[0]];
}
uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
{
struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
return *(uint64_t *)pte;
}
void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
uint64_t pte)
{
struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
vaddr);
*(uint64_t *)new_pte = pte;
}
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
struct pageUpperEntry *pml4e, *pml4e_start;
struct pageUpperEntry *pdpe, *pdpe_start;
struct pageUpperEntry *pde, *pde_start;
struct pageTableEntry *pte, *pte_start;
if (!vm->pgd_created)
return;
fprintf(stream, "%*s "
" no\n", indent, "");
fprintf(stream, "%*s index hvaddr gpaddr "
"addr w exec dirty\n",
indent, "");
pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
pml4e = &pml4e_start[n1];
if (!pml4e->present)
continue;
fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
" %u\n",
indent, "",
pml4e - pml4e_start, pml4e,
addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
pml4e->writable, pml4e->execute_disable);
pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
pdpe = &pdpe_start[n2];
if (!pdpe->present)
continue;
fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx "
"%u %u\n",
indent, "",
pdpe - pdpe_start, pdpe,
addr_hva2gpa(vm, pdpe),
(uint64_t) pdpe->pfn, pdpe->writable,
pdpe->execute_disable);
pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
pde = &pde_start[n3];
if (!pde->present)
continue;
fprintf(stream, "%*spde 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u\n",
indent, "", pde - pde_start, pde,
addr_hva2gpa(vm, pde),
(uint64_t) pde->pfn, pde->writable,
pde->execute_disable);
pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
pte = &pte_start[n4];
if (!pte->present)
continue;
fprintf(stream, "%*spte 0x%-3zx %p "
"0x%-12lx 0x%-10lx %u %u "
" %u 0x%-10lx\n",
indent, "",
pte - pte_start, pte,
addr_hva2gpa(vm, pte),
(uint64_t) pte->pfn,
pte->writable,
pte->execute_disable,
pte->dirty,
((uint64_t) n1 << 27)
| ((uint64_t) n2 << 18)
| ((uint64_t) n3 << 9)
| ((uint64_t) n4));
}
}
}
}
}
/*
* Set Unusable Segment
*
* Input Args: None
*
* Output Args:
* segp - Pointer to segment register
*
* Return: None
*
* Sets the segment register pointed to by @segp to an unusable state.
*/
static void kvm_seg_set_unusable(struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->unusable = true;
}
static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
{
void *gdt = addr_gva2hva(vm, vm->gdt);
struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
desc->limit0 = segp->limit & 0xFFFF;
desc->base0 = segp->base & 0xFFFF;
desc->base1 = segp->base >> 16;
desc->type = segp->type;
desc->s = segp->s;
desc->dpl = segp->dpl;
desc->p = segp->present;
desc->limit1 = segp->limit >> 16;
desc->avl = segp->avl;
desc->l = segp->l;
desc->db = segp->db;
desc->g = segp->g;
desc->base2 = segp->base >> 24;
if (!segp->s)
desc->base3 = segp->base >> 32;
}
/*
* Set Long Mode Flat Kernel Code Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by @segp, to be a code segment
* with the selector value given by @selector.
*/
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
* | kFlagCodeReadable
*/
segp->g = true;
segp->l = true;
segp->present = 1;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
/*
* Set Long Mode Flat Kernel Data Segment
*
* Input Args:
* vm - VM whose GDT is being filled, or NULL to only write segp
* selector - selector value
*
* Output Args:
* segp - Pointer to KVM segment
*
* Return: None
*
* Sets up the KVM segment pointed to by @segp, to be a data segment
* with the selector value given by @selector.
*/
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
struct kvm_segment *segp)
{
memset(segp, 0, sizeof(*segp));
segp->selector = selector;
segp->limit = 0xFFFFFFFFu;
segp->s = 0x1; /* kTypeCodeData */
segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
* | kFlagDataWritable
*/
segp->g = true;
segp->present = true;
if (vm)
kvm_seg_fill_gdt_64bit(vm, segp);
}
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint16_t index[4];
struct pageUpperEntry *pml4e, *pdpe, *pde;
struct pageTableEntry *pte;
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
index[0] = (gva >> 12) & 0x1ffu;
index[1] = (gva >> 21) & 0x1ffu;
index[2] = (gva >> 30) & 0x1ffu;
index[3] = (gva >> 39) & 0x1ffu;
if (!vm->pgd_created)
goto unmapped_gva;
pml4e = addr_gpa2hva(vm, vm->pgd);
if (!pml4e[index[3]].present)
goto unmapped_gva;
pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
if (!pdpe[index[2]].present)
goto unmapped_gva;
pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
if (!pde[index[1]].present)
goto unmapped_gva;
pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
if (!pte[index[0]].present)
goto unmapped_gva;
return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
unmapped_gva:
TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
exit(EXIT_FAILURE);
}
static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
{
if (!vm->gdt)
vm->gdt = vm_vaddr_alloc_page(vm);
dt->base = vm->gdt;
dt->limit = getpagesize();
}
static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
int selector)
{
if (!vm->tss)
vm->tss = vm_vaddr_alloc_page(vm);
memset(segp, 0, sizeof(*segp));
segp->base = vm->tss;
segp->limit = 0x67;
segp->selector = selector;
segp->type = 0xb;
segp->present = 1;
kvm_seg_fill_gdt_64bit(vm, segp);
}
static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
{
struct kvm_sregs sregs;
/* Set mode specific system register values. */
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs.idt.limit = 0;
kvm_setup_gdt(vm, &sregs.gdt);
switch (vm->mode) {
case VM_MODE_PXXV48_4K:
sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
kvm_seg_set_unusable(&sregs.ldt);
kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
break;
default:
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
}
sregs.cr3 = vm->pgd;
vcpu_sregs_set(vm, vcpuid, &sregs);
}
#define CPUID_XFD_BIT (1 << 4)
static bool is_xfd_supported(void)
{
int eax, ebx, ecx, edx;
const int leaf = 0xd, subleaf = 0x1;
__asm__ __volatile__(
"cpuid"
: /* output */ "=a"(eax), "=b"(ebx),
"=c"(ecx), "=d"(edx)
: /* input */ "0"(leaf), "2"(subleaf));
return !!(eax & CPUID_XFD_BIT);
}
void vm_xsave_req_perm(int bit)
{
int kvm_fd;
u64 bitmask;
long rc;
struct kvm_device_attr attr = {
.group = 0,
.attr = KVM_X86_XCOMP_GUEST_SUPP,
.addr = (unsigned long) &bitmask
};
kvm_fd = open_kvm_dev_path_or_exit();
rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
close(kvm_fd);
if (rc == -1 && (errno == ENXIO || errno == EINVAL))
exit(KSFT_SKIP);
TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
if (!(bitmask & (1ULL << bit)))
exit(KSFT_SKIP);
if (!is_xfd_supported())
exit(KSFT_SKIP);
rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
/*
* The older kernel version(<5.15) can't support
* ARCH_REQ_XCOMP_GUEST_PERM and directly return.
*/
if (rc)
return;
rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
TEST_ASSERT(bitmask & (1ULL << bit),
"prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
bitmask);
}
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
struct kvm_mp_state mp_state;
struct kvm_regs regs;
vm_vaddr_t stack_vaddr;
stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
DEFAULT_GUEST_STACK_VADDR_MIN);
/* Create VCPU */
vm_vcpu_add(vm, vcpuid);
vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
vcpu_setup(vm, vcpuid);
/* Setup guest general purpose registers */
vcpu_regs_get(vm, vcpuid, &regs);
regs.rflags = regs.rflags | 0x2;
regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
regs.rip = (unsigned long) guest_code;
vcpu_regs_set(vm, vcpuid, &regs);
/* Setup the MP state */
mp_state.mp_state = 0;
vcpu_set_mp_state(vm, vcpuid, &mp_state);
}
/*
* Allocate an instance of struct kvm_cpuid2
*
* Input Args: None
*
* Output Args: None
*
* Return: A pointer to the allocated struct. The caller is responsible
* for freeing this struct.
*
* Since kvm_cpuid2 uses a 0-length array to allow a the size of the
* array to be decided at allocation time, allocation is slightly
* complicated. This function uses a reasonable default length for
* the array and performs the appropriate allocation.
*/
static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
{
struct kvm_cpuid2 *cpuid;
int nent = 100;
size_t size;
size = sizeof(*cpuid);
size += nent * sizeof(struct kvm_cpuid_entry2);
cpuid = malloc(size);
if (!cpuid) {
perror("malloc");
abort();
}
cpuid->nent = nent;
return cpuid;
}
/*
* KVM Supported CPUID Get
*
* Input Args: None
*
* Output Args:
*
* Return: The supported KVM CPUID
*
* Get the guest CPUID supported by KVM.
*/
struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
{
static struct kvm_cpuid2 *cpuid;
int ret;
int kvm_fd;
if (cpuid)
return cpuid;
cpuid = allocate_kvm_cpuid2();
kvm_fd = open_kvm_dev_path_or_exit();
ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
ret, errno);
close(kvm_fd);
return cpuid;
}
/*
* KVM Get MSR
*
* Input Args:
* msr_index - Index of MSR
*
* Output Args: None
*
* Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
*
* Get value of MSR for VCPU.
*/
uint64_t kvm_get_feature_msr(uint64_t msr_index)
{
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r, kvm_fd;
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
kvm_fd = open_kvm_dev_path_or_exit();
r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
" rc: %i errno: %i", r, errno);
close(kvm_fd);
return buffer.entry.data;
}
/*
* VM VCPU CPUID Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU id
*
* Output Args: None
*
* Return: KVM CPUID (KVM_GET_CPUID2)
*
* Set the VCPU's CPUID.
*/
struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct kvm_cpuid2 *cpuid;
int max_ent;
int rc = -1;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
cpuid = allocate_kvm_cpuid2();
max_ent = cpuid->nent;
for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
if (!rc)
break;
TEST_ASSERT(rc == -1 && errno == E2BIG,
"KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
rc, errno);
}
TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
rc, errno);
return cpuid;
}
/*
* Locate a cpuid entry.
*
* Input Args:
* function: The function of the cpuid entry to find.
* index: The index of the cpuid entry.
*
* Output Args: None
*
* Return: A pointer to the cpuid entry. Never returns NULL.
*/
struct kvm_cpuid_entry2 *
kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
{
struct kvm_cpuid2 *cpuid;
struct kvm_cpuid_entry2 *entry = NULL;
int i;
cpuid = kvm_get_supported_cpuid();
for (i = 0; i < cpuid->nent; i++) {
if (cpuid->entries[i].function == function &&
cpuid->entries[i].index == index) {
entry = &cpuid->entries[i];
break;
}
}
TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
function, index);
return entry;
}
int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
struct kvm_cpuid2 *cpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
}
/*
* VM VCPU CPUID Set
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU id
* cpuid - The CPUID values to set.
*
* Output Args: None
*
* Return: void
*
* Set the VCPU's CPUID.
*/
void vcpu_set_cpuid(struct kvm_vm *vm,
uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
{
int rc;
rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
rc, errno);
}
/*
* VCPU Get MSR
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* msr_index - Index of MSR
*
* Output Args: None
*
* Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
*
* Get value of MSR for VCPU.
*/
uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
" rc: %i errno: %i", r, errno);
return buffer.entry.data;
}
/*
* _VCPU Set MSR
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* msr_index - Index of MSR
* msr_value - New value of MSR
*
* Output Args: None
*
* Return: The result of KVM_SET_MSRS.
*
* Sets the value of an MSR for the given VCPU.
*/
int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
uint64_t msr_value)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct {
struct kvm_msrs header;
struct kvm_msr_entry entry;
} buffer = {};
int r;
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
memset(&buffer, 0, sizeof(buffer));
buffer.header.nmsrs = 1;
buffer.entry.index = msr_index;
buffer.entry.data = msr_value;
r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
return r;
}
/*
* VCPU Set MSR
*
* Input Args:
* vm - Virtual Machine
* vcpuid - VCPU ID
* msr_index - Index of MSR
* msr_value - New value of MSR
*
* Output Args: None
*
* Return: On success, nothing. On failure a TEST_ASSERT is produced.
*
* Set value of MSR for VCPU.
*/
void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
uint64_t msr_value)
{
int r;
r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
" rc: %i errno: %i", r, errno);
}
void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
{
va_list ap;
struct kvm_regs regs;
TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
" num: %u\n",
num);
va_start(ap, num);
vcpu_regs_get(vm, vcpuid, &regs);
if (num >= 1)
regs.rdi = va_arg(ap, uint64_t);
if (num >= 2)
regs.rsi = va_arg(ap, uint64_t);
if (num >= 3)
regs.rdx = va_arg(ap, uint64_t);
if (num >= 4)
regs.rcx = va_arg(ap, uint64_t);
if (num >= 5)
regs.r8 = va_arg(ap, uint64_t);
if (num >= 6)
regs.r9 = va_arg(ap, uint64_t);
vcpu_regs_set(vm, vcpuid, &regs);
va_end(ap);
}
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
fprintf(stream, "%*sregs:\n", indent + 2, "");
vcpu_regs_get(vm, vcpuid, &regs);
regs_dump(stream, &regs, indent + 4);
fprintf(stream, "%*ssregs:\n", indent + 2, "");
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs_dump(stream, &sregs, indent + 4);
}
static int kvm_get_num_msrs_fd(int kvm_fd)
{
struct kvm_msr_list nmsrs;
int r;
nmsrs.nmsrs = 0;
r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
r);
return nmsrs.nmsrs;
}
static int kvm_get_num_msrs(struct kvm_vm *vm)
{
return kvm_get_num_msrs_fd(vm->kvm_fd);
}
struct kvm_msr_list *kvm_get_msr_index_list(void)
{
struct kvm_msr_list *list;
int nmsrs, r, kvm_fd;
kvm_fd = open_kvm_dev_path_or_exit();
nmsrs = kvm_get_num_msrs_fd(kvm_fd);
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
list->nmsrs = nmsrs;
r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
close(kvm_fd);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
r);
return list;
}
static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
struct kvm_x86_state *state)
{
int size;
size = vm_check_cap(vm, KVM_CAP_XSAVE2);
if (!size)
size = sizeof(struct kvm_xsave);
state->xsave = malloc(size);
if (size == sizeof(struct kvm_xsave))
return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
else
return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
}
struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
struct kvm_msr_list *list;
struct kvm_x86_state *state;
int nmsrs, r, i;
static int nested_size = -1;
if (nested_size == -1) {
nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
TEST_ASSERT(nested_size <= sizeof(state->nested_),
"Nested state size too big, %i > %zi",
nested_size, sizeof(state->nested_));
}
/*
* When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
* guest state is consistent only after userspace re-enters the
* kernel with KVM_RUN. Complete IO prior to migrating state
* to a new VM.
*/
vcpu_run_complete_io(vm, vcpuid);
nmsrs = kvm_get_num_msrs(vm);
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
list->nmsrs = nmsrs;
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
r);
state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
r);
r = vcpu_save_xsave_state(vm, vcpu, state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
r);
if (kvm_check_cap(KVM_CAP_XCRS)) {
r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
r);
}
r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
r);
if (nested_size) {
state->nested.size = sizeof(state->nested_);
r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
r);
TEST_ASSERT(state->nested.size <= nested_size,
"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
state->nested.size, nested_size);
} else
state->nested.size = 0;
state->msrs.nmsrs = nmsrs;
for (i = 0; i < nmsrs; i++)
state->msrs.entries[i].index = list->indices[i];
r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
r, r == nmsrs ? -1 : list->indices[r]);
r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
r);
free(list);
return state;
}
void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
{
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
int r;
r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
TEST_ASSERT(r == state->msrs.nmsrs,
"Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
if (kvm_check_cap(KVM_CAP_XCRS)) {
r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
r);
}
r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
r);
r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
r);
if (state->nested.size) {
r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
r);
}
}
void kvm_x86_state_cleanup(struct kvm_x86_state *state)
{
free(state->xsave);
free(state);
}
static bool cpu_vendor_string_is(const char *vendor)
{
const uint32_t *chunk = (const uint32_t *)vendor;
int eax, ebx, ecx, edx;
const int leaf = 0;
__asm__ __volatile__(
"cpuid"
: /* output */ "=a"(eax), "=b"(ebx),
"=c"(ecx), "=d"(edx)
: /* input */ "0"(leaf), "2"(0));
return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
}
bool is_intel_cpu(void)
{
return cpu_vendor_string_is("GenuineIntel");
}
/*
* Exclude early K5 samples with a vendor string of "AMDisbetter!"
*/
bool is_amd_cpu(void)
{
return cpu_vendor_string_is("AuthenticAMD");
}
uint32_t kvm_get_cpuid_max_basic(void)
{
return kvm_get_supported_cpuid_entry(0)->eax;
}
uint32_t kvm_get_cpuid_max_extended(void)
{
return kvm_get_supported_cpuid_entry(0x80000000)->eax;
}
void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
{
struct kvm_cpuid_entry2 *entry;
bool pae;
/* SDM 4.1.4 */
if (kvm_get_cpuid_max_extended() < 0x80000008) {
pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
*pa_bits = pae ? 36 : 32;
*va_bits = 32;
} else {
entry = kvm_get_supported_cpuid_entry(0x80000008);
*pa_bits = entry->eax & 0xff;
*va_bits = (entry->eax >> 8) & 0xff;
}
}
struct idt_entry {
uint16_t offset0;
uint16_t selector;
uint16_t ist : 3;
uint16_t : 5;
uint16_t type : 4;
uint16_t : 1;
uint16_t dpl : 2;
uint16_t p : 1;
uint16_t offset1;
uint32_t offset2; uint32_t reserved;
};
static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
int dpl, unsigned short selector)
{
struct idt_entry *base =
(struct idt_entry *)addr_gva2hva(vm, vm->idt);
struct idt_entry *e = &base[vector];
memset(e, 0, sizeof(*e));
e->offset0 = addr;
e->selector = selector;
e->ist = 0;
e->type = 14;
e->dpl = dpl;
e->p = 1;
e->offset1 = addr >> 16;
e->offset2 = addr >> 32;
}
void kvm_exit_unexpected_vector(uint32_t value)
{
ucall(UCALL_UNHANDLED, 1, value);
}
void route_exception(struct ex_regs *regs)
{
typedef void(*handler)(struct ex_regs *);
handler *handlers = (handler *)exception_handlers;
if (handlers && handlers[regs->vector]) {
handlers[regs->vector](regs);
return;
}
kvm_exit_unexpected_vector(regs->vector);
}
void vm_init_descriptor_tables(struct kvm_vm *vm)
{
extern void *idt_handlers;
int i;
vm->idt = vm_vaddr_alloc_page(vm);
vm->handlers = vm_vaddr_alloc_page(vm);
/* Handlers have the same address in both address spaces.*/
for (i = 0; i < NUM_INTERRUPTS; i++)
set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
DEFAULT_CODE_SELECTOR);
}
void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
{
struct kvm_sregs sregs;
vcpu_sregs_get(vm, vcpuid, &sregs);
sregs.idt.base = vm->idt;
sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
sregs.gdt.base = vm->gdt;
sregs.gdt.limit = getpagesize() - 1;
kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
vcpu_sregs_set(vm, vcpuid, &sregs);
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
}
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
void (*handler)(struct ex_regs *))
{
vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
handlers[vector] = (vm_vaddr_t)handler;
}
void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
{
struct ucall uc;
if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
uint64_t vector = uc.args[0];
TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
vector);
}
}
struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
uint32_t index)
{
int i;
for (i = 0; i < cpuid->nent; i++) {
struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
if (cur->function == function && cur->index == index)
return cur;
}
TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
return NULL;
}
bool set_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 *ent)
{
int i;
for (i = 0; i < cpuid->nent; i++) {
struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
if (cur->function != ent->function || cur->index != ent->index)
continue;
memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
return true;
}
return false;
}
uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
uint64_t a3)
{
uint64_t r;
asm volatile("vmcall"
: "=a"(r)
: "b"(a0), "c"(a1), "d"(a2), "S"(a3));
return r;
}
struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
{
static struct kvm_cpuid2 *cpuid;
int ret;
int kvm_fd;
if (cpuid)
return cpuid;
cpuid = allocate_kvm_cpuid2();
kvm_fd = open_kvm_dev_path_or_exit();
ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
ret, errno);
close(kvm_fd);
return cpuid;
}
void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
{
static struct kvm_cpuid2 *cpuid_full;
struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
int i, nent = 0;
if (!cpuid_full) {
cpuid_sys = kvm_get_supported_cpuid();
cpuid_hv = kvm_get_supported_hv_cpuid();
cpuid_full = malloc(sizeof(*cpuid_full) +
(cpuid_sys->nent + cpuid_hv->nent) *
sizeof(struct kvm_cpuid_entry2));
if (!cpuid_full) {
perror("malloc");
abort();
}
/* Need to skip KVM CPUID leaves 0x400000xx */
for (i = 0; i < cpuid_sys->nent; i++) {
if (cpuid_sys->entries[i].function >= 0x40000000 &&
cpuid_sys->entries[i].function < 0x40000100)
continue;
cpuid_full->entries[nent] = cpuid_sys->entries[i];
nent++;
}
memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
cpuid_full->nent = nent + cpuid_hv->nent;
}
vcpu_set_cpuid(vm, vcpuid, cpuid_full);
}
struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
{
static struct kvm_cpuid2 *cpuid;
cpuid = allocate_kvm_cpuid2();
vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
return cpuid;
}
unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
{
const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
unsigned long ht_gfn, max_gfn, max_pfn;
uint32_t eax, ebx, ecx, edx, max_ext_leaf;
max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
/* Avoid reserved HyperTransport region on AMD processors. */
if (!is_amd_cpu())
return max_gfn;
/* On parts with <40 physical address bits, the area is fully hidden */
if (vm->pa_bits < 40)
return max_gfn;
/* Before family 17h, the HyperTransport area is just below 1T. */
ht_gfn = (1 << 28) - num_ht_pages;
eax = 1;
ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
if (x86_family(eax) < 0x17)
goto done;
/*
* Otherwise it's at the top of the physical address space, possibly
* reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
* the old conservative value if MAXPHYADDR is not enumerated.
*/
eax = 0x80000000;
cpuid(&eax, &ebx, &ecx, &edx);
max_ext_leaf = eax;
if (max_ext_leaf < 0x80000008)
goto done;
eax = 0x80000008;
cpuid(&eax, &ebx, &ecx, &edx);
max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
if (max_ext_leaf >= 0x8000001f) {
eax = 0x8000001f;
cpuid(&eax, &ebx, &ecx, &edx);
max_pfn >>= (ebx >> 6) & 0x3f;
}
ht_gfn = max_pfn - num_ht_pages;
done:
return min(max_gfn, ht_gfn - 1);
}