OpenCloudOS-Kernel/drivers/net/wireless/rtlwifi/rtl8192cu/hw.c

2505 lines
75 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2010 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../cam.h"
#include "../ps.h"
#include "../usb.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "mac.h"
#include "dm.h"
#include "hw.h"
#include "trx.h"
#include "led.h"
#include "table.h"
static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
if (IS_HIGHT_PA(rtlefuse->board_type)) {
rtlphy->hwparam_tables[PHY_REG_PG].length =
RTL8192CUPHY_REG_Array_PG_HPLength;
rtlphy->hwparam_tables[PHY_REG_PG].pdata =
RTL8192CUPHY_REG_Array_PG_HP;
} else {
rtlphy->hwparam_tables[PHY_REG_PG].length =
RTL8192CUPHY_REG_ARRAY_PGLENGTH;
rtlphy->hwparam_tables[PHY_REG_PG].pdata =
RTL8192CUPHY_REG_ARRAY_PG;
}
/* 2T */
rtlphy->hwparam_tables[PHY_REG_2T].length =
RTL8192CUPHY_REG_2TARRAY_LENGTH;
rtlphy->hwparam_tables[PHY_REG_2T].pdata =
RTL8192CUPHY_REG_2TARRAY;
rtlphy->hwparam_tables[RADIOA_2T].length =
RTL8192CURADIOA_2TARRAYLENGTH;
rtlphy->hwparam_tables[RADIOA_2T].pdata =
RTL8192CURADIOA_2TARRAY;
rtlphy->hwparam_tables[RADIOB_2T].length =
RTL8192CURADIOB_2TARRAYLENGTH;
rtlphy->hwparam_tables[RADIOB_2T].pdata =
RTL8192CU_RADIOB_2TARRAY;
rtlphy->hwparam_tables[AGCTAB_2T].length =
RTL8192CUAGCTAB_2TARRAYLENGTH;
rtlphy->hwparam_tables[AGCTAB_2T].pdata =
RTL8192CUAGCTAB_2TARRAY;
/* 1T */
if (IS_HIGHT_PA(rtlefuse->board_type)) {
rtlphy->hwparam_tables[PHY_REG_1T].length =
RTL8192CUPHY_REG_1T_HPArrayLength;
rtlphy->hwparam_tables[PHY_REG_1T].pdata =
RTL8192CUPHY_REG_1T_HPArray;
rtlphy->hwparam_tables[RADIOA_1T].length =
RTL8192CURadioA_1T_HPArrayLength;
rtlphy->hwparam_tables[RADIOA_1T].pdata =
RTL8192CURadioA_1T_HPArray;
rtlphy->hwparam_tables[RADIOB_1T].length =
RTL8192CURADIOB_1TARRAYLENGTH;
rtlphy->hwparam_tables[RADIOB_1T].pdata =
RTL8192CU_RADIOB_1TARRAY;
rtlphy->hwparam_tables[AGCTAB_1T].length =
RTL8192CUAGCTAB_1T_HPArrayLength;
rtlphy->hwparam_tables[AGCTAB_1T].pdata =
Rtl8192CUAGCTAB_1T_HPArray;
} else {
rtlphy->hwparam_tables[PHY_REG_1T].length =
RTL8192CUPHY_REG_1TARRAY_LENGTH;
rtlphy->hwparam_tables[PHY_REG_1T].pdata =
RTL8192CUPHY_REG_1TARRAY;
rtlphy->hwparam_tables[RADIOA_1T].length =
RTL8192CURADIOA_1TARRAYLENGTH;
rtlphy->hwparam_tables[RADIOA_1T].pdata =
RTL8192CU_RADIOA_1TARRAY;
rtlphy->hwparam_tables[RADIOB_1T].length =
RTL8192CURADIOB_1TARRAYLENGTH;
rtlphy->hwparam_tables[RADIOB_1T].pdata =
RTL8192CU_RADIOB_1TARRAY;
rtlphy->hwparam_tables[AGCTAB_1T].length =
RTL8192CUAGCTAB_1TARRAYLENGTH;
rtlphy->hwparam_tables[AGCTAB_1T].pdata =
RTL8192CUAGCTAB_1TARRAY;
}
}
static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 rf_path, index, tempval;
u16 i;
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i] =
hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
i];
} else {
rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
EEPROM_DEFAULT_TXPOWERLEVEL;
}
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
else
tempval = EEPROM_DEFAULT_HT40_2SDIFF;
rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_A][i] =
(tempval & 0xf);
rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_B][i] =
((tempval & 0xf0) >> 4);
}
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
i, rtlefuse->
eeprom_chnlarea_txpwr_cck[rf_path][i]));
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]));
for (rf_path = 0; rf_path < 2; rf_path++)
for (i = 0; i < 3; i++)
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
rf_path, i,
rtlefuse->
eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
[i]));
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl92c_get_chnl_group((u8) i);
rtlefuse->txpwrlevel_cck[rf_path][i] =
rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
if ((rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
rtlefuse->
eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][index])
> 0) {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
rtlefuse->
eeprom_chnlarea_txpwr_ht40_1s[rf_path]
[index] - rtlefuse->
eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
[index];
} else {
rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
}
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
"[0x%x / 0x%x / 0x%x]\n", rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
}
}
for (i = 0; i < 3; i++) {
if (!autoload_fail) {
rtlefuse->eeprom_pwrlimit_ht40[i] =
hwinfo[EEPROM_TXPWR_GROUP + i];
rtlefuse->eeprom_pwrlimit_ht20[i] =
hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
} else {
rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
}
}
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl92c_get_chnl_group((u8) i);
if (rf_path == RF90_PATH_A) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht20[index]
& 0xf);
rtlefuse->pwrgroup_ht40[rf_path][i] =
(rtlefuse->eeprom_pwrlimit_ht40[index]
& 0xf);
} else if (rf_path == RF90_PATH_B) {
rtlefuse->pwrgroup_ht20[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht20[index]
& 0xf0) >> 4);
rtlefuse->pwrgroup_ht40[rf_path][i] =
((rtlefuse->eeprom_pwrlimit_ht40[index]
& 0xf0) >> 4);
}
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht20[rf_path][i]));
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
rf_path, i,
rtlefuse->pwrgroup_ht40[rf_path][i]));
}
}
for (i = 0; i < 14; i++) {
index = _rtl92c_get_chnl_group((u8) i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
else
tempval = EEPROM_DEFAULT_HT20_DIFF;
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
index = _rtl92c_get_chnl_group((u8) i);
if (!autoload_fail)
tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
else
tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
((tempval >> 4) & 0xF);
}
rtlefuse->legacy_ht_txpowerdiff =
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
for (i = 0; i < 14; i++)
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
if (!autoload_fail)
rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
else
rtlefuse->eeprom_regulatory = 0;
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
if (!autoload_fail) {
rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
} else {
rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
}
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
rtlefuse->eeprom_tssi[RF90_PATH_A],
rtlefuse->eeprom_tssi[RF90_PATH_B]));
if (!autoload_fail)
tempval = hwinfo[EEPROM_THERMAL_METER];
else
tempval = EEPROM_DEFAULT_THERMALMETER;
rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
if (rtlefuse->eeprom_thermalmeter < 0x06 ||
rtlefuse->eeprom_thermalmeter > 0x1c)
rtlefuse->eeprom_thermalmeter = 0x12;
if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TxPower,
("thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter));
}
static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 boardType;
if (IS_NORMAL_CHIP(rtlhal->version)) {
boardType = ((contents[EEPROM_RF_OPT1]) &
BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
} else {
boardType = contents[EEPROM_RF_OPT4];
boardType &= BOARD_TYPE_TEST_MASK;
}
rtlefuse->board_type = boardType;
if (IS_HIGHT_PA(rtlefuse->board_type))
rtlefuse->external_pa = 1;
printk(KERN_INFO "rtl8192cu: Board Type %x\n", rtlefuse->board_type);
#ifdef CONFIG_ANTENNA_DIVERSITY
/* Antenna Diversity setting. */
if (registry_par->antdiv_cfg == 2) /* 2: From Efuse */
rtl_efuse->antenna_cfg = (contents[EEPROM_RF_OPT1]&0x18)>>3;
else
rtl_efuse->antenna_cfg = registry_par->antdiv_cfg; /* 0:OFF, */
printk(KERN_INFO "rtl8192cu: Antenna Config %x\n",
rtl_efuse->antenna_cfg);
#endif
}
#ifdef CONFIG_BT_COEXIST
static void _update_bt_param(_adapter *padapter)
{
struct btcoexist_priv *pbtpriv = &(padapter->halpriv.bt_coexist);
struct registry_priv *registry_par = &padapter->registrypriv;
if (2 != registry_par->bt_iso) {
/* 0:Low, 1:High, 2:From Efuse */
pbtpriv->BT_Ant_isolation = registry_par->bt_iso;
}
if (registry_par->bt_sco == 1) {
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy,
* 5.OtherBusy */
pbtpriv->BT_Service = BT_OtherAction;
} else if (registry_par->bt_sco == 2) {
pbtpriv->BT_Service = BT_SCO;
} else if (registry_par->bt_sco == 4) {
pbtpriv->BT_Service = BT_Busy;
} else if (registry_par->bt_sco == 5) {
pbtpriv->BT_Service = BT_OtherBusy;
} else {
pbtpriv->BT_Service = BT_Idle;
}
pbtpriv->BT_Ampdu = registry_par->bt_ampdu;
pbtpriv->bCOBT = _TRUE;
pbtpriv->BtEdcaUL = 0;
pbtpriv->BtEdcaDL = 0;
pbtpriv->BtRssiState = 0xff;
pbtpriv->bInitSet = _FALSE;
pbtpriv->bBTBusyTraffic = _FALSE;
pbtpriv->bBTTrafficModeSet = _FALSE;
pbtpriv->bBTNonTrafficModeSet = _FALSE;
pbtpriv->CurrentState = 0;
pbtpriv->PreviousState = 0;
printk(KERN_INFO "rtl8192cu: BT Coexistance = %s\n",
(pbtpriv->BT_Coexist == _TRUE) ? "enable" : "disable");
if (pbtpriv->BT_Coexist) {
if (pbtpriv->BT_Ant_Num == Ant_x2)
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"Ant_Num = Antx2\n");
else if (pbtpriv->BT_Ant_Num == Ant_x1)
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"Ant_Num = Antx1\n");
switch (pbtpriv->BT_CoexistType) {
case BT_2Wire:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_2Wire\n");
break;
case BT_ISSC_3Wire:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_ISSC_3Wire\n");
break;
case BT_Accel:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_Accel\n");
break;
case BT_CSR_BC4:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_CSR_BC4\n");
break;
case BT_CSR_BC8:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_CSR_BC8\n");
break;
case BT_RTL8756:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = BT_RTL8756\n");
break;
default:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
"CoexistType = Unknown\n");
break;
}
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Ant_isolation = %d\n",
pbtpriv->BT_Ant_isolation);
switch (pbtpriv->BT_Service) {
case BT_OtherAction:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
"BT_OtherAction\n");
break;
case BT_SCO:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
"BT_SCO\n");
break;
case BT_Busy:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
"BT_Busy\n");
break;
case BT_OtherBusy:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
"BT_OtherBusy\n");
break;
default:
printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
"BT_Idle\n");
break;
}
printk(KERN_INFO "rtl8192cu: BT_RadioSharedType = 0x%x\n",
pbtpriv->BT_RadioSharedType);
}
}
#define GET_BT_COEXIST(priv) (&priv->bt_coexist)
static void _rtl92cu_read_bluetooth_coexistInfo(struct ieee80211_hw *hw,
u8 *contents,
bool bautoloadfailed);
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
bool isNormal = IS_NORMAL_CHIP(pHalData->VersionID);
struct btcoexist_priv *pbtpriv = &pHalData->bt_coexist;
u8 rf_opt4;
_rtw_memset(pbtpriv, 0, sizeof(struct btcoexist_priv));
if (AutoloadFail) {
pbtpriv->BT_Coexist = _FALSE;
pbtpriv->BT_CoexistType = BT_2Wire;
pbtpriv->BT_Ant_Num = Ant_x2;
pbtpriv->BT_Ant_isolation = 0;
pbtpriv->BT_RadioSharedType = BT_Radio_Shared;
return;
}
if (isNormal) {
if (pHalData->BoardType == BOARD_USB_COMBO)
pbtpriv->BT_Coexist = _TRUE;
else
pbtpriv->BT_Coexist = ((PROMContent[EEPROM_RF_OPT3] &
0x20) >> 5); /* bit[5] */
rf_opt4 = PROMContent[EEPROM_RF_OPT4];
pbtpriv->BT_CoexistType = ((rf_opt4&0xe)>>1); /* bit [3:1] */
pbtpriv->BT_Ant_Num = (rf_opt4&0x1); /* bit [0] */
pbtpriv->BT_Ant_isolation = ((rf_opt4&0x10)>>4); /* bit [4] */
pbtpriv->BT_RadioSharedType = ((rf_opt4&0x20)>>5); /* bit [5] */
} else {
pbtpriv->BT_Coexist = (PROMContent[EEPROM_RF_OPT4] >> 4) ?
_TRUE : _FALSE;
}
_update_bt_param(Adapter);
}
#endif
static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u16 i, usvalue;
u8 hwinfo[HWSET_MAX_SIZE] = {0};
u16 eeprom_id;
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
rtl_efuse_shadow_map_update(hw);
memcpy((void *)hwinfo,
(void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE);
} else if (rtlefuse->epromtype == EEPROM_93C46) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("RTL819X Not boot from eeprom, check it !!"));
}
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, ("MAP\n"),
hwinfo, HWSET_MAX_SIZE);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8190_EEPROM_ID) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
rtlefuse->autoload_failflag = true;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag == true)
return;
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
}
printk(KERN_INFO "rtl8192cu: MAC address: %pM\n", rtlefuse->dev_addr);
_rtl92cu_read_txpower_info_from_hwpg(hw,
rtlefuse->autoload_failflag, hwinfo);
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
(" VID = 0x%02x PID = 0x%02x\n",
rtlefuse->eeprom_vid, rtlefuse->eeprom_did));
rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
rtlefuse->txpwr_fromeprom = true;
rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
("EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid));
if (rtlhal->oem_id == RT_CID_DEFAULT) {
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x8176) {
if ((rtlefuse->eeprom_svid == 0x103C &&
rtlefuse->eeprom_smid == 0x1629))
rtlhal->oem_id = RT_CID_819x_HP;
else
rtlhal->oem_id = RT_CID_DEFAULT;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819x_QMI;
break;
case EEPROM_CID_WHQL:
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
_rtl92cu_read_board_type(hw, hwinfo);
#ifdef CONFIG_BT_COEXIST
_rtl92cu_read_bluetooth_coexistInfo(hw, hwinfo,
rtlefuse->autoload_failflag);
#endif
}
static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
switch (rtlhal->oem_id) {
case RT_CID_819x_HP:
usb_priv->ledctl.led_opendrain = true;
break;
case RT_CID_819x_Lenovo:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819x_Acer:
case RT_CID_WHQL:
default:
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("RT Customized ID: 0x%02X\n", rtlhal->oem_id));
}
void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
if (!IS_NORMAL_CHIP(rtlhal->version))
return;
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
rtlefuse->epromtype = (tmp_u1b & EEPROMSEL) ?
EEPROM_93C46 : EEPROM_BOOT_EFUSE;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from %s\n",
(tmp_u1b & EEPROMSEL) ? "EERROM" : "EFUSE"));
rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload %s\n",
(tmp_u1b & EEPROM_EN) ? "OK!!" : "ERR!!"));
_rtl92cu_read_adapter_info(hw);
_rtl92cu_hal_customized_behavior(hw);
return;
}
static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int status = 0;
u16 value16;
u8 value8;
/* polling autoload done. */
u32 pollingCount = 0;
do {
if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
("Autoload Done!\n"));
break;
}
if (pollingCount++ > 100) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
("Failed to polling REG_APS_FSMCO[PFM_ALDN]"
" done!\n"));
return -ENODEV;
}
} while (true);
/* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
/* Power on when re-enter from IPS/Radio off/card disable */
/* enable SPS into PWM mode */
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
udelay(100);
value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
if (0 == (value8 & LDV12_EN)) {
value8 |= LDV12_EN;
rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
(" power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x.\n",
value8));
udelay(100);
value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
value8 &= ~ISO_MD2PP;
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
}
/* auto enable WLAN */
pollingCount = 0;
value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
value16 |= APFM_ONMAC;
rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
do {
if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
printk(KERN_INFO "rtl8192cu: MAC auto ON okay!\n");
break;
}
if (pollingCount++ > 100) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
("Failed to polling REG_APS_FSMCO[APFM_ONMAC]"
" done!\n"));
return -ENODEV;
}
} while (true);
/* Enable Radio ,GPIO ,and LED function */
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
/* release RF digital isolation */
value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
value16 &= ~ISO_DIOR;
rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
/* Reconsider when to do this operation after asking HWSD. */
pollingCount = 0;
rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
REG_APSD_CTRL) & ~BIT(6)));
do {
pollingCount++;
} while ((pollingCount < 200) &&
(rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
/* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
value16 = rtl_read_word(rtlpriv, REG_CR);
value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
rtl_write_word(rtlpriv, REG_CR, value16);
return status;
}
static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
bool wmm_enable,
u8 out_ep_num,
u8 queue_sel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
u32 outEPNum = (u32)out_ep_num;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numPubQ;
u32 value32;
u8 value8;
u32 txQPageNum, txQPageUnit, txQRemainPage;
if (!wmm_enable) {
numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
CHIP_A_PAGE_NUM_PUBQ;
txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
txQPageUnit = txQPageNum/outEPNum;
txQRemainPage = txQPageNum % outEPNum;
if (queue_sel & TX_SELE_HQ)
numHQ = txQPageUnit;
if (queue_sel & TX_SELE_LQ)
numLQ = txQPageUnit;
/* HIGH priority queue always present in the configuration of
* 2 out-ep. Remainder pages have assigned to High queue */
if ((outEPNum > 1) && (txQRemainPage))
numHQ += txQRemainPage;
/* NOTE: This step done before writting REG_RQPN. */
if (isChipN) {
if (queue_sel & TX_SELE_NQ)
numNQ = txQPageUnit;
value8 = (u8)_NPQ(numNQ);
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
}
} else {
/* for WMM ,number of out-ep must more than or equal to 2! */
numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
WMM_CHIP_A_PAGE_NUM_PUBQ;
if (queue_sel & TX_SELE_HQ) {
numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
WMM_CHIP_A_PAGE_NUM_HPQ;
}
if (queue_sel & TX_SELE_LQ) {
numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
WMM_CHIP_A_PAGE_NUM_LPQ;
}
/* NOTE: This step done before writting REG_RQPN. */
if (isChipN) {
if (queue_sel & TX_SELE_NQ)
numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
value8 = (u8)_NPQ(numNQ);
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
}
}
/* TX DMA */
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtl_write_dword(rtlpriv, REG_RQPN, value32);
}
static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 txpktbuf_bndy;
u8 value8;
if (!wmm_enable)
txpktbuf_bndy = TX_PAGE_BOUNDARY;
else /* for WMM */
txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
? WMM_CHIP_B_TX_PAGE_BOUNDARY
: WMM_CHIP_A_TX_PAGE_BOUNDARY;
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
rtl_write_byte(rtlpriv, REG_PBP, value8);
}
static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
u16 bkQ, u16 viQ, u16 voQ,
u16 mgtQ, u16 hiQ)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
}
static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 queue_sel)
{
u16 uninitialized_var(value);
switch (queue_sel) {
case TX_SELE_HQ:
value = QUEUE_HIGH;
break;
case TX_SELE_LQ:
value = QUEUE_LOW;
break;
case TX_SELE_NQ:
value = QUEUE_NORMAL;
break;
default:
WARN_ON(1); /* Shall not reach here! */
break;
}
_rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
value, value);
printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
}
static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 queue_sel)
{
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
u16 uninitialized_var(valueHi);
u16 uninitialized_var(valueLow);
switch (queue_sel) {
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
WARN_ON(1);
break;
}
if (!wmm_enable) {
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
beQ = valueHi;
bkQ = valueLow;
viQ = valueLow;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
}
_rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
}
static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 queue_sel)
{
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (!wmm_enable) { /* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
} else { /* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
("Tx queue select :0x%02x..\n", queue_sel));
}
static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 out_ep_num,
u8 queue_sel)
{
switch (out_ep_num) {
case 1:
_rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
queue_sel);
break;
case 2:
_rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
queue_sel);
break;
case 3:
_rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
queue_sel);
break;
default:
WARN_ON(1); /* Shall not reach here! */
break;
}
}
static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 out_ep_num,
u8 queue_sel)
{
u8 hq_sele;
struct rtl_priv *rtlpriv = rtl_priv(hw);
switch (out_ep_num) {
case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
if (!wmm_enable) /* typical setting */
hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
HQSEL_HIQ;
else /* for WMM */
hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
HQSEL_HIQ;
break;
case 1:
if (TX_SELE_LQ == queue_sel) {
/* map all endpoint to Low queue */
hq_sele = 0;
} else if (TX_SELE_HQ == queue_sel) {
/* map all endpoint to High queue */
hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
}
break;
default:
WARN_ON(1); /* Shall not reach here! */
break;
}
rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
("Tx queue select :0x%02x..\n", hq_sele));
}
static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
bool wmm_enable,
u8 out_ep_num,
u8 queue_sel)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (IS_NORMAL_CHIP(rtlhal->version))
_rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
queue_sel);
else
_rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
queue_sel);
}
static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
{
}
static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
{
u16 value16;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APP_FCS |
RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf);
/* Accept all multicast address */
rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
/* Accept all management frames */
value16 = 0xFFFF;
rtl92c_set_mgt_filter(hw, value16);
/* Reject all control frame - default value is 0 */
rtl92c_set_ctrl_filter(hw, 0x0);
/* Accept all data frames */
value16 = 0xFFFF;
rtl92c_set_data_filter(hw, value16);
}
static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
int err = 0;
u32 boundary = 0;
u8 wmm_enable = false; /* TODO */
u8 out_ep_nums = rtlusb->out_ep_nums;
u8 queue_sel = rtlusb->out_queue_sel;
err = _rtl92cu_init_power_on(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Failed to init power on!\n"));
return err;
}
if (!wmm_enable) {
boundary = TX_PAGE_BOUNDARY;
} else { /* for WMM */
boundary = (IS_NORMAL_CHIP(rtlhal->version))
? WMM_CHIP_B_TX_PAGE_BOUNDARY
: WMM_CHIP_A_TX_PAGE_BOUNDARY;
}
if (false == rtl92c_init_llt_table(hw, boundary)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Failed to init LLT Table!\n"));
return -EINVAL;
}
_rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
queue_sel);
_rtl92c_init_trx_buffer(hw, wmm_enable);
_rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
queue_sel);
/* Get Rx PHY status in order to report RSSI and others. */
rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
rtl92c_init_interrupt(hw);
rtl92c_init_network_type(hw);
_rtl92cu_init_wmac_setting(hw);
rtl92c_init_adaptive_ctrl(hw);
rtl92c_init_edca(hw);
rtl92c_init_rate_fallback(hw);
rtl92c_init_retry_function(hw);
_rtl92cu_init_usb_aggregation(hw);
rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
rtl92c_init_beacon_parameters(hw, rtlhal->version);
rtl92c_init_ampdu_aggregation(hw);
rtl92c_init_beacon_max_error(hw, true);
return err;
}
void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value = 0x0;
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm));
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
("not open sw encryption\n"));
return;
}
sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TxUseDK;
sec_reg_value |= SCR_RxUseDK;
}
if (IS_NORMAL_CHIP(rtlhal->version))
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
("The SECR-value %x\n", sec_reg_value));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
/* To Fix MAC loopback mode fail. */
rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
rtl_write_byte(rtlpriv, 0x15, 0xe9);
/* HW SEQ CTRL */
/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
/* fixed USB interface interference issue */
rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
rtl_write_byte(rtlpriv, 0xfe42, 0x80);
rtlusb->reg_bcn_ctrl_val = 0x18;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
}
static void _InitPABias(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 pa_setting;
/* FIXED PA current issue */
pa_setting = efuse_read_1byte(hw, 0x1FA);
if (!(pa_setting & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
}
if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
IS_92C_SERIAL(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
}
if (!(pa_setting & BIT(4))) {
pa_setting = rtl_read_byte(rtlpriv, 0x16);
pa_setting &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
}
}
static void _InitAntenna_Selection(struct ieee80211_hw *hw)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
if (pHalData->AntDivCfg == 0)
return;
if (rtlphy->rf_type == RF_1T1R) {
rtl_write_dword(rtlpriv, REG_LEDCFG0,
rtl_read_dword(rtlpriv,
REG_LEDCFG0)|BIT(23));
rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
if (rtl_get_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, 0x300) ==
Antenna_A)
pHalData->CurAntenna = Antenna_A;
else
pHalData->CurAntenna = Antenna_B;
}
#endif
}
static void _dump_registers(struct ieee80211_hw *hw)
{
}
static void _update_mac_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR);
mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
}
int rtl92cu_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
int err = 0;
static bool iqk_initialized;
rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
err = _rtl92cu_init_mac(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("init mac failed!\n"));
return err;
}
err = rtl92c_download_fw(hw);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("Failed to download FW. Init HW without FW now..\n"));
err = 1;
rtlhal->fw_ready = false;
return err;
} else {
rtlhal->fw_ready = true;
}
rtlhal->last_hmeboxnum = 0; /* h2c */
_rtl92cu_phy_param_tab_init(hw);
rtl92cu_phy_mac_config(hw);
rtl92cu_phy_bb_config(hw);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl92c_phy_rf_config(hw);
if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
!IS_92C_SERIAL(rtlhal->version)) {
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
}
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtl92cu_bb_block_on(hw);
rtl_cam_reset_all_entry(hw);
rtl92cu_enable_hw_security_config(hw);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
if (ppsc->rfpwr_state == ERFON) {
rtl92c_phy_set_rfpath_switch(hw, 1);
if (iqk_initialized) {
rtl92c_phy_iq_calibrate(hw, false);
} else {
rtl92c_phy_iq_calibrate(hw, false);
iqk_initialized = true;
}
rtl92c_dm_check_txpower_tracking(hw);
rtl92c_phy_lc_calibrate(hw);
}
_rtl92cu_hw_configure(hw);
_InitPABias(hw);
_InitAntenna_Selection(hw);
_update_mac_setting(hw);
rtl92c_dm_init(hw);
_dump_registers(hw);
return err;
}
static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/**************************************
a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
b. RF path 0 offset 0x00 = 0x00 disable RF
c. APSD_CTRL 0x600[7:0] = 0x40
d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
***************************************/
u8 eRFPath = 0, value8 = 0;
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
value8 |= APSDOFF;
rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
value8 = 0;
value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
value8 &= (~FEN_BB_GLB_RSTn);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
}
static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (rtlhal->fw_version <= 0x20) {
/*****************************
f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
******************************/
u16 valu16 = 0;
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
(~FEN_CPUEN))); /* reset MCU ,8051 */
valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
(FEN_HWPDN|FEN_ELDR))); /* reset MAC */
valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
FEN_CPUEN)); /* enable MCU ,8051 */
} else {
u8 retry_cnts = 0;
/* IF fw in RAM code, do reset */
if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
/* reset MCU ready status */
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
if (rtlhal->fw_ready) {
/* 8051 reset by self */
rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
while ((retry_cnts++ < 100) &&
(FEN_CPUEN & rtl_read_word(rtlpriv,
REG_SYS_FUNC_EN))) {
udelay(50);
}
if (retry_cnts >= 100) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("#####=> 8051 reset failed!.."
".......................\n"););
/* if 8051 reset fail, reset MAC. */
rtl_write_byte(rtlpriv,
REG_SYS_FUNC_EN + 1,
0x50);
udelay(100);
}
}
}
/* Reset MAC and Enable 8051 */
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
}
if (bWithoutHWSM) {
/*****************************
Without HW auto state machine
g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
******************************/
rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
}
}
static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/*****************************
k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
******************************/
rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
}
static void _DisableGPIO(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/***************************************
j. GPIO_PIN_CTRL 0x44[31:0]=0x000
k. Value = GPIO_PIN_CTRL[7:0]
l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
n. LEDCFG 0x4C[15:0] = 0x8080
***************************************/
u8 value8;
u16 value16;
u32 value32;
/* 1. Disable GPIO[7:0] */
rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
value8 = (u8) (value32&0x000000FF);
value32 |= ((value8<<8) | 0x00FF0000);
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
/* 2. Disable GPIO[10:8] */
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
value8 = (u8) (value16&0x000F);
value16 |= ((value8<<4) | 0x0780);
rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
/* 3. Disable LED0 & 1 */
rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
}
static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 value16 = 0;
u8 value8 = 0;
if (bWithoutHWSM) {
/*****************************
n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
r. When driver call disable, the ASIC will turn off remaining
clock automatically
******************************/
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
value8 &= (~LDV12_EN);
rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
}
/*****************************
h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
******************************/
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
}
static void _CardDisableHWSM(struct ieee80211_hw *hw)
{
/* ==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(hw);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(hw, false);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(hw);
/* ==== Disable analog sequence === */
_DisableAnalog(hw, false);
}
static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
{
/*==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(hw);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(hw, true);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(hw);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure2(hw);
/* ==== Disable analog sequence === */
_DisableAnalog(hw, true);
}
static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
rtlusb->reg_bcn_ctrl_val |= set_bits;
rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val);
}
static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u8 tmp1byte = 0;
if (IS_NORMAL_CHIP(rtlhal->version)) {
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
} else {
rtl_write_byte(rtlpriv, REG_TXPAUSE,
rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
}
}
static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u8 tmp1byte = 0;
if (IS_NORMAL_CHIP(rtlhal->version)) {
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
} else {
rtl_write_byte(rtlpriv, REG_TXPAUSE,
rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
}
}
static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
if (IS_NORMAL_CHIP(rtlhal->version))
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
else
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
}
static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
if (IS_NORMAL_CHIP(rtlhal->version))
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
else
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
}
static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
bt_msr &= 0xfc;
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
NL80211_IFTYPE_STATION) {
_rtl92cu_stop_tx_beacon(hw);
_rtl92cu_enable_bcn_sub_func(hw);
} else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
_rtl92cu_resume_tx_beacon(hw);
_rtl92cu_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Set HW_VAR_MEDIA_"
"STATUS:No such media status(%x).\n", type));
}
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= MSR_NOLINK;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Set Network type to NO LINK!\n"));
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Set Network type to Ad Hoc!\n"));
break;
case NL80211_IFTYPE_STATION:
bt_msr |= MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Set Network type to STA!\n"));
break;
case NL80211_IFTYPE_AP:
bt_msr |= MSR_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
("Set Network type to AP!\n"));
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("Network type %d not support!\n", type));
goto error_out;
}
rtl_write_byte(rtlpriv, (MSR), bt_msr);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if ((bt_msr & 0xfc) == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
error_out:
return 1;
}
void rtl92cu_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl92cu_set_media_status(hw, opmode);
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
if (rtlusb->disableHWSM)
_CardDisableHWSM(hw);
else
_CardDisableWithoutHWSM(hw);
}
void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
/* dummy routine needed for callback from rtl_op_configure_filter() */
}
/*========================================================================== */
static void _rtl92cu_set_check_bssid(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 filterout_non_associated_bssid = false;
switch (type) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_STATION:
filterout_non_associated_bssid = true;
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_AP:
default:
break;
}
if (filterout_non_associated_bssid == true) {
if (IS_NORMAL_CHIP(rtlhal->version)) {
switch (rtlphy->current_io_type) {
case IO_CMD_RESUME_DM_BY_SCAN:
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *)(&reg_rcr));
/* enable update TSF */
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
break;
case IO_CMD_PAUSE_DM_BY_SCAN:
reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *)(&reg_rcr));
/* disable update TSF */
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
break;
}
} else {
reg_rcr |= (RCR_CBSSID);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl92cu_set_bcn_ctrl_reg(hw, 0, (BIT(4)|BIT(5)));
}
} else if (filterout_non_associated_bssid == false) {
if (IS_NORMAL_CHIP(rtlhal->version)) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
} else {
reg_rcr &= (~RCR_CBSSID);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4)|BIT(5)), 0);
}
}
}
int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
if (_rtl92cu_set_media_status(hw, type))
return -EOPNOTSUPP;
_rtl92cu_set_check_bssid(hw, type);
return 0;
}
static void _InitBeaconParameters(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
/* TODO: Remove these magic number */
rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
/* Change beacon AIFS to the largest number
* beacause test chip does not contension before sending beacon. */
if (IS_NORMAL_CHIP(rtlhal->version))
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
else
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
}
static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable,
bool Linked)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
_rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
}
void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval, atim_window;
u32 value32;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
_InitBeaconParameters(hw);
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
/*
* Force beacon frame transmission even after receiving beacon frame
* from other ad hoc STA
*
*
* Reset TSF Timer to zero, added by Roger. 2008.06.24
*/
value32 = rtl_read_dword(rtlpriv, REG_TCR);
value32 &= ~TSFRST;
rtl_write_dword(rtlpriv, REG_TCR, value32);
value32 |= TSFRST;
rtl_write_dword(rtlpriv, REG_TCR, value32);
RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
("SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
value32));
/* TODO: Modify later (Find the right parameters)
* NOTE: Fix test chip's bug (about contention windows's randomness) */
if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
(mac->opmode == NL80211_IFTYPE_AP)) {
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_beacon_function_enable(hw, true, true);
}
void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
("beacon_interval:%d\n", bcn_interval));
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
}
void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
}
void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = mac->rx_conf;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfState;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *)(&rfState));
if (rfState == ERFOFF) {
*((bool *) (val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *) (val)) = false;
else
*((bool *) (val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *) (val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break;
}
case HW_VAR_MGT_FILTER:
*((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
break;
case HW_VAR_CTRL_FILTER:
*((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
break;
case HW_VAR_DATA_FILTER:
*((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("switch case not process\n"));
break;
}
}
void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
enum wireless_mode wirelessmode = mac->mode;
u8 idx = 0;
switch (variable) {
case HW_VAR_ETHER_ADDR:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
}
case HW_VAR_BASIC_RATE:{
u16 rate_cfg = ((u16 *) val)[0];
u8 rate_index = 0;
rate_cfg &= 0x15f;
/* TODO */
/* if (mac->current_network.vender == HT_IOT_PEER_CISCO
* && ((rate_cfg & 0x150) == 0)) {
* rate_cfg |= 0x010;
* } */
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg >>= 1;
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:{
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
}
case HW_VAR_SIFS:{
rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("HW_VAR_SIFS\n"));
break;
}
case HW_VAR_SLOT_TIME:{
u8 e_aci;
u8 QOS_MODE = 1;
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("HW_VAR_SLOT_TIME %x\n", val[0]));
if (QOS_MODE) {
for (e_aci = 0; e_aci < AC_MAX; e_aci++)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
(u8 *)(&e_aci));
} else {
u8 sifstime = 0;
u8 u1bAIFS;
if (IS_WIRELESS_MODE_A(wirelessmode) ||
IS_WIRELESS_MODE_N_24G(wirelessmode) ||
IS_WIRELESS_MODE_N_5G(wirelessmode))
sifstime = 16;
else
sifstime = 10;
u1bAIFS = sifstime + (2 * val[0]);
rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
u1bAIFS);
rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
u1bAIFS);
rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
u1bAIFS);
rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
u1bAIFS);
}
break;
}
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool) (*(u8 *) val);
reg_tmp = 0;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *((u8 *) val);
if (min_spacing_to_set <= 7) {
switch (rtlpriv->sec.pairwise_enc_algorithm) {
case NO_ENCRYPTION:
case AESCCMP_ENCRYPTION:
sec_min_space = 0;
break;
case WEP40_ENCRYPTION:
case WEP104_ENCRYPTION:
case TKIP_ENCRYPTION:
sec_min_space = 6;
break;
default:
sec_min_space = 7;
break;
}
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg &
0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg));
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *((u8 *) val);
density_to_set &= 0x1f;
mac->min_space_cfg &= 0x07;
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg));
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 factor_toset;
u8 *p_regtoset = NULL;
u8 index = 0;
p_regtoset = regtoset_normal;
factor_toset = *((u8 *) val);
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
if ((p_regtoset[index] & 0xf0) >
(factor_toset << 4))
p_regtoset[index] =
(p_regtoset[index] & 0x0f)
| (factor_toset << 4);
if ((p_regtoset[index] & 0x0f) >
factor_toset)
p_regtoset[index] =
(p_regtoset[index] & 0xf0)
| (factor_toset);
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + index),
p_regtoset[index]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset));
}
break;
}
case HW_VAR_AC_PARAM:{
u8 e_aci = *((u8 *) val);
u32 u4b_ac_param;
u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
u4b_ac_param = (u32) mac->ac[e_aci].aifs;
u4b_ac_param |= (u32) ((cw_min & 0xF) <<
AC_PARAM_ECW_MIN_OFFSET);
u4b_ac_param |= (u32) ((cw_max & 0xF) <<
AC_PARAM_ECW_MAX_OFFSET);
u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
("queue:%x, ac_param:%x\n", e_aci,
u4b_ac_param));
switch (e_aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
u4b_ac_param);
break;
case AC0_BE:
rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
u4b_ac_param);
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
u4b_ac_param);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
u4b_ac_param);
break;
default:
RT_ASSERT(false, ("SetHwReg8185(): invalid"
" aci: %d !\n", e_aci));
break;
}
if (rtlusb->acm_method != eAcmWay2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_ACM_CTRL, (u8 *)(&e_aci));
break;
}
case HW_VAR_ACM_CTRL:{
u8 e_aci = *((u8 *) val);
union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)
(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl =
acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= AcmHw_BeqEn;
break;
case AC2_VI:
acm_ctrl |= AcmHw_ViqEn;
break;
case AC3_VO:
acm_ctrl |= AcmHw_VoqEn;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
("HW_VAR_ACM_CTRL acm set "
"failed: eACI is %d\n", acm));
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~AcmHw_BeqEn);
break;
case AC2_VI:
acm_ctrl &= (~AcmHw_ViqEn);
break;
case AC3_VO:
acm_ctrl &= (~AcmHw_BeqEn);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("switch case not process\n"));
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
"Write 0x%X\n", acm_ctrl));
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break;
}
case HW_VAR_RCR:{
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
mac->rx_conf = ((u32 *) (val))[0];
RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
("### Set RCR(0x%08x) ###\n", mac->rx_conf));
break;
}
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = ((u8 *) (val))[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG, ("Set HW_VAR_R"
"ETRY_LIMIT(0x%08x)\n", retry_limit));
break;
}
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *) val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *((u8 *) val);
break;
case HW_VAR_IO_CMD:
rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
if (rpwm_val & BIT(7))
rtl_write_byte(rtlpriv, REG_USB_HRPWM,
(*(u8 *)val));
else
rtl_write_byte(rtlpriv, REG_USB_HRPWM,
((*(u8 *)val) | BIT(7)));
break;
}
case HW_VAR_H2C_FW_PWRMODE:{
u8 psmode = (*(u8 *) val);
if ((psmode != FW_PS_ACTIVE_MODE) &&
(!IS_92C_SERIAL(rtlhal->version)))
rtl92c_dm_rf_saving(hw, true);
rtl92c_set_fw_pwrmode_cmd(hw, (*(u8 *) val));
break;
}
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *) val);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = (*(u8 *) val);
u8 tmp_reg422;
bool recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AID, NULL);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 = rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
if (tmp_reg422 & BIT(6))
recover = true;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
rtl92c_set_fw_rsvdpagepkt(hw, 0);
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (recover)
rtl_write_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 | BIT(6));
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
}
rtl92c_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
break;
}
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
(u2btmp | mac->assoc_id));
break;
}
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = ((u8 *) (val))[0];
if (btype_ibss == true)
_rtl92cu_stop_tx_beacon(hw);
_rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32)((mac->tsf >> 32) & 0xffffffff));
_rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss == true)
_rtl92cu_resume_tx_beacon(hw);
break;
}
case HW_VAR_MGT_FILTER:
rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
break;
case HW_VAR_CTRL_FILTER:
rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
break;
case HW_VAR_DATA_FILTER:
rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case "
"not process\n"));
break;
}
}
void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u32 ratr_value = (u32) mac->basic_rates;
u8 *mcsrate = mac->mcs;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = 1;
u16 shortgi_rate = 0;
u32 tmp_ratr_value = 0;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = mac->sgi_40;
u8 curshortgi_20mhz = mac->sgi_20;
enum wireless_mode wirelessmode = mac->mode;
ratr_value |= ((*(u16 *) (mcsrate))) << 12;
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == 0) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
if (curtxbw_40mhz)
ratr_mask |= 0x00000010;
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
ratr_value &= 0x0FFFFFFF;
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("%x\n", rtl_read_dword(rtlpriv,
REG_ARFR0)));
}
void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u32 ratr_bitmap = (u32) mac->basic_rates;
u8 *p_mcsrate = mac->mcs;
u8 ratr_index = 0;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = mac->sgi_40;
u8 curshortgi_20mhz = mac->sgi_20;
enum wireless_mode wirelessmode = mac->mode;
bool shortgi = false;
u8 rate_mask[5];
u8 macid = 0;
u8 mimops = 1;
ratr_bitmap |= (p_mcsrate[1] << 20) | (p_mcsrate[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_A;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (mimops == 0) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("ratr_bitmap :%x\n",
ratr_bitmap));
*(u32 *)&rate_mask = ((ratr_bitmap & 0x0fffffff) |
ratr_index << 28);
rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("Rate_index:%x, "
"ratr_val:%x, %x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap,
rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3],
rate_mask[4]));
rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
}
void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
(u8 *)&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
u8 u1tmp = 0;
bool actuallyset = false;
unsigned long flag = 0;
/* to do - usb autosuspend */
u8 usb_autosuspend = 0;
if (ppsc->swrf_processing)
return false;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
if (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
cur_rfstate = ppsc->rfpwr_state;
if (usb_autosuspend) {
/* to do................... */
} else {
if (ppsc->pwrdown_mode) {
u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
ERFOFF : ERFON;
RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
("pwrdown, 0x5c(BIT7)=%02x\n", u1tmp));
} else {
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
rtl_read_byte(rtlpriv,
REG_MAC_PINMUX_CFG) & ~(BIT(3)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
ERFON : ERFOFF;
RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
("GPIO_IN=%02x\n", u1tmp));
}
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("N-SS RF =%x\n",
e_rfpowerstate_toset));
}
if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW "
"Radio ON, RF ON\n"));
ppsc->hwradiooff = false;
actuallyset = true;
} else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
ERFOFF)) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW"
" Radio OFF\n"));
ppsc->hwradiooff = true;
actuallyset = true;
} else {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD ,
("pHalData->bHwRadioOff and eRfPowerStateToSet do not"
" match: pHalData->bHwRadioOff %x, eRfPowerStateToSet "
"%x\n", ppsc->hwradiooff, e_rfpowerstate_toset));
}
if (actuallyset) {
ppsc->hwradiooff = 1;
if (e_rfpowerstate_toset == ERFON) {
if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
&& RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
}
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
/* For power down module, we need to enable register block
* contrl reg at 0x1c. Then enable power down control bit
* of register 0x04 BIT4 and BIT15 as 1.
*/
if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
/* Enable register area 0x0-0xc. */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
if (IS_HARDWARE_TYPE_8723U(rtlhal)) {
/*
* We should configure HW PDn source for WiFi
* ONLY, and then our HW will be set in
* power-down mode if PDn source from all
* functions are configured.
*/
u1tmp = rtl_read_byte(rtlpriv,
REG_MULTI_FUNC_CTRL);
rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL,
(u1tmp|WL_HWPDN_EN));
} else {
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
}
}
if (e_rfpowerstate_toset == ERFOFF) {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
}
} else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
/* Enter D3 or ASPM after GPIO had been done. */
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
} else {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
*valid = 1;
return !ppsc->hwradiooff;
}