OpenCloudOS-Kernel/drivers/gpu/drm/radeon/evergreen.c

5533 lines
161 KiB
C

/*
* Copyright 2010 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <linux/firmware.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include "radeon.h"
#include "radeon_asic.h"
#include "radeon_audio.h"
#include <drm/radeon_drm.h>
#include "evergreend.h"
#include "atom.h"
#include "avivod.h"
#include "evergreen_reg.h"
#include "evergreen_blit_shaders.h"
#include "radeon_ucode.h"
#define DC_HPDx_CONTROL(x) (DC_HPD1_CONTROL + (x * 0xc))
#define DC_HPDx_INT_CONTROL(x) (DC_HPD1_INT_CONTROL + (x * 0xc))
#define DC_HPDx_INT_STATUS_REG(x) (DC_HPD1_INT_STATUS + (x * 0xc))
/*
* Indirect registers accessor
*/
u32 eg_cg_rreg(struct radeon_device *rdev, u32 reg)
{
unsigned long flags;
u32 r;
spin_lock_irqsave(&rdev->cg_idx_lock, flags);
WREG32(EVERGREEN_CG_IND_ADDR, ((reg) & 0xffff));
r = RREG32(EVERGREEN_CG_IND_DATA);
spin_unlock_irqrestore(&rdev->cg_idx_lock, flags);
return r;
}
void eg_cg_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
unsigned long flags;
spin_lock_irqsave(&rdev->cg_idx_lock, flags);
WREG32(EVERGREEN_CG_IND_ADDR, ((reg) & 0xffff));
WREG32(EVERGREEN_CG_IND_DATA, (v));
spin_unlock_irqrestore(&rdev->cg_idx_lock, flags);
}
u32 eg_pif_phy0_rreg(struct radeon_device *rdev, u32 reg)
{
unsigned long flags;
u32 r;
spin_lock_irqsave(&rdev->pif_idx_lock, flags);
WREG32(EVERGREEN_PIF_PHY0_INDEX, ((reg) & 0xffff));
r = RREG32(EVERGREEN_PIF_PHY0_DATA);
spin_unlock_irqrestore(&rdev->pif_idx_lock, flags);
return r;
}
void eg_pif_phy0_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
unsigned long flags;
spin_lock_irqsave(&rdev->pif_idx_lock, flags);
WREG32(EVERGREEN_PIF_PHY0_INDEX, ((reg) & 0xffff));
WREG32(EVERGREEN_PIF_PHY0_DATA, (v));
spin_unlock_irqrestore(&rdev->pif_idx_lock, flags);
}
u32 eg_pif_phy1_rreg(struct radeon_device *rdev, u32 reg)
{
unsigned long flags;
u32 r;
spin_lock_irqsave(&rdev->pif_idx_lock, flags);
WREG32(EVERGREEN_PIF_PHY1_INDEX, ((reg) & 0xffff));
r = RREG32(EVERGREEN_PIF_PHY1_DATA);
spin_unlock_irqrestore(&rdev->pif_idx_lock, flags);
return r;
}
void eg_pif_phy1_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
unsigned long flags;
spin_lock_irqsave(&rdev->pif_idx_lock, flags);
WREG32(EVERGREEN_PIF_PHY1_INDEX, ((reg) & 0xffff));
WREG32(EVERGREEN_PIF_PHY1_DATA, (v));
spin_unlock_irqrestore(&rdev->pif_idx_lock, flags);
}
static const u32 crtc_offsets[6] =
{
EVERGREEN_CRTC0_REGISTER_OFFSET,
EVERGREEN_CRTC1_REGISTER_OFFSET,
EVERGREEN_CRTC2_REGISTER_OFFSET,
EVERGREEN_CRTC3_REGISTER_OFFSET,
EVERGREEN_CRTC4_REGISTER_OFFSET,
EVERGREEN_CRTC5_REGISTER_OFFSET
};
#include "clearstate_evergreen.h"
static const u32 sumo_rlc_save_restore_register_list[] =
{
0x98fc,
0x9830,
0x9834,
0x9838,
0x9870,
0x9874,
0x8a14,
0x8b24,
0x8bcc,
0x8b10,
0x8d00,
0x8d04,
0x8c00,
0x8c04,
0x8c08,
0x8c0c,
0x8d8c,
0x8c20,
0x8c24,
0x8c28,
0x8c18,
0x8c1c,
0x8cf0,
0x8e2c,
0x8e38,
0x8c30,
0x9508,
0x9688,
0x9608,
0x960c,
0x9610,
0x9614,
0x88c4,
0x88d4,
0xa008,
0x900c,
0x9100,
0x913c,
0x98f8,
0x98f4,
0x9b7c,
0x3f8c,
0x8950,
0x8954,
0x8a18,
0x8b28,
0x9144,
0x9148,
0x914c,
0x3f90,
0x3f94,
0x915c,
0x9160,
0x9178,
0x917c,
0x9180,
0x918c,
0x9190,
0x9194,
0x9198,
0x919c,
0x91a8,
0x91ac,
0x91b0,
0x91b4,
0x91b8,
0x91c4,
0x91c8,
0x91cc,
0x91d0,
0x91d4,
0x91e0,
0x91e4,
0x91ec,
0x91f0,
0x91f4,
0x9200,
0x9204,
0x929c,
0x9150,
0x802c,
};
static void evergreen_gpu_init(struct radeon_device *rdev);
void evergreen_fini(struct radeon_device *rdev);
void evergreen_pcie_gen2_enable(struct radeon_device *rdev);
void evergreen_program_aspm(struct radeon_device *rdev);
extern void cayman_cp_int_cntl_setup(struct radeon_device *rdev,
int ring, u32 cp_int_cntl);
extern void cayman_vm_decode_fault(struct radeon_device *rdev,
u32 status, u32 addr);
void cik_init_cp_pg_table(struct radeon_device *rdev);
extern u32 si_get_csb_size(struct radeon_device *rdev);
extern void si_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer);
extern u32 cik_get_csb_size(struct radeon_device *rdev);
extern void cik_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer);
extern void rv770_set_clk_bypass_mode(struct radeon_device *rdev);
static const u32 evergreen_golden_registers[] =
{
0x3f90, 0xffff0000, 0xff000000,
0x9148, 0xffff0000, 0xff000000,
0x3f94, 0xffff0000, 0xff000000,
0x914c, 0xffff0000, 0xff000000,
0x9b7c, 0xffffffff, 0x00000000,
0x8a14, 0xffffffff, 0x00000007,
0x8b10, 0xffffffff, 0x00000000,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0xffffffff, 0x000000c2,
0x88d4, 0xffffffff, 0x00000010,
0x8974, 0xffffffff, 0x00000000,
0xc78, 0x00000080, 0x00000080,
0x5eb4, 0xffffffff, 0x00000002,
0x5e78, 0xffffffff, 0x001000f0,
0x6104, 0x01000300, 0x00000000,
0x5bc0, 0x00300000, 0x00000000,
0x7030, 0xffffffff, 0x00000011,
0x7c30, 0xffffffff, 0x00000011,
0x10830, 0xffffffff, 0x00000011,
0x11430, 0xffffffff, 0x00000011,
0x12030, 0xffffffff, 0x00000011,
0x12c30, 0xffffffff, 0x00000011,
0xd02c, 0xffffffff, 0x08421000,
0x240c, 0xffffffff, 0x00000380,
0x8b24, 0xffffffff, 0x00ff0fff,
0x28a4c, 0x06000000, 0x06000000,
0x10c, 0x00000001, 0x00000001,
0x8d00, 0xffffffff, 0x100e4848,
0x8d04, 0xffffffff, 0x00164745,
0x8c00, 0xffffffff, 0xe4000003,
0x8c04, 0xffffffff, 0x40600060,
0x8c08, 0xffffffff, 0x001c001c,
0x8cf0, 0xffffffff, 0x08e00620,
0x8c20, 0xffffffff, 0x00800080,
0x8c24, 0xffffffff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0xffffffff, 0x00001010,
0x28350, 0xffffffff, 0x00000000,
0xa008, 0xffffffff, 0x00010000,
0x5c4, 0xffffffff, 0x00000001,
0x9508, 0xffffffff, 0x00000002,
0x913c, 0x0000000f, 0x0000000a
};
static const u32 evergreen_golden_registers2[] =
{
0x2f4c, 0xffffffff, 0x00000000,
0x54f4, 0xffffffff, 0x00000000,
0x54f0, 0xffffffff, 0x00000000,
0x5498, 0xffffffff, 0x00000000,
0x549c, 0xffffffff, 0x00000000,
0x5494, 0xffffffff, 0x00000000,
0x53cc, 0xffffffff, 0x00000000,
0x53c8, 0xffffffff, 0x00000000,
0x53c4, 0xffffffff, 0x00000000,
0x53c0, 0xffffffff, 0x00000000,
0x53bc, 0xffffffff, 0x00000000,
0x53b8, 0xffffffff, 0x00000000,
0x53b4, 0xffffffff, 0x00000000,
0x53b0, 0xffffffff, 0x00000000
};
static const u32 cypress_mgcg_init[] =
{
0x802c, 0xffffffff, 0xc0000000,
0x5448, 0xffffffff, 0x00000100,
0x55e4, 0xffffffff, 0x00000100,
0x160c, 0xffffffff, 0x00000100,
0x5644, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x8a18, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x9a60, 0xffffffff, 0x00000100,
0x9868, 0xffffffff, 0x00000100,
0x8d58, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x9654, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0x9040, 0xffffffff, 0x00000100,
0xa200, 0xffffffff, 0x00000100,
0xa204, 0xffffffff, 0x00000100,
0xa208, 0xffffffff, 0x00000100,
0xa20c, 0xffffffff, 0x00000100,
0x971c, 0xffffffff, 0x00000100,
0x977c, 0xffffffff, 0x00000100,
0x3f80, 0xffffffff, 0x00000100,
0xa210, 0xffffffff, 0x00000100,
0xa214, 0xffffffff, 0x00000100,
0x4d8, 0xffffffff, 0x00000100,
0x9784, 0xffffffff, 0x00000100,
0x9698, 0xffffffff, 0x00000100,
0x4d4, 0xffffffff, 0x00000200,
0x30cc, 0xffffffff, 0x00000100,
0xd0c0, 0xffffffff, 0xff000100,
0x802c, 0xffffffff, 0x40000000,
0x915c, 0xffffffff, 0x00010000,
0x9160, 0xffffffff, 0x00030002,
0x9178, 0xffffffff, 0x00070000,
0x917c, 0xffffffff, 0x00030002,
0x9180, 0xffffffff, 0x00050004,
0x918c, 0xffffffff, 0x00010006,
0x9190, 0xffffffff, 0x00090008,
0x9194, 0xffffffff, 0x00070000,
0x9198, 0xffffffff, 0x00030002,
0x919c, 0xffffffff, 0x00050004,
0x91a8, 0xffffffff, 0x00010006,
0x91ac, 0xffffffff, 0x00090008,
0x91b0, 0xffffffff, 0x00070000,
0x91b4, 0xffffffff, 0x00030002,
0x91b8, 0xffffffff, 0x00050004,
0x91c4, 0xffffffff, 0x00010006,
0x91c8, 0xffffffff, 0x00090008,
0x91cc, 0xffffffff, 0x00070000,
0x91d0, 0xffffffff, 0x00030002,
0x91d4, 0xffffffff, 0x00050004,
0x91e0, 0xffffffff, 0x00010006,
0x91e4, 0xffffffff, 0x00090008,
0x91e8, 0xffffffff, 0x00000000,
0x91ec, 0xffffffff, 0x00070000,
0x91f0, 0xffffffff, 0x00030002,
0x91f4, 0xffffffff, 0x00050004,
0x9200, 0xffffffff, 0x00010006,
0x9204, 0xffffffff, 0x00090008,
0x9208, 0xffffffff, 0x00070000,
0x920c, 0xffffffff, 0x00030002,
0x9210, 0xffffffff, 0x00050004,
0x921c, 0xffffffff, 0x00010006,
0x9220, 0xffffffff, 0x00090008,
0x9224, 0xffffffff, 0x00070000,
0x9228, 0xffffffff, 0x00030002,
0x922c, 0xffffffff, 0x00050004,
0x9238, 0xffffffff, 0x00010006,
0x923c, 0xffffffff, 0x00090008,
0x9240, 0xffffffff, 0x00070000,
0x9244, 0xffffffff, 0x00030002,
0x9248, 0xffffffff, 0x00050004,
0x9254, 0xffffffff, 0x00010006,
0x9258, 0xffffffff, 0x00090008,
0x925c, 0xffffffff, 0x00070000,
0x9260, 0xffffffff, 0x00030002,
0x9264, 0xffffffff, 0x00050004,
0x9270, 0xffffffff, 0x00010006,
0x9274, 0xffffffff, 0x00090008,
0x9278, 0xffffffff, 0x00070000,
0x927c, 0xffffffff, 0x00030002,
0x9280, 0xffffffff, 0x00050004,
0x928c, 0xffffffff, 0x00010006,
0x9290, 0xffffffff, 0x00090008,
0x9294, 0xffffffff, 0x00000000,
0x929c, 0xffffffff, 0x00000001,
0x802c, 0xffffffff, 0x40010000,
0x915c, 0xffffffff, 0x00010000,
0x9160, 0xffffffff, 0x00030002,
0x9178, 0xffffffff, 0x00070000,
0x917c, 0xffffffff, 0x00030002,
0x9180, 0xffffffff, 0x00050004,
0x918c, 0xffffffff, 0x00010006,
0x9190, 0xffffffff, 0x00090008,
0x9194, 0xffffffff, 0x00070000,
0x9198, 0xffffffff, 0x00030002,
0x919c, 0xffffffff, 0x00050004,
0x91a8, 0xffffffff, 0x00010006,
0x91ac, 0xffffffff, 0x00090008,
0x91b0, 0xffffffff, 0x00070000,
0x91b4, 0xffffffff, 0x00030002,
0x91b8, 0xffffffff, 0x00050004,
0x91c4, 0xffffffff, 0x00010006,
0x91c8, 0xffffffff, 0x00090008,
0x91cc, 0xffffffff, 0x00070000,
0x91d0, 0xffffffff, 0x00030002,
0x91d4, 0xffffffff, 0x00050004,
0x91e0, 0xffffffff, 0x00010006,
0x91e4, 0xffffffff, 0x00090008,
0x91e8, 0xffffffff, 0x00000000,
0x91ec, 0xffffffff, 0x00070000,
0x91f0, 0xffffffff, 0x00030002,
0x91f4, 0xffffffff, 0x00050004,
0x9200, 0xffffffff, 0x00010006,
0x9204, 0xffffffff, 0x00090008,
0x9208, 0xffffffff, 0x00070000,
0x920c, 0xffffffff, 0x00030002,
0x9210, 0xffffffff, 0x00050004,
0x921c, 0xffffffff, 0x00010006,
0x9220, 0xffffffff, 0x00090008,
0x9224, 0xffffffff, 0x00070000,
0x9228, 0xffffffff, 0x00030002,
0x922c, 0xffffffff, 0x00050004,
0x9238, 0xffffffff, 0x00010006,
0x923c, 0xffffffff, 0x00090008,
0x9240, 0xffffffff, 0x00070000,
0x9244, 0xffffffff, 0x00030002,
0x9248, 0xffffffff, 0x00050004,
0x9254, 0xffffffff, 0x00010006,
0x9258, 0xffffffff, 0x00090008,
0x925c, 0xffffffff, 0x00070000,
0x9260, 0xffffffff, 0x00030002,
0x9264, 0xffffffff, 0x00050004,
0x9270, 0xffffffff, 0x00010006,
0x9274, 0xffffffff, 0x00090008,
0x9278, 0xffffffff, 0x00070000,
0x927c, 0xffffffff, 0x00030002,
0x9280, 0xffffffff, 0x00050004,
0x928c, 0xffffffff, 0x00010006,
0x9290, 0xffffffff, 0x00090008,
0x9294, 0xffffffff, 0x00000000,
0x929c, 0xffffffff, 0x00000001,
0x802c, 0xffffffff, 0xc0000000
};
static const u32 redwood_mgcg_init[] =
{
0x802c, 0xffffffff, 0xc0000000,
0x5448, 0xffffffff, 0x00000100,
0x55e4, 0xffffffff, 0x00000100,
0x160c, 0xffffffff, 0x00000100,
0x5644, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x8a18, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x9a60, 0xffffffff, 0x00000100,
0x9868, 0xffffffff, 0x00000100,
0x8d58, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x9654, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0x9040, 0xffffffff, 0x00000100,
0xa200, 0xffffffff, 0x00000100,
0xa204, 0xffffffff, 0x00000100,
0xa208, 0xffffffff, 0x00000100,
0xa20c, 0xffffffff, 0x00000100,
0x971c, 0xffffffff, 0x00000100,
0x977c, 0xffffffff, 0x00000100,
0x3f80, 0xffffffff, 0x00000100,
0xa210, 0xffffffff, 0x00000100,
0xa214, 0xffffffff, 0x00000100,
0x4d8, 0xffffffff, 0x00000100,
0x9784, 0xffffffff, 0x00000100,
0x9698, 0xffffffff, 0x00000100,
0x4d4, 0xffffffff, 0x00000200,
0x30cc, 0xffffffff, 0x00000100,
0xd0c0, 0xffffffff, 0xff000100,
0x802c, 0xffffffff, 0x40000000,
0x915c, 0xffffffff, 0x00010000,
0x9160, 0xffffffff, 0x00030002,
0x9178, 0xffffffff, 0x00070000,
0x917c, 0xffffffff, 0x00030002,
0x9180, 0xffffffff, 0x00050004,
0x918c, 0xffffffff, 0x00010006,
0x9190, 0xffffffff, 0x00090008,
0x9194, 0xffffffff, 0x00070000,
0x9198, 0xffffffff, 0x00030002,
0x919c, 0xffffffff, 0x00050004,
0x91a8, 0xffffffff, 0x00010006,
0x91ac, 0xffffffff, 0x00090008,
0x91b0, 0xffffffff, 0x00070000,
0x91b4, 0xffffffff, 0x00030002,
0x91b8, 0xffffffff, 0x00050004,
0x91c4, 0xffffffff, 0x00010006,
0x91c8, 0xffffffff, 0x00090008,
0x91cc, 0xffffffff, 0x00070000,
0x91d0, 0xffffffff, 0x00030002,
0x91d4, 0xffffffff, 0x00050004,
0x91e0, 0xffffffff, 0x00010006,
0x91e4, 0xffffffff, 0x00090008,
0x91e8, 0xffffffff, 0x00000000,
0x91ec, 0xffffffff, 0x00070000,
0x91f0, 0xffffffff, 0x00030002,
0x91f4, 0xffffffff, 0x00050004,
0x9200, 0xffffffff, 0x00010006,
0x9204, 0xffffffff, 0x00090008,
0x9294, 0xffffffff, 0x00000000,
0x929c, 0xffffffff, 0x00000001,
0x802c, 0xffffffff, 0xc0000000
};
static const u32 cedar_golden_registers[] =
{
0x3f90, 0xffff0000, 0xff000000,
0x9148, 0xffff0000, 0xff000000,
0x3f94, 0xffff0000, 0xff000000,
0x914c, 0xffff0000, 0xff000000,
0x9b7c, 0xffffffff, 0x00000000,
0x8a14, 0xffffffff, 0x00000007,
0x8b10, 0xffffffff, 0x00000000,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0xffffffff, 0x000000c2,
0x88d4, 0xffffffff, 0x00000000,
0x8974, 0xffffffff, 0x00000000,
0xc78, 0x00000080, 0x00000080,
0x5eb4, 0xffffffff, 0x00000002,
0x5e78, 0xffffffff, 0x001000f0,
0x6104, 0x01000300, 0x00000000,
0x5bc0, 0x00300000, 0x00000000,
0x7030, 0xffffffff, 0x00000011,
0x7c30, 0xffffffff, 0x00000011,
0x10830, 0xffffffff, 0x00000011,
0x11430, 0xffffffff, 0x00000011,
0xd02c, 0xffffffff, 0x08421000,
0x240c, 0xffffffff, 0x00000380,
0x8b24, 0xffffffff, 0x00ff0fff,
0x28a4c, 0x06000000, 0x06000000,
0x10c, 0x00000001, 0x00000001,
0x8d00, 0xffffffff, 0x100e4848,
0x8d04, 0xffffffff, 0x00164745,
0x8c00, 0xffffffff, 0xe4000003,
0x8c04, 0xffffffff, 0x40600060,
0x8c08, 0xffffffff, 0x001c001c,
0x8cf0, 0xffffffff, 0x08e00410,
0x8c20, 0xffffffff, 0x00800080,
0x8c24, 0xffffffff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0xffffffff, 0x00001010,
0x28350, 0xffffffff, 0x00000000,
0xa008, 0xffffffff, 0x00010000,
0x5c4, 0xffffffff, 0x00000001,
0x9508, 0xffffffff, 0x00000002
};
static const u32 cedar_mgcg_init[] =
{
0x802c, 0xffffffff, 0xc0000000,
0x5448, 0xffffffff, 0x00000100,
0x55e4, 0xffffffff, 0x00000100,
0x160c, 0xffffffff, 0x00000100,
0x5644, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x8a18, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x9a60, 0xffffffff, 0x00000100,
0x9868, 0xffffffff, 0x00000100,
0x8d58, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x9654, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0x9040, 0xffffffff, 0x00000100,
0xa200, 0xffffffff, 0x00000100,
0xa204, 0xffffffff, 0x00000100,
0xa208, 0xffffffff, 0x00000100,
0xa20c, 0xffffffff, 0x00000100,
0x971c, 0xffffffff, 0x00000100,
0x977c, 0xffffffff, 0x00000100,
0x3f80, 0xffffffff, 0x00000100,
0xa210, 0xffffffff, 0x00000100,
0xa214, 0xffffffff, 0x00000100,
0x4d8, 0xffffffff, 0x00000100,
0x9784, 0xffffffff, 0x00000100,
0x9698, 0xffffffff, 0x00000100,
0x4d4, 0xffffffff, 0x00000200,
0x30cc, 0xffffffff, 0x00000100,
0xd0c0, 0xffffffff, 0xff000100,
0x802c, 0xffffffff, 0x40000000,
0x915c, 0xffffffff, 0x00010000,
0x9178, 0xffffffff, 0x00050000,
0x917c, 0xffffffff, 0x00030002,
0x918c, 0xffffffff, 0x00010004,
0x9190, 0xffffffff, 0x00070006,
0x9194, 0xffffffff, 0x00050000,
0x9198, 0xffffffff, 0x00030002,
0x91a8, 0xffffffff, 0x00010004,
0x91ac, 0xffffffff, 0x00070006,
0x91e8, 0xffffffff, 0x00000000,
0x9294, 0xffffffff, 0x00000000,
0x929c, 0xffffffff, 0x00000001,
0x802c, 0xffffffff, 0xc0000000
};
static const u32 juniper_mgcg_init[] =
{
0x802c, 0xffffffff, 0xc0000000,
0x5448, 0xffffffff, 0x00000100,
0x55e4, 0xffffffff, 0x00000100,
0x160c, 0xffffffff, 0x00000100,
0x5644, 0xffffffff, 0x00000100,
0xc164, 0xffffffff, 0x00000100,
0x8a18, 0xffffffff, 0x00000100,
0x897c, 0xffffffff, 0x06000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x9a60, 0xffffffff, 0x00000100,
0x9868, 0xffffffff, 0x00000100,
0x8d58, 0xffffffff, 0x00000100,
0x9510, 0xffffffff, 0x00000100,
0x949c, 0xffffffff, 0x00000100,
0x9654, 0xffffffff, 0x00000100,
0x9030, 0xffffffff, 0x00000100,
0x9034, 0xffffffff, 0x00000100,
0x9038, 0xffffffff, 0x00000100,
0x903c, 0xffffffff, 0x00000100,
0x9040, 0xffffffff, 0x00000100,
0xa200, 0xffffffff, 0x00000100,
0xa204, 0xffffffff, 0x00000100,
0xa208, 0xffffffff, 0x00000100,
0xa20c, 0xffffffff, 0x00000100,
0x971c, 0xffffffff, 0x00000100,
0xd0c0, 0xffffffff, 0xff000100,
0x802c, 0xffffffff, 0x40000000,
0x915c, 0xffffffff, 0x00010000,
0x9160, 0xffffffff, 0x00030002,
0x9178, 0xffffffff, 0x00070000,
0x917c, 0xffffffff, 0x00030002,
0x9180, 0xffffffff, 0x00050004,
0x918c, 0xffffffff, 0x00010006,
0x9190, 0xffffffff, 0x00090008,
0x9194, 0xffffffff, 0x00070000,
0x9198, 0xffffffff, 0x00030002,
0x919c, 0xffffffff, 0x00050004,
0x91a8, 0xffffffff, 0x00010006,
0x91ac, 0xffffffff, 0x00090008,
0x91b0, 0xffffffff, 0x00070000,
0x91b4, 0xffffffff, 0x00030002,
0x91b8, 0xffffffff, 0x00050004,
0x91c4, 0xffffffff, 0x00010006,
0x91c8, 0xffffffff, 0x00090008,
0x91cc, 0xffffffff, 0x00070000,
0x91d0, 0xffffffff, 0x00030002,
0x91d4, 0xffffffff, 0x00050004,
0x91e0, 0xffffffff, 0x00010006,
0x91e4, 0xffffffff, 0x00090008,
0x91e8, 0xffffffff, 0x00000000,
0x91ec, 0xffffffff, 0x00070000,
0x91f0, 0xffffffff, 0x00030002,
0x91f4, 0xffffffff, 0x00050004,
0x9200, 0xffffffff, 0x00010006,
0x9204, 0xffffffff, 0x00090008,
0x9208, 0xffffffff, 0x00070000,
0x920c, 0xffffffff, 0x00030002,
0x9210, 0xffffffff, 0x00050004,
0x921c, 0xffffffff, 0x00010006,
0x9220, 0xffffffff, 0x00090008,
0x9224, 0xffffffff, 0x00070000,
0x9228, 0xffffffff, 0x00030002,
0x922c, 0xffffffff, 0x00050004,
0x9238, 0xffffffff, 0x00010006,
0x923c, 0xffffffff, 0x00090008,
0x9240, 0xffffffff, 0x00070000,
0x9244, 0xffffffff, 0x00030002,
0x9248, 0xffffffff, 0x00050004,
0x9254, 0xffffffff, 0x00010006,
0x9258, 0xffffffff, 0x00090008,
0x925c, 0xffffffff, 0x00070000,
0x9260, 0xffffffff, 0x00030002,
0x9264, 0xffffffff, 0x00050004,
0x9270, 0xffffffff, 0x00010006,
0x9274, 0xffffffff, 0x00090008,
0x9278, 0xffffffff, 0x00070000,
0x927c, 0xffffffff, 0x00030002,
0x9280, 0xffffffff, 0x00050004,
0x928c, 0xffffffff, 0x00010006,
0x9290, 0xffffffff, 0x00090008,
0x9294, 0xffffffff, 0x00000000,
0x929c, 0xffffffff, 0x00000001,
0x802c, 0xffffffff, 0xc0000000,
0x977c, 0xffffffff, 0x00000100,
0x3f80, 0xffffffff, 0x00000100,
0xa210, 0xffffffff, 0x00000100,
0xa214, 0xffffffff, 0x00000100,
0x4d8, 0xffffffff, 0x00000100,
0x9784, 0xffffffff, 0x00000100,
0x9698, 0xffffffff, 0x00000100,
0x4d4, 0xffffffff, 0x00000200,
0x30cc, 0xffffffff, 0x00000100,
0x802c, 0xffffffff, 0xc0000000
};
static const u32 supersumo_golden_registers[] =
{
0x5eb4, 0xffffffff, 0x00000002,
0x5c4, 0xffffffff, 0x00000001,
0x7030, 0xffffffff, 0x00000011,
0x7c30, 0xffffffff, 0x00000011,
0x6104, 0x01000300, 0x00000000,
0x5bc0, 0x00300000, 0x00000000,
0x8c04, 0xffffffff, 0x40600060,
0x8c08, 0xffffffff, 0x001c001c,
0x8c20, 0xffffffff, 0x00800080,
0x8c24, 0xffffffff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0xffffffff, 0x00001010,
0x918c, 0xffffffff, 0x00010006,
0x91a8, 0xffffffff, 0x00010006,
0x91c4, 0xffffffff, 0x00010006,
0x91e0, 0xffffffff, 0x00010006,
0x9200, 0xffffffff, 0x00010006,
0x9150, 0xffffffff, 0x6e944040,
0x917c, 0xffffffff, 0x00030002,
0x9180, 0xffffffff, 0x00050004,
0x9198, 0xffffffff, 0x00030002,
0x919c, 0xffffffff, 0x00050004,
0x91b4, 0xffffffff, 0x00030002,
0x91b8, 0xffffffff, 0x00050004,
0x91d0, 0xffffffff, 0x00030002,
0x91d4, 0xffffffff, 0x00050004,
0x91f0, 0xffffffff, 0x00030002,
0x91f4, 0xffffffff, 0x00050004,
0x915c, 0xffffffff, 0x00010000,
0x9160, 0xffffffff, 0x00030002,
0x3f90, 0xffff0000, 0xff000000,
0x9178, 0xffffffff, 0x00070000,
0x9194, 0xffffffff, 0x00070000,
0x91b0, 0xffffffff, 0x00070000,
0x91cc, 0xffffffff, 0x00070000,
0x91ec, 0xffffffff, 0x00070000,
0x9148, 0xffff0000, 0xff000000,
0x9190, 0xffffffff, 0x00090008,
0x91ac, 0xffffffff, 0x00090008,
0x91c8, 0xffffffff, 0x00090008,
0x91e4, 0xffffffff, 0x00090008,
0x9204, 0xffffffff, 0x00090008,
0x3f94, 0xffff0000, 0xff000000,
0x914c, 0xffff0000, 0xff000000,
0x929c, 0xffffffff, 0x00000001,
0x8a18, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x5644, 0xffffffff, 0x00000100,
0x9b7c, 0xffffffff, 0x00000000,
0x8030, 0xffffffff, 0x0000100a,
0x8a14, 0xffffffff, 0x00000007,
0x8b24, 0xffffffff, 0x00ff0fff,
0x8b10, 0xffffffff, 0x00000000,
0x28a4c, 0x06000000, 0x06000000,
0x4d8, 0xffffffff, 0x00000100,
0x913c, 0xffff000f, 0x0100000a,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0xffffffff, 0x000000c2,
0x88d4, 0xffffffff, 0x00000010,
0x8974, 0xffffffff, 0x00000000,
0xc78, 0x00000080, 0x00000080,
0x5e78, 0xffffffff, 0x001000f0,
0xd02c, 0xffffffff, 0x08421000,
0xa008, 0xffffffff, 0x00010000,
0x8d00, 0xffffffff, 0x100e4848,
0x8d04, 0xffffffff, 0x00164745,
0x8c00, 0xffffffff, 0xe4000003,
0x8cf0, 0x1fffffff, 0x08e00620,
0x28350, 0xffffffff, 0x00000000,
0x9508, 0xffffffff, 0x00000002
};
static const u32 sumo_golden_registers[] =
{
0x900c, 0x00ffffff, 0x0017071f,
0x8c18, 0xffffffff, 0x10101060,
0x8c1c, 0xffffffff, 0x00001010,
0x8c30, 0x0000000f, 0x00000005,
0x9688, 0x0000000f, 0x00000007
};
static const u32 wrestler_golden_registers[] =
{
0x5eb4, 0xffffffff, 0x00000002,
0x5c4, 0xffffffff, 0x00000001,
0x7030, 0xffffffff, 0x00000011,
0x7c30, 0xffffffff, 0x00000011,
0x6104, 0x01000300, 0x00000000,
0x5bc0, 0x00300000, 0x00000000,
0x918c, 0xffffffff, 0x00010006,
0x91a8, 0xffffffff, 0x00010006,
0x9150, 0xffffffff, 0x6e944040,
0x917c, 0xffffffff, 0x00030002,
0x9198, 0xffffffff, 0x00030002,
0x915c, 0xffffffff, 0x00010000,
0x3f90, 0xffff0000, 0xff000000,
0x9178, 0xffffffff, 0x00070000,
0x9194, 0xffffffff, 0x00070000,
0x9148, 0xffff0000, 0xff000000,
0x9190, 0xffffffff, 0x00090008,
0x91ac, 0xffffffff, 0x00090008,
0x3f94, 0xffff0000, 0xff000000,
0x914c, 0xffff0000, 0xff000000,
0x929c, 0xffffffff, 0x00000001,
0x8a18, 0xffffffff, 0x00000100,
0x8b28, 0xffffffff, 0x00000100,
0x9144, 0xffffffff, 0x00000100,
0x9b7c, 0xffffffff, 0x00000000,
0x8030, 0xffffffff, 0x0000100a,
0x8a14, 0xffffffff, 0x00000001,
0x8b24, 0xffffffff, 0x00ff0fff,
0x8b10, 0xffffffff, 0x00000000,
0x28a4c, 0x06000000, 0x06000000,
0x4d8, 0xffffffff, 0x00000100,
0x913c, 0xffff000f, 0x0100000a,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0xffffffff, 0x000000c2,
0x88d4, 0xffffffff, 0x00000010,
0x8974, 0xffffffff, 0x00000000,
0xc78, 0x00000080, 0x00000080,
0x5e78, 0xffffffff, 0x001000f0,
0xd02c, 0xffffffff, 0x08421000,
0xa008, 0xffffffff, 0x00010000,
0x8d00, 0xffffffff, 0x100e4848,
0x8d04, 0xffffffff, 0x00164745,
0x8c00, 0xffffffff, 0xe4000003,
0x8cf0, 0x1fffffff, 0x08e00410,
0x28350, 0xffffffff, 0x00000000,
0x9508, 0xffffffff, 0x00000002,
0x900c, 0xffffffff, 0x0017071f,
0x8c18, 0xffffffff, 0x10101060,
0x8c1c, 0xffffffff, 0x00001010
};
static const u32 barts_golden_registers[] =
{
0x5eb4, 0xffffffff, 0x00000002,
0x5e78, 0x8f311ff1, 0x001000f0,
0x3f90, 0xffff0000, 0xff000000,
0x9148, 0xffff0000, 0xff000000,
0x3f94, 0xffff0000, 0xff000000,
0x914c, 0xffff0000, 0xff000000,
0xc78, 0x00000080, 0x00000080,
0xbd4, 0x70073777, 0x00010001,
0xd02c, 0xbfffff1f, 0x08421000,
0xd0b8, 0x03773777, 0x02011003,
0x5bc0, 0x00200000, 0x50100000,
0x98f8, 0x33773777, 0x02011003,
0x98fc, 0xffffffff, 0x76543210,
0x7030, 0x31000311, 0x00000011,
0x2f48, 0x00000007, 0x02011003,
0x6b28, 0x00000010, 0x00000012,
0x7728, 0x00000010, 0x00000012,
0x10328, 0x00000010, 0x00000012,
0x10f28, 0x00000010, 0x00000012,
0x11b28, 0x00000010, 0x00000012,
0x12728, 0x00000010, 0x00000012,
0x240c, 0x000007ff, 0x00000380,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0x3fff3fff, 0x00ff0fff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x06000000,
0x10c, 0x00000001, 0x00010003,
0xa02c, 0xffffffff, 0x0000009b,
0x913c, 0x0000000f, 0x0100000a,
0x8d00, 0xffff7f7f, 0x100e4848,
0x8d04, 0x00ffffff, 0x00164745,
0x8c00, 0xfffc0003, 0xe4000003,
0x8c04, 0xf8ff00ff, 0x40600060,
0x8c08, 0x00ff00ff, 0x001c001c,
0x8cf0, 0x1fff1fff, 0x08e00620,
0x8c20, 0x0fff0fff, 0x00800080,
0x8c24, 0x0fff0fff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0x0000ffff, 0x00001010,
0x28350, 0x00000f01, 0x00000000,
0x9508, 0x3700001f, 0x00000002,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0x001f3ae3, 0x000000c2,
0x88d4, 0x0000001f, 0x00000010,
0x8974, 0xffffffff, 0x00000000
};
static const u32 turks_golden_registers[] =
{
0x5eb4, 0xffffffff, 0x00000002,
0x5e78, 0x8f311ff1, 0x001000f0,
0x8c8, 0x00003000, 0x00001070,
0x8cc, 0x000fffff, 0x00040035,
0x3f90, 0xffff0000, 0xfff00000,
0x9148, 0xffff0000, 0xfff00000,
0x3f94, 0xffff0000, 0xfff00000,
0x914c, 0xffff0000, 0xfff00000,
0xc78, 0x00000080, 0x00000080,
0xbd4, 0x00073007, 0x00010002,
0xd02c, 0xbfffff1f, 0x08421000,
0xd0b8, 0x03773777, 0x02010002,
0x5bc0, 0x00200000, 0x50100000,
0x98f8, 0x33773777, 0x00010002,
0x98fc, 0xffffffff, 0x33221100,
0x7030, 0x31000311, 0x00000011,
0x2f48, 0x33773777, 0x00010002,
0x6b28, 0x00000010, 0x00000012,
0x7728, 0x00000010, 0x00000012,
0x10328, 0x00000010, 0x00000012,
0x10f28, 0x00000010, 0x00000012,
0x11b28, 0x00000010, 0x00000012,
0x12728, 0x00000010, 0x00000012,
0x240c, 0x000007ff, 0x00000380,
0x8a14, 0xf000001f, 0x00000007,
0x8b24, 0x3fff3fff, 0x00ff0fff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x06000000,
0x10c, 0x00000001, 0x00010003,
0xa02c, 0xffffffff, 0x0000009b,
0x913c, 0x0000000f, 0x0100000a,
0x8d00, 0xffff7f7f, 0x100e4848,
0x8d04, 0x00ffffff, 0x00164745,
0x8c00, 0xfffc0003, 0xe4000003,
0x8c04, 0xf8ff00ff, 0x40600060,
0x8c08, 0x00ff00ff, 0x001c001c,
0x8cf0, 0x1fff1fff, 0x08e00410,
0x8c20, 0x0fff0fff, 0x00800080,
0x8c24, 0x0fff0fff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0x0000ffff, 0x00001010,
0x28350, 0x00000f01, 0x00000000,
0x9508, 0x3700001f, 0x00000002,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0x001f3ae3, 0x000000c2,
0x88d4, 0x0000001f, 0x00000010,
0x8974, 0xffffffff, 0x00000000
};
static const u32 caicos_golden_registers[] =
{
0x5eb4, 0xffffffff, 0x00000002,
0x5e78, 0x8f311ff1, 0x001000f0,
0x8c8, 0x00003420, 0x00001450,
0x8cc, 0x000fffff, 0x00040035,
0x3f90, 0xffff0000, 0xfffc0000,
0x9148, 0xffff0000, 0xfffc0000,
0x3f94, 0xffff0000, 0xfffc0000,
0x914c, 0xffff0000, 0xfffc0000,
0xc78, 0x00000080, 0x00000080,
0xbd4, 0x00073007, 0x00010001,
0xd02c, 0xbfffff1f, 0x08421000,
0xd0b8, 0x03773777, 0x02010001,
0x5bc0, 0x00200000, 0x50100000,
0x98f8, 0x33773777, 0x02010001,
0x98fc, 0xffffffff, 0x33221100,
0x7030, 0x31000311, 0x00000011,
0x2f48, 0x33773777, 0x02010001,
0x6b28, 0x00000010, 0x00000012,
0x7728, 0x00000010, 0x00000012,
0x10328, 0x00000010, 0x00000012,
0x10f28, 0x00000010, 0x00000012,
0x11b28, 0x00000010, 0x00000012,
0x12728, 0x00000010, 0x00000012,
0x240c, 0x000007ff, 0x00000380,
0x8a14, 0xf000001f, 0x00000001,
0x8b24, 0x3fff3fff, 0x00ff0fff,
0x8b10, 0x0000ff0f, 0x00000000,
0x28a4c, 0x07ffffff, 0x06000000,
0x10c, 0x00000001, 0x00010003,
0xa02c, 0xffffffff, 0x0000009b,
0x913c, 0x0000000f, 0x0100000a,
0x8d00, 0xffff7f7f, 0x100e4848,
0x8d04, 0x00ffffff, 0x00164745,
0x8c00, 0xfffc0003, 0xe4000003,
0x8c04, 0xf8ff00ff, 0x40600060,
0x8c08, 0x00ff00ff, 0x001c001c,
0x8cf0, 0x1fff1fff, 0x08e00410,
0x8c20, 0x0fff0fff, 0x00800080,
0x8c24, 0x0fff0fff, 0x00800080,
0x8c18, 0xffffffff, 0x20202078,
0x8c1c, 0x0000ffff, 0x00001010,
0x28350, 0x00000f01, 0x00000000,
0x9508, 0x3700001f, 0x00000002,
0x960c, 0xffffffff, 0x54763210,
0x88c4, 0x001f3ae3, 0x000000c2,
0x88d4, 0x0000001f, 0x00000010,
0x8974, 0xffffffff, 0x00000000
};
static void evergreen_init_golden_registers(struct radeon_device *rdev)
{
switch (rdev->family) {
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
radeon_program_register_sequence(rdev,
evergreen_golden_registers,
(const u32)ARRAY_SIZE(evergreen_golden_registers));
radeon_program_register_sequence(rdev,
evergreen_golden_registers2,
(const u32)ARRAY_SIZE(evergreen_golden_registers2));
radeon_program_register_sequence(rdev,
cypress_mgcg_init,
(const u32)ARRAY_SIZE(cypress_mgcg_init));
break;
case CHIP_JUNIPER:
radeon_program_register_sequence(rdev,
evergreen_golden_registers,
(const u32)ARRAY_SIZE(evergreen_golden_registers));
radeon_program_register_sequence(rdev,
evergreen_golden_registers2,
(const u32)ARRAY_SIZE(evergreen_golden_registers2));
radeon_program_register_sequence(rdev,
juniper_mgcg_init,
(const u32)ARRAY_SIZE(juniper_mgcg_init));
break;
case CHIP_REDWOOD:
radeon_program_register_sequence(rdev,
evergreen_golden_registers,
(const u32)ARRAY_SIZE(evergreen_golden_registers));
radeon_program_register_sequence(rdev,
evergreen_golden_registers2,
(const u32)ARRAY_SIZE(evergreen_golden_registers2));
radeon_program_register_sequence(rdev,
redwood_mgcg_init,
(const u32)ARRAY_SIZE(redwood_mgcg_init));
break;
case CHIP_CEDAR:
radeon_program_register_sequence(rdev,
cedar_golden_registers,
(const u32)ARRAY_SIZE(cedar_golden_registers));
radeon_program_register_sequence(rdev,
evergreen_golden_registers2,
(const u32)ARRAY_SIZE(evergreen_golden_registers2));
radeon_program_register_sequence(rdev,
cedar_mgcg_init,
(const u32)ARRAY_SIZE(cedar_mgcg_init));
break;
case CHIP_PALM:
radeon_program_register_sequence(rdev,
wrestler_golden_registers,
(const u32)ARRAY_SIZE(wrestler_golden_registers));
break;
case CHIP_SUMO:
radeon_program_register_sequence(rdev,
supersumo_golden_registers,
(const u32)ARRAY_SIZE(supersumo_golden_registers));
break;
case CHIP_SUMO2:
radeon_program_register_sequence(rdev,
supersumo_golden_registers,
(const u32)ARRAY_SIZE(supersumo_golden_registers));
radeon_program_register_sequence(rdev,
sumo_golden_registers,
(const u32)ARRAY_SIZE(sumo_golden_registers));
break;
case CHIP_BARTS:
radeon_program_register_sequence(rdev,
barts_golden_registers,
(const u32)ARRAY_SIZE(barts_golden_registers));
break;
case CHIP_TURKS:
radeon_program_register_sequence(rdev,
turks_golden_registers,
(const u32)ARRAY_SIZE(turks_golden_registers));
break;
case CHIP_CAICOS:
radeon_program_register_sequence(rdev,
caicos_golden_registers,
(const u32)ARRAY_SIZE(caicos_golden_registers));
break;
default:
break;
}
}
/**
* evergreen_get_allowed_info_register - fetch the register for the info ioctl
*
* @rdev: radeon_device pointer
* @reg: register offset in bytes
* @val: register value
*
* Returns 0 for success or -EINVAL for an invalid register
*
*/
int evergreen_get_allowed_info_register(struct radeon_device *rdev,
u32 reg, u32 *val)
{
switch (reg) {
case GRBM_STATUS:
case GRBM_STATUS_SE0:
case GRBM_STATUS_SE1:
case SRBM_STATUS:
case SRBM_STATUS2:
case DMA_STATUS_REG:
case UVD_STATUS:
*val = RREG32(reg);
return 0;
default:
return -EINVAL;
}
}
void evergreen_tiling_fields(unsigned tiling_flags, unsigned *bankw,
unsigned *bankh, unsigned *mtaspect,
unsigned *tile_split)
{
*bankw = (tiling_flags >> RADEON_TILING_EG_BANKW_SHIFT) & RADEON_TILING_EG_BANKW_MASK;
*bankh = (tiling_flags >> RADEON_TILING_EG_BANKH_SHIFT) & RADEON_TILING_EG_BANKH_MASK;
*mtaspect = (tiling_flags >> RADEON_TILING_EG_MACRO_TILE_ASPECT_SHIFT) & RADEON_TILING_EG_MACRO_TILE_ASPECT_MASK;
*tile_split = (tiling_flags >> RADEON_TILING_EG_TILE_SPLIT_SHIFT) & RADEON_TILING_EG_TILE_SPLIT_MASK;
switch (*bankw) {
default:
case 1: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_1; break;
case 2: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_2; break;
case 4: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_4; break;
case 8: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_8; break;
}
switch (*bankh) {
default:
case 1: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_1; break;
case 2: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_2; break;
case 4: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_4; break;
case 8: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_8; break;
}
switch (*mtaspect) {
default:
case 1: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_1; break;
case 2: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_2; break;
case 4: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_4; break;
case 8: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_8; break;
}
}
static int sumo_set_uvd_clock(struct radeon_device *rdev, u32 clock,
u32 cntl_reg, u32 status_reg)
{
int r, i;
struct atom_clock_dividers dividers;
r = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
clock, false, &dividers);
if (r)
return r;
WREG32_P(cntl_reg, dividers.post_div, ~(DCLK_DIR_CNTL_EN|DCLK_DIVIDER_MASK));
for (i = 0; i < 100; i++) {
if (RREG32(status_reg) & DCLK_STATUS)
break;
mdelay(10);
}
if (i == 100)
return -ETIMEDOUT;
return 0;
}
int sumo_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk)
{
int r = 0;
u32 cg_scratch = RREG32(CG_SCRATCH1);
r = sumo_set_uvd_clock(rdev, vclk, CG_VCLK_CNTL, CG_VCLK_STATUS);
if (r)
goto done;
cg_scratch &= 0xffff0000;
cg_scratch |= vclk / 100; /* Mhz */
r = sumo_set_uvd_clock(rdev, dclk, CG_DCLK_CNTL, CG_DCLK_STATUS);
if (r)
goto done;
cg_scratch &= 0x0000ffff;
cg_scratch |= (dclk / 100) << 16; /* Mhz */
done:
WREG32(CG_SCRATCH1, cg_scratch);
return r;
}
int evergreen_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk)
{
/* start off with something large */
unsigned fb_div = 0, vclk_div = 0, dclk_div = 0;
int r;
/* bypass vclk and dclk with bclk */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
VCLK_SRC_SEL(1) | DCLK_SRC_SEL(1),
~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK));
/* put PLL in bypass mode */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_BYPASS_EN_MASK, ~UPLL_BYPASS_EN_MASK);
if (!vclk || !dclk) {
/* keep the Bypass mode, put PLL to sleep */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_SLEEP_MASK, ~UPLL_SLEEP_MASK);
return 0;
}
r = radeon_uvd_calc_upll_dividers(rdev, vclk, dclk, 125000, 250000,
16384, 0x03FFFFFF, 0, 128, 5,
&fb_div, &vclk_div, &dclk_div);
if (r)
return r;
/* set VCO_MODE to 1 */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_VCO_MODE_MASK, ~UPLL_VCO_MODE_MASK);
/* toggle UPLL_SLEEP to 1 then back to 0 */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_SLEEP_MASK, ~UPLL_SLEEP_MASK);
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_SLEEP_MASK);
/* deassert UPLL_RESET */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK);
mdelay(1);
r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL);
if (r)
return r;
/* assert UPLL_RESET again */
WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_RESET_MASK, ~UPLL_RESET_MASK);
/* disable spread spectrum. */
WREG32_P(CG_UPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK);
/* set feedback divider */
WREG32_P(CG_UPLL_FUNC_CNTL_3, UPLL_FB_DIV(fb_div), ~UPLL_FB_DIV_MASK);
/* set ref divider to 0 */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_REF_DIV_MASK);
if (fb_div < 307200)
WREG32_P(CG_UPLL_FUNC_CNTL_4, 0, ~UPLL_SPARE_ISPARE9);
else
WREG32_P(CG_UPLL_FUNC_CNTL_4, UPLL_SPARE_ISPARE9, ~UPLL_SPARE_ISPARE9);
/* set PDIV_A and PDIV_B */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
UPLL_PDIV_A(vclk_div) | UPLL_PDIV_B(dclk_div),
~(UPLL_PDIV_A_MASK | UPLL_PDIV_B_MASK));
/* give the PLL some time to settle */
mdelay(15);
/* deassert PLL_RESET */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK);
mdelay(15);
/* switch from bypass mode to normal mode */
WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_BYPASS_EN_MASK);
r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL);
if (r)
return r;
/* switch VCLK and DCLK selection */
WREG32_P(CG_UPLL_FUNC_CNTL_2,
VCLK_SRC_SEL(2) | DCLK_SRC_SEL(2),
~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK));
mdelay(100);
return 0;
}
void evergreen_fix_pci_max_read_req_size(struct radeon_device *rdev)
{
int readrq;
u16 v;
readrq = pcie_get_readrq(rdev->pdev);
v = ffs(readrq) - 8;
/* if bios or OS sets MAX_READ_REQUEST_SIZE to an invalid value, fix it
* to avoid hangs or perfomance issues
*/
if ((v == 0) || (v == 6) || (v == 7))
pcie_set_readrq(rdev->pdev, 512);
}
void dce4_program_fmt(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc);
struct drm_connector *connector = radeon_get_connector_for_encoder(encoder);
int bpc = 0;
u32 tmp = 0;
enum radeon_connector_dither dither = RADEON_FMT_DITHER_DISABLE;
if (connector) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
bpc = radeon_get_monitor_bpc(connector);
dither = radeon_connector->dither;
}
/* LVDS/eDP FMT is set up by atom */
if (radeon_encoder->devices & ATOM_DEVICE_LCD_SUPPORT)
return;
/* not needed for analog */
if ((radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) ||
(radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2))
return;
if (bpc == 0)
return;
switch (bpc) {
case 6:
if (dither == RADEON_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE |
FMT_SPATIAL_DITHER_EN);
else
tmp |= FMT_TRUNCATE_EN;
break;
case 8:
if (dither == RADEON_FMT_DITHER_ENABLE)
/* XXX sort out optimal dither settings */
tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE |
FMT_RGB_RANDOM_ENABLE |
FMT_SPATIAL_DITHER_EN | FMT_SPATIAL_DITHER_DEPTH);
else
tmp |= (FMT_TRUNCATE_EN | FMT_TRUNCATE_DEPTH);
break;
case 10:
default:
/* not needed */
break;
}
WREG32(FMT_BIT_DEPTH_CONTROL + radeon_crtc->crtc_offset, tmp);
}
static bool dce4_is_in_vblank(struct radeon_device *rdev, int crtc)
{
if (RREG32(EVERGREEN_CRTC_STATUS + crtc_offsets[crtc]) & EVERGREEN_CRTC_V_BLANK)
return true;
else
return false;
}
static bool dce4_is_counter_moving(struct radeon_device *rdev, int crtc)
{
u32 pos1, pos2;
pos1 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]);
pos2 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]);
if (pos1 != pos2)
return true;
else
return false;
}
/**
* dce4_wait_for_vblank - vblank wait asic callback.
*
* @rdev: radeon_device pointer
* @crtc: crtc to wait for vblank on
*
* Wait for vblank on the requested crtc (evergreen+).
*/
void dce4_wait_for_vblank(struct radeon_device *rdev, int crtc)
{
unsigned i = 0;
if (crtc >= rdev->num_crtc)
return;
if (!(RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[crtc]) & EVERGREEN_CRTC_MASTER_EN))
return;
/* depending on when we hit vblank, we may be close to active; if so,
* wait for another frame.
*/
while (dce4_is_in_vblank(rdev, crtc)) {
if (i++ % 100 == 0) {
if (!dce4_is_counter_moving(rdev, crtc))
break;
}
}
while (!dce4_is_in_vblank(rdev, crtc)) {
if (i++ % 100 == 0) {
if (!dce4_is_counter_moving(rdev, crtc))
break;
}
}
}
/**
* evergreen_page_flip - pageflip callback.
*
* @rdev: radeon_device pointer
* @crtc_id: crtc to cleanup pageflip on
* @crtc_base: new address of the crtc (GPU MC address)
*
* Triggers the actual pageflip by updating the primary
* surface base address (evergreen+).
*/
void evergreen_page_flip(struct radeon_device *rdev, int crtc_id, u64 crtc_base,
bool async)
{
struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id];
/* update the scanout addresses */
WREG32(EVERGREEN_GRPH_FLIP_CONTROL + radeon_crtc->crtc_offset,
async ? EVERGREEN_GRPH_SURFACE_UPDATE_H_RETRACE_EN : 0);
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset,
upper_32_bits(crtc_base));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32)crtc_base);
/* post the write */
RREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset);
}
/**
* evergreen_page_flip_pending - check if page flip is still pending
*
* @rdev: radeon_device pointer
* @crtc_id: crtc to check
*
* Returns the current update pending status.
*/
bool evergreen_page_flip_pending(struct radeon_device *rdev, int crtc_id)
{
struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id];
/* Return current update_pending status: */
return !!(RREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset) &
EVERGREEN_GRPH_SURFACE_UPDATE_PENDING);
}
/* get temperature in millidegrees */
int evergreen_get_temp(struct radeon_device *rdev)
{
u32 temp, toffset;
int actual_temp = 0;
if (rdev->family == CHIP_JUNIPER) {
toffset = (RREG32(CG_THERMAL_CTRL) & TOFFSET_MASK) >>
TOFFSET_SHIFT;
temp = (RREG32(CG_TS0_STATUS) & TS0_ADC_DOUT_MASK) >>
TS0_ADC_DOUT_SHIFT;
if (toffset & 0x100)
actual_temp = temp / 2 - (0x200 - toffset);
else
actual_temp = temp / 2 + toffset;
actual_temp = actual_temp * 1000;
} else {
temp = (RREG32(CG_MULT_THERMAL_STATUS) & ASIC_T_MASK) >>
ASIC_T_SHIFT;
if (temp & 0x400)
actual_temp = -256;
else if (temp & 0x200)
actual_temp = 255;
else if (temp & 0x100) {
actual_temp = temp & 0x1ff;
actual_temp |= ~0x1ff;
} else
actual_temp = temp & 0xff;
actual_temp = (actual_temp * 1000) / 2;
}
return actual_temp;
}
int sumo_get_temp(struct radeon_device *rdev)
{
u32 temp = RREG32(CG_THERMAL_STATUS) & 0xff;
int actual_temp = temp - 49;
return actual_temp * 1000;
}
/**
* sumo_pm_init_profile - Initialize power profiles callback.
*
* @rdev: radeon_device pointer
*
* Initialize the power states used in profile mode
* (sumo, trinity, SI).
* Used for profile mode only.
*/
void sumo_pm_init_profile(struct radeon_device *rdev)
{
int idx;
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low,mid sh/mh */
if (rdev->flags & RADEON_IS_MOBILITY)
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0);
else
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0);
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high sh/mh */
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0);
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx =
rdev->pm.power_state[idx].num_clock_modes - 1;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx =
rdev->pm.power_state[idx].num_clock_modes - 1;
}
/**
* btc_pm_init_profile - Initialize power profiles callback.
*
* @rdev: radeon_device pointer
*
* Initialize the power states used in profile mode
* (BTC, cayman).
* Used for profile mode only.
*/
void btc_pm_init_profile(struct radeon_device *rdev)
{
int idx;
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2;
/* starting with BTC, there is one state that is used for both
* MH and SH. Difference is that we always use the high clock index for
* mclk.
*/
if (rdev->flags & RADEON_IS_MOBILITY)
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0);
else
idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0);
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2;
}
/**
* evergreen_pm_misc - set additional pm hw parameters callback.
*
* @rdev: radeon_device pointer
*
* Set non-clock parameters associated with a power state
* (voltage, etc.) (evergreen+).
*/
void evergreen_pm_misc(struct radeon_device *rdev)
{
int req_ps_idx = rdev->pm.requested_power_state_index;
int req_cm_idx = rdev->pm.requested_clock_mode_index;
struct radeon_power_state *ps = &rdev->pm.power_state[req_ps_idx];
struct radeon_voltage *voltage = &ps->clock_info[req_cm_idx].voltage;
if (voltage->type == VOLTAGE_SW) {
/* 0xff0x are flags rather then an actual voltage */
if ((voltage->voltage & 0xff00) == 0xff00)
return;
if (voltage->voltage && (voltage->voltage != rdev->pm.current_vddc)) {
radeon_atom_set_voltage(rdev, voltage->voltage, SET_VOLTAGE_TYPE_ASIC_VDDC);
rdev->pm.current_vddc = voltage->voltage;
DRM_DEBUG("Setting: vddc: %d\n", voltage->voltage);
}
/* starting with BTC, there is one state that is used for both
* MH and SH. Difference is that we always use the high clock index for
* mclk and vddci.
*/
if ((rdev->pm.pm_method == PM_METHOD_PROFILE) &&
(rdev->family >= CHIP_BARTS) &&
rdev->pm.active_crtc_count &&
((rdev->pm.profile_index == PM_PROFILE_MID_MH_IDX) ||
(rdev->pm.profile_index == PM_PROFILE_LOW_MH_IDX)))
voltage = &rdev->pm.power_state[req_ps_idx].
clock_info[rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx].voltage;
/* 0xff0x are flags rather then an actual voltage */
if ((voltage->vddci & 0xff00) == 0xff00)
return;
if (voltage->vddci && (voltage->vddci != rdev->pm.current_vddci)) {
radeon_atom_set_voltage(rdev, voltage->vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI);
rdev->pm.current_vddci = voltage->vddci;
DRM_DEBUG("Setting: vddci: %d\n", voltage->vddci);
}
}
}
/**
* evergreen_pm_prepare - pre-power state change callback.
*
* @rdev: radeon_device pointer
*
* Prepare for a power state change (evergreen+).
*/
void evergreen_pm_prepare(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* disable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset);
tmp |= EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp);
}
}
}
/**
* evergreen_pm_finish - post-power state change callback.
*
* @rdev: radeon_device pointer
*
* Clean up after a power state change (evergreen+).
*/
void evergreen_pm_finish(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* enable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset);
tmp &= ~EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp);
}
}
}
/**
* evergreen_hpd_sense - hpd sense callback.
*
* @rdev: radeon_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Checks if a digital monitor is connected (evergreen+).
* Returns true if connected, false if not connected.
*/
bool evergreen_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd)
{
if (hpd == RADEON_HPD_NONE)
return false;
return !!(RREG32(DC_HPDx_INT_STATUS_REG(hpd)) & DC_HPDx_SENSE);
}
/**
* evergreen_hpd_set_polarity - hpd set polarity callback.
*
* @rdev: radeon_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Set the polarity of the hpd pin (evergreen+).
*/
void evergreen_hpd_set_polarity(struct radeon_device *rdev,
enum radeon_hpd_id hpd)
{
bool connected = evergreen_hpd_sense(rdev, hpd);
if (hpd == RADEON_HPD_NONE)
return;
if (connected)
WREG32_AND(DC_HPDx_INT_CONTROL(hpd), ~DC_HPDx_INT_POLARITY);
else
WREG32_OR(DC_HPDx_INT_CONTROL(hpd), DC_HPDx_INT_POLARITY);
}
/**
* evergreen_hpd_init - hpd setup callback.
*
* @rdev: radeon_device pointer
*
* Setup the hpd pins used by the card (evergreen+).
* Enable the pin, set the polarity, and enable the hpd interrupts.
*/
void evergreen_hpd_init(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
unsigned enabled = 0;
u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) |
DC_HPDx_RX_INT_TIMER(0xfa) | DC_HPDx_EN;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
enum radeon_hpd_id hpd =
to_radeon_connector(connector)->hpd.hpd;
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP ||
connector->connector_type == DRM_MODE_CONNECTOR_LVDS) {
/* don't try to enable hpd on eDP or LVDS avoid breaking the
* aux dp channel on imac and help (but not completely fix)
* https://bugzilla.redhat.com/show_bug.cgi?id=726143
* also avoid interrupt storms during dpms.
*/
continue;
}
if (hpd == RADEON_HPD_NONE)
continue;
WREG32(DC_HPDx_CONTROL(hpd), tmp);
enabled |= 1 << hpd;
radeon_hpd_set_polarity(rdev, hpd);
}
radeon_irq_kms_enable_hpd(rdev, enabled);
}
/**
* evergreen_hpd_fini - hpd tear down callback.
*
* @rdev: radeon_device pointer
*
* Tear down the hpd pins used by the card (evergreen+).
* Disable the hpd interrupts.
*/
void evergreen_hpd_fini(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
unsigned disabled = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
enum radeon_hpd_id hpd =
to_radeon_connector(connector)->hpd.hpd;
if (hpd == RADEON_HPD_NONE)
continue;
WREG32(DC_HPDx_CONTROL(hpd), 0);
disabled |= 1 << hpd;
}
radeon_irq_kms_disable_hpd(rdev, disabled);
}
/* watermark setup */
static u32 evergreen_line_buffer_adjust(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
struct drm_display_mode *mode,
struct drm_display_mode *other_mode)
{
u32 tmp, buffer_alloc, i;
u32 pipe_offset = radeon_crtc->crtc_id * 0x20;
/*
* Line Buffer Setup
* There are 3 line buffers, each one shared by 2 display controllers.
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
* the display controllers. The paritioning is done via one of four
* preset allocations specified in bits 2:0:
* first display controller
* 0 - first half of lb (3840 * 2)
* 1 - first 3/4 of lb (5760 * 2)
* 2 - whole lb (7680 * 2), other crtc must be disabled
* 3 - first 1/4 of lb (1920 * 2)
* second display controller
* 4 - second half of lb (3840 * 2)
* 5 - second 3/4 of lb (5760 * 2)
* 6 - whole lb (7680 * 2), other crtc must be disabled
* 7 - last 1/4 of lb (1920 * 2)
*/
/* this can get tricky if we have two large displays on a paired group
* of crtcs. Ideally for multiple large displays we'd assign them to
* non-linked crtcs for maximum line buffer allocation.
*/
if (radeon_crtc->base.enabled && mode) {
if (other_mode) {
tmp = 0; /* 1/2 */
buffer_alloc = 1;
} else {
tmp = 2; /* whole */
buffer_alloc = 2;
}
} else {
tmp = 0;
buffer_alloc = 0;
}
/* second controller of the pair uses second half of the lb */
if (radeon_crtc->crtc_id % 2)
tmp += 4;
WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset, tmp);
if (ASIC_IS_DCE41(rdev) || ASIC_IS_DCE5(rdev)) {
WREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset,
DMIF_BUFFERS_ALLOCATED(buffer_alloc));
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset) &
DMIF_BUFFERS_ALLOCATED_COMPLETED)
break;
udelay(1);
}
}
if (radeon_crtc->base.enabled && mode) {
switch (tmp) {
case 0:
case 4:
default:
if (ASIC_IS_DCE5(rdev))
return 4096 * 2;
else
return 3840 * 2;
case 1:
case 5:
if (ASIC_IS_DCE5(rdev))
return 6144 * 2;
else
return 5760 * 2;
case 2:
case 6:
if (ASIC_IS_DCE5(rdev))
return 8192 * 2;
else
return 7680 * 2;
case 3:
case 7:
if (ASIC_IS_DCE5(rdev))
return 2048 * 2;
else
return 1920 * 2;
}
}
/* controller not enabled, so no lb used */
return 0;
}
u32 evergreen_get_number_of_dram_channels(struct radeon_device *rdev)
{
u32 tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
}
}
struct evergreen_wm_params {
u32 dram_channels; /* number of dram channels */
u32 yclk; /* bandwidth per dram data pin in kHz */
u32 sclk; /* engine clock in kHz */
u32 disp_clk; /* display clock in kHz */
u32 src_width; /* viewport width */
u32 active_time; /* active display time in ns */
u32 blank_time; /* blank time in ns */
bool interlaced; /* mode is interlaced */
fixed20_12 vsc; /* vertical scale ratio */
u32 num_heads; /* number of active crtcs */
u32 bytes_per_pixel; /* bytes per pixel display + overlay */
u32 lb_size; /* line buffer allocated to pipe */
u32 vtaps; /* vertical scaler taps */
};
static u32 evergreen_dram_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 dram_efficiency; /* 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
dram_efficiency.full = dfixed_const(7);
dram_efficiency.full = dfixed_div(dram_efficiency, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_dram_bandwidth_for_display(struct evergreen_wm_params *wm)
{
/* Calculate DRAM Bandwidth and the part allocated to display. */
fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
fixed20_12 yclk, dram_channels, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
yclk.full = dfixed_const(wm->yclk);
yclk.full = dfixed_div(yclk, a);
dram_channels.full = dfixed_const(wm->dram_channels * 4);
a.full = dfixed_const(10);
disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
bandwidth.full = dfixed_mul(dram_channels, yclk);
bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_data_return_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the display Data return Bandwidth */
fixed20_12 return_efficiency; /* 0.8 */
fixed20_12 sclk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
sclk.full = dfixed_const(wm->sclk);
sclk.full = dfixed_div(sclk, a);
a.full = dfixed_const(10);
return_efficiency.full = dfixed_const(8);
return_efficiency.full = dfixed_div(return_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, sclk);
bandwidth.full = dfixed_mul(bandwidth, return_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_dmif_request_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the DMIF Request Bandwidth */
fixed20_12 disp_clk_request_efficiency; /* 0.8 */
fixed20_12 disp_clk, bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
disp_clk.full = dfixed_const(wm->disp_clk);
disp_clk.full = dfixed_div(disp_clk, a);
a.full = dfixed_const(10);
disp_clk_request_efficiency.full = dfixed_const(8);
disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);
a.full = dfixed_const(32);
bandwidth.full = dfixed_mul(a, disp_clk);
bandwidth.full = dfixed_mul(bandwidth, disp_clk_request_efficiency);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_available_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
u32 dram_bandwidth = evergreen_dram_bandwidth(wm);
u32 data_return_bandwidth = evergreen_data_return_bandwidth(wm);
u32 dmif_req_bandwidth = evergreen_dmif_request_bandwidth(wm);
return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}
static u32 evergreen_average_bandwidth(struct evergreen_wm_params *wm)
{
/* Calculate the display mode Average Bandwidth
* DisplayMode should contain the source and destination dimensions,
* timing, etc.
*/
fixed20_12 bpp;
fixed20_12 line_time;
fixed20_12 src_width;
fixed20_12 bandwidth;
fixed20_12 a;
a.full = dfixed_const(1000);
line_time.full = dfixed_const(wm->active_time + wm->blank_time);
line_time.full = dfixed_div(line_time, a);
bpp.full = dfixed_const(wm->bytes_per_pixel);
src_width.full = dfixed_const(wm->src_width);
bandwidth.full = dfixed_mul(src_width, bpp);
bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
bandwidth.full = dfixed_div(bandwidth, line_time);
return dfixed_trunc(bandwidth);
}
static u32 evergreen_latency_watermark(struct evergreen_wm_params *wm)
{
/* First calcualte the latency in ns */
u32 mc_latency = 2000; /* 2000 ns. */
u32 available_bandwidth = evergreen_available_bandwidth(wm);
u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
(wm->num_heads * cursor_line_pair_return_time);
u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
fixed20_12 a, b, c;
if (wm->num_heads == 0)
return 0;
a.full = dfixed_const(2);
b.full = dfixed_const(1);
if ((wm->vsc.full > a.full) ||
((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
(wm->vtaps >= 5) ||
((wm->vsc.full >= a.full) && wm->interlaced))
max_src_lines_per_dst_line = 4;
else
max_src_lines_per_dst_line = 2;
a.full = dfixed_const(available_bandwidth);
b.full = dfixed_const(wm->num_heads);
a.full = dfixed_div(a, b);
lb_fill_bw = min(dfixed_trunc(a), wm->disp_clk * wm->bytes_per_pixel / 1000);
a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
b.full = dfixed_const(1000);
c.full = dfixed_const(lb_fill_bw);
b.full = dfixed_div(c, b);
a.full = dfixed_div(a, b);
line_fill_time = dfixed_trunc(a);
if (line_fill_time < wm->active_time)
return latency;
else
return latency + (line_fill_time - wm->active_time);
}
static bool evergreen_average_bandwidth_vs_dram_bandwidth_for_display(struct evergreen_wm_params *wm)
{
if (evergreen_average_bandwidth(wm) <=
(evergreen_dram_bandwidth_for_display(wm) / wm->num_heads))
return true;
else
return false;
};
static bool evergreen_average_bandwidth_vs_available_bandwidth(struct evergreen_wm_params *wm)
{
if (evergreen_average_bandwidth(wm) <=
(evergreen_available_bandwidth(wm) / wm->num_heads))
return true;
else
return false;
};
static bool evergreen_check_latency_hiding(struct evergreen_wm_params *wm)
{
u32 lb_partitions = wm->lb_size / wm->src_width;
u32 line_time = wm->active_time + wm->blank_time;
u32 latency_tolerant_lines;
u32 latency_hiding;
fixed20_12 a;
a.full = dfixed_const(1);
if (wm->vsc.full > a.full)
latency_tolerant_lines = 1;
else {
if (lb_partitions <= (wm->vtaps + 1))
latency_tolerant_lines = 1;
else
latency_tolerant_lines = 2;
}
latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);
if (evergreen_latency_watermark(wm) <= latency_hiding)
return true;
else
return false;
}
static void evergreen_program_watermarks(struct radeon_device *rdev,
struct radeon_crtc *radeon_crtc,
u32 lb_size, u32 num_heads)
{
struct drm_display_mode *mode = &radeon_crtc->base.mode;
struct evergreen_wm_params wm_low, wm_high;
u32 dram_channels;
u32 active_time;
u32 line_time = 0;
u32 latency_watermark_a = 0, latency_watermark_b = 0;
u32 priority_a_mark = 0, priority_b_mark = 0;
u32 priority_a_cnt = PRIORITY_OFF;
u32 priority_b_cnt = PRIORITY_OFF;
u32 pipe_offset = radeon_crtc->crtc_id * 16;
u32 tmp, arb_control3;
fixed20_12 a, b, c;
if (radeon_crtc->base.enabled && num_heads && mode) {
active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000,
(u32)mode->clock);
line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000,
(u32)mode->clock);
line_time = min(line_time, (u32)65535);
priority_a_cnt = 0;
priority_b_cnt = 0;
dram_channels = evergreen_get_number_of_dram_channels(rdev);
/* watermark for high clocks */
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
wm_high.yclk =
radeon_dpm_get_mclk(rdev, false) * 10;
wm_high.sclk =
radeon_dpm_get_sclk(rdev, false) * 10;
} else {
wm_high.yclk = rdev->pm.current_mclk * 10;
wm_high.sclk = rdev->pm.current_sclk * 10;
}
wm_high.disp_clk = mode->clock;
wm_high.src_width = mode->crtc_hdisplay;
wm_high.active_time = active_time;
wm_high.blank_time = line_time - wm_high.active_time;
wm_high.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_high.interlaced = true;
wm_high.vsc = radeon_crtc->vsc;
wm_high.vtaps = 1;
if (radeon_crtc->rmx_type != RMX_OFF)
wm_high.vtaps = 2;
wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_high.lb_size = lb_size;
wm_high.dram_channels = dram_channels;
wm_high.num_heads = num_heads;
/* watermark for low clocks */
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
wm_low.yclk =
radeon_dpm_get_mclk(rdev, true) * 10;
wm_low.sclk =
radeon_dpm_get_sclk(rdev, true) * 10;
} else {
wm_low.yclk = rdev->pm.current_mclk * 10;
wm_low.sclk = rdev->pm.current_sclk * 10;
}
wm_low.disp_clk = mode->clock;
wm_low.src_width = mode->crtc_hdisplay;
wm_low.active_time = active_time;
wm_low.blank_time = line_time - wm_low.active_time;
wm_low.interlaced = false;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
wm_low.interlaced = true;
wm_low.vsc = radeon_crtc->vsc;
wm_low.vtaps = 1;
if (radeon_crtc->rmx_type != RMX_OFF)
wm_low.vtaps = 2;
wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */
wm_low.lb_size = lb_size;
wm_low.dram_channels = dram_channels;
wm_low.num_heads = num_heads;
/* set for high clocks */
latency_watermark_a = min(evergreen_latency_watermark(&wm_high), (u32)65535);
/* set for low clocks */
latency_watermark_b = min(evergreen_latency_watermark(&wm_low), (u32)65535);
/* possibly force display priority to high */
/* should really do this at mode validation time... */
if (!evergreen_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) ||
!evergreen_average_bandwidth_vs_available_bandwidth(&wm_high) ||
!evergreen_check_latency_hiding(&wm_high) ||
(rdev->disp_priority == 2)) {
DRM_DEBUG_KMS("force priority a to high\n");
priority_a_cnt |= PRIORITY_ALWAYS_ON;
}
if (!evergreen_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) ||
!evergreen_average_bandwidth_vs_available_bandwidth(&wm_low) ||
!evergreen_check_latency_hiding(&wm_low) ||
(rdev->disp_priority == 2)) {
DRM_DEBUG_KMS("force priority b to high\n");
priority_b_cnt |= PRIORITY_ALWAYS_ON;
}
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_a);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_a_mark = dfixed_trunc(c);
priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK;
a.full = dfixed_const(1000);
b.full = dfixed_const(mode->clock);
b.full = dfixed_div(b, a);
c.full = dfixed_const(latency_watermark_b);
c.full = dfixed_mul(c, b);
c.full = dfixed_mul(c, radeon_crtc->hsc);
c.full = dfixed_div(c, a);
a.full = dfixed_const(16);
c.full = dfixed_div(c, a);
priority_b_mark = dfixed_trunc(c);
priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK;
/* Save number of lines the linebuffer leads before the scanout */
radeon_crtc->lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay);
}
/* select wm A */
arb_control3 = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset);
tmp = arb_control3;
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(1);
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp);
WREG32(PIPE0_LATENCY_CONTROL + pipe_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_a) |
LATENCY_HIGH_WATERMARK(line_time)));
/* select wm B */
tmp = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset);
tmp &= ~LATENCY_WATERMARK_MASK(3);
tmp |= LATENCY_WATERMARK_MASK(2);
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp);
WREG32(PIPE0_LATENCY_CONTROL + pipe_offset,
(LATENCY_LOW_WATERMARK(latency_watermark_b) |
LATENCY_HIGH_WATERMARK(line_time)));
/* restore original selection */
WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, arb_control3);
/* write the priority marks */
WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt);
WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt);
/* save values for DPM */
radeon_crtc->line_time = line_time;
radeon_crtc->wm_high = latency_watermark_a;
radeon_crtc->wm_low = latency_watermark_b;
}
/**
* evergreen_bandwidth_update - update display watermarks callback.
*
* @rdev: radeon_device pointer
*
* Update the display watermarks based on the requested mode(s)
* (evergreen+).
*/
void evergreen_bandwidth_update(struct radeon_device *rdev)
{
struct drm_display_mode *mode0 = NULL;
struct drm_display_mode *mode1 = NULL;
u32 num_heads = 0, lb_size;
int i;
if (!rdev->mode_info.mode_config_initialized)
return;
radeon_update_display_priority(rdev);
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->mode_info.crtcs[i]->base.enabled)
num_heads++;
}
for (i = 0; i < rdev->num_crtc; i += 2) {
mode0 = &rdev->mode_info.crtcs[i]->base.mode;
mode1 = &rdev->mode_info.crtcs[i+1]->base.mode;
lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1);
evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads);
lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0);
evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads);
}
}
/**
* evergreen_mc_wait_for_idle - wait for MC idle callback.
*
* @rdev: radeon_device pointer
*
* Wait for the MC (memory controller) to be idle.
* (evergreen+).
* Returns 0 if the MC is idle, -1 if not.
*/
int evergreen_mc_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(SRBM_STATUS) & 0x1F00;
if (!tmp)
return 0;
udelay(1);
}
return -1;
}
/*
* GART
*/
void evergreen_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1);
WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1));
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE);
tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT;
if (tmp == 2) {
pr_warn("[drm] r600 flush TLB failed\n");
return;
}
if (tmp) {
return;
}
udelay(1);
}
}
static int evergreen_pcie_gart_enable(struct radeon_device *rdev)
{
u32 tmp;
int r;
if (rdev->gart.robj == NULL) {
dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
return -EINVAL;
}
r = radeon_gart_table_vram_pin(rdev);
if (r)
return r;
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
if (rdev->flags & RADEON_IS_IGP) {
WREG32(FUS_MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(FUS_MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(FUS_MC_VM_MD_L1_TLB2_CNTL, tmp);
} else {
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
if ((rdev->family == CHIP_JUNIPER) ||
(rdev->family == CHIP_CYPRESS) ||
(rdev->family == CHIP_HEMLOCK) ||
(rdev->family == CHIP_BARTS))
WREG32(MC_VM_MD_L1_TLB3_CNTL, tmp);
}
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
RANGE_PROTECTION_FAULT_ENABLE_DEFAULT);
WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
(u32)(rdev->dummy_page.addr >> 12));
WREG32(VM_CONTEXT1_CNTL, 0);
evergreen_pcie_gart_tlb_flush(rdev);
DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(rdev->mc.gtt_size >> 20),
(unsigned long long)rdev->gart.table_addr);
rdev->gart.ready = true;
return 0;
}
static void evergreen_pcie_gart_disable(struct radeon_device *rdev)
{
u32 tmp;
/* Disable all tables */
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
radeon_gart_table_vram_unpin(rdev);
}
static void evergreen_pcie_gart_fini(struct radeon_device *rdev)
{
evergreen_pcie_gart_disable(rdev);
radeon_gart_table_vram_free(rdev);
radeon_gart_fini(rdev);
}
static void evergreen_agp_enable(struct radeon_device *rdev)
{
u32 tmp;
/* Setup L2 cache */
WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING |
ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
EFFECTIVE_L2_QUEUE_SIZE(7));
WREG32(VM_L2_CNTL2, 0);
WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2));
/* Setup TLB control */
tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING |
SYSTEM_ACCESS_MODE_NOT_IN_SYS |
SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU |
EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5);
WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp);
WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp);
WREG32(VM_CONTEXT0_CNTL, 0);
WREG32(VM_CONTEXT1_CNTL, 0);
}
static const unsigned ni_dig_offsets[] =
{
NI_DIG0_REGISTER_OFFSET,
NI_DIG1_REGISTER_OFFSET,
NI_DIG2_REGISTER_OFFSET,
NI_DIG3_REGISTER_OFFSET,
NI_DIG4_REGISTER_OFFSET,
NI_DIG5_REGISTER_OFFSET
};
static const unsigned ni_tx_offsets[] =
{
NI_DCIO_UNIPHY0_UNIPHY_TX_CONTROL1,
NI_DCIO_UNIPHY1_UNIPHY_TX_CONTROL1,
NI_DCIO_UNIPHY2_UNIPHY_TX_CONTROL1,
NI_DCIO_UNIPHY3_UNIPHY_TX_CONTROL1,
NI_DCIO_UNIPHY4_UNIPHY_TX_CONTROL1,
NI_DCIO_UNIPHY5_UNIPHY_TX_CONTROL1
};
static const unsigned evergreen_dp_offsets[] =
{
EVERGREEN_DP0_REGISTER_OFFSET,
EVERGREEN_DP1_REGISTER_OFFSET,
EVERGREEN_DP2_REGISTER_OFFSET,
EVERGREEN_DP3_REGISTER_OFFSET,
EVERGREEN_DP4_REGISTER_OFFSET,
EVERGREEN_DP5_REGISTER_OFFSET
};
static const unsigned evergreen_disp_int_status[] =
{
DISP_INTERRUPT_STATUS,
DISP_INTERRUPT_STATUS_CONTINUE,
DISP_INTERRUPT_STATUS_CONTINUE2,
DISP_INTERRUPT_STATUS_CONTINUE3,
DISP_INTERRUPT_STATUS_CONTINUE4,
DISP_INTERRUPT_STATUS_CONTINUE5
};
/*
* Assumption is that EVERGREEN_CRTC_MASTER_EN enable for requested crtc
* We go from crtc to connector and it is not relible since it
* should be an opposite direction .If crtc is enable then
* find the dig_fe which selects this crtc and insure that it enable.
* if such dig_fe is found then find dig_be which selects found dig_be and
* insure that it enable and in DP_SST mode.
* if UNIPHY_PLL_CONTROL1.enable then we should disconnect timing
* from dp symbols clocks .
*/
static bool evergreen_is_dp_sst_stream_enabled(struct radeon_device *rdev,
unsigned crtc_id, unsigned *ret_dig_fe)
{
unsigned i;
unsigned dig_fe;
unsigned dig_be;
unsigned dig_en_be;
unsigned uniphy_pll;
unsigned digs_fe_selected;
unsigned dig_be_mode;
unsigned dig_fe_mask;
bool is_enabled = false;
bool found_crtc = false;
/* loop through all running dig_fe to find selected crtc */
for (i = 0; i < ARRAY_SIZE(ni_dig_offsets); i++) {
dig_fe = RREG32(NI_DIG_FE_CNTL + ni_dig_offsets[i]);
if (dig_fe & NI_DIG_FE_CNTL_SYMCLK_FE_ON &&
crtc_id == NI_DIG_FE_CNTL_SOURCE_SELECT(dig_fe)) {
/* found running pipe */
found_crtc = true;
dig_fe_mask = 1 << i;
dig_fe = i;
break;
}
}
if (found_crtc) {
/* loop through all running dig_be to find selected dig_fe */
for (i = 0; i < ARRAY_SIZE(ni_dig_offsets); i++) {
dig_be = RREG32(NI_DIG_BE_CNTL + ni_dig_offsets[i]);
/* if dig_fe_selected by dig_be? */
digs_fe_selected = NI_DIG_BE_CNTL_FE_SOURCE_SELECT(dig_be);
dig_be_mode = NI_DIG_FE_CNTL_MODE(dig_be);
if (dig_fe_mask & digs_fe_selected &&
/* if dig_be in sst mode? */
dig_be_mode == NI_DIG_BE_DPSST) {
dig_en_be = RREG32(NI_DIG_BE_EN_CNTL +
ni_dig_offsets[i]);
uniphy_pll = RREG32(NI_DCIO_UNIPHY0_PLL_CONTROL1 +
ni_tx_offsets[i]);
/* dig_be enable and tx is running */
if (dig_en_be & NI_DIG_BE_EN_CNTL_ENABLE &&
dig_en_be & NI_DIG_BE_EN_CNTL_SYMBCLK_ON &&
uniphy_pll & NI_DCIO_UNIPHY0_PLL_CONTROL1_ENABLE) {
is_enabled = true;
*ret_dig_fe = dig_fe;
break;
}
}
}
}
return is_enabled;
}
/*
* Blank dig when in dp sst mode
* Dig ignores crtc timing
*/
static void evergreen_blank_dp_output(struct radeon_device *rdev,
unsigned dig_fe)
{
unsigned stream_ctrl;
unsigned fifo_ctrl;
unsigned counter = 0;
if (dig_fe >= ARRAY_SIZE(evergreen_dp_offsets)) {
DRM_ERROR("invalid dig_fe %d\n", dig_fe);
return;
}
stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL +
evergreen_dp_offsets[dig_fe]);
if (!(stream_ctrl & EVERGREEN_DP_VID_STREAM_CNTL_ENABLE)) {
DRM_ERROR("dig %d , should be enable\n", dig_fe);
return;
}
stream_ctrl &=~EVERGREEN_DP_VID_STREAM_CNTL_ENABLE;
WREG32(EVERGREEN_DP_VID_STREAM_CNTL +
evergreen_dp_offsets[dig_fe], stream_ctrl);
stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL +
evergreen_dp_offsets[dig_fe]);
while (counter < 32 && stream_ctrl & EVERGREEN_DP_VID_STREAM_STATUS) {
msleep(1);
counter++;
stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL +
evergreen_dp_offsets[dig_fe]);
}
if (counter >= 32 )
DRM_ERROR("counter exceeds %d\n", counter);
fifo_ctrl = RREG32(EVERGREEN_DP_STEER_FIFO + evergreen_dp_offsets[dig_fe]);
fifo_ctrl |= EVERGREEN_DP_STEER_FIFO_RESET;
WREG32(EVERGREEN_DP_STEER_FIFO + evergreen_dp_offsets[dig_fe], fifo_ctrl);
}
void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save)
{
u32 crtc_enabled, tmp, frame_count, blackout;
int i, j;
unsigned dig_fe;
if (!ASIC_IS_NODCE(rdev)) {
save->vga_render_control = RREG32(VGA_RENDER_CONTROL);
save->vga_hdp_control = RREG32(VGA_HDP_CONTROL);
/* disable VGA render */
WREG32(VGA_RENDER_CONTROL, 0);
}
/* blank the display controllers */
for (i = 0; i < rdev->num_crtc; i++) {
crtc_enabled = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]) & EVERGREEN_CRTC_MASTER_EN;
if (crtc_enabled) {
save->crtc_enabled[i] = true;
if (ASIC_IS_DCE6(rdev)) {
tmp = RREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i]);
if (!(tmp & EVERGREEN_CRTC_BLANK_DATA_EN)) {
radeon_wait_for_vblank(rdev, i);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp |= EVERGREEN_CRTC_BLANK_DATA_EN;
WREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
} else {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]);
if (!(tmp & EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE)) {
radeon_wait_for_vblank(rdev, i);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp |= EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
}
/* wait for the next frame */
frame_count = radeon_get_vblank_counter(rdev, i);
for (j = 0; j < rdev->usec_timeout; j++) {
if (radeon_get_vblank_counter(rdev, i) != frame_count)
break;
udelay(1);
}
/*we should disable dig if it drives dp sst*/
/*but we are in radeon_device_init and the topology is unknown*/
/*and it is available after radeon_modeset_init*/
/*the following method radeon_atom_encoder_dpms_dig*/
/*does the job if we initialize it properly*/
/*for now we do it this manually*/
/**/
if (ASIC_IS_DCE5(rdev) &&
evergreen_is_dp_sst_stream_enabled(rdev, i ,&dig_fe))
evergreen_blank_dp_output(rdev, dig_fe);
/*we could remove 6 lines below*/
/* XXX this is a hack to avoid strange behavior with EFI on certain systems */
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]);
tmp &= ~EVERGREEN_CRTC_MASTER_EN;
WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
save->crtc_enabled[i] = false;
/* ***** */
} else {
save->crtc_enabled[i] = false;
}
}
radeon_mc_wait_for_idle(rdev);
blackout = RREG32(MC_SHARED_BLACKOUT_CNTL);
if ((blackout & BLACKOUT_MODE_MASK) != 1) {
/* Block CPU access */
WREG32(BIF_FB_EN, 0);
/* blackout the MC */
blackout &= ~BLACKOUT_MODE_MASK;
WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1);
}
/* wait for the MC to settle */
udelay(100);
/* lock double buffered regs */
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]);
if (!(tmp & EVERGREEN_GRPH_UPDATE_LOCK)) {
tmp |= EVERGREEN_GRPH_UPDATE_LOCK;
WREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i]);
if (!(tmp & 1)) {
tmp |= 1;
WREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
}
}
}
void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save)
{
u32 tmp, frame_count;
int i, j;
/* update crtc base addresses */
for (i = 0; i < rdev->num_crtc; i++) {
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i],
upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)rdev->mc.vram_start);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + crtc_offsets[i],
(u32)rdev->mc.vram_start);
}
if (!ASIC_IS_NODCE(rdev)) {
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(rdev->mc.vram_start));
WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS, (u32)rdev->mc.vram_start);
}
/* unlock regs and wait for update */
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
tmp = RREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i]);
if ((tmp & 0x7) != 0) {
tmp &= ~0x7;
WREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i], tmp);
}
tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]);
if (tmp & EVERGREEN_GRPH_UPDATE_LOCK) {
tmp &= ~EVERGREEN_GRPH_UPDATE_LOCK;
WREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i], tmp);
}
tmp = RREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i]);
if (tmp & 1) {
tmp &= ~1;
WREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp);
}
for (j = 0; j < rdev->usec_timeout; j++) {
tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]);
if ((tmp & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING) == 0)
break;
udelay(1);
}
}
}
/* unblackout the MC */
tmp = RREG32(MC_SHARED_BLACKOUT_CNTL);
tmp &= ~BLACKOUT_MODE_MASK;
WREG32(MC_SHARED_BLACKOUT_CNTL, tmp);
/* allow CPU access */
WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
for (i = 0; i < rdev->num_crtc; i++) {
if (save->crtc_enabled[i]) {
if (ASIC_IS_DCE6(rdev)) {
tmp = RREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i]);
tmp &= ~EVERGREEN_CRTC_BLANK_DATA_EN;
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
WREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
} else {
tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]);
tmp &= ~EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE;
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1);
WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp);
WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0);
}
/* wait for the next frame */
frame_count = radeon_get_vblank_counter(rdev, i);
for (j = 0; j < rdev->usec_timeout; j++) {
if (radeon_get_vblank_counter(rdev, i) != frame_count)
break;
udelay(1);
}
}
}
if (!ASIC_IS_NODCE(rdev)) {
/* Unlock vga access */
WREG32(VGA_HDP_CONTROL, save->vga_hdp_control);
mdelay(1);
WREG32(VGA_RENDER_CONTROL, save->vga_render_control);
}
}
void evergreen_mc_program(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp;
int i, j;
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
/* Lockout access through VGA aperture*/
WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
/* Update configuration */
if (rdev->flags & RADEON_IS_AGP) {
if (rdev->mc.vram_start < rdev->mc.gtt_start) {
/* VRAM before AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.gtt_end >> 12);
} else {
/* VRAM after AGP */
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.gtt_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
}
} else {
WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
rdev->mc.vram_start >> 12);
WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
rdev->mc.vram_end >> 12);
}
WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12);
/* llano/ontario only */
if ((rdev->family == CHIP_PALM) ||
(rdev->family == CHIP_SUMO) ||
(rdev->family == CHIP_SUMO2)) {
tmp = RREG32(MC_FUS_VM_FB_OFFSET) & 0x000FFFFF;
tmp |= ((rdev->mc.vram_end >> 20) & 0xF) << 24;
tmp |= ((rdev->mc.vram_start >> 20) & 0xF) << 20;
WREG32(MC_FUS_VM_FB_OFFSET, tmp);
}
tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
WREG32(MC_VM_FB_LOCATION, tmp);
WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
if (rdev->flags & RADEON_IS_AGP) {
WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 16);
WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 16);
WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22);
} else {
WREG32(MC_VM_AGP_BASE, 0);
WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
}
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
evergreen_mc_resume(rdev, &save);
/* we need to own VRAM, so turn off the VGA renderer here
* to stop it overwriting our objects */
rv515_vga_render_disable(rdev);
}
/*
* CP.
*/
void evergreen_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
struct radeon_ring *ring = &rdev->ring[ib->ring];
u32 next_rptr;
/* set to DX10/11 mode */
radeon_ring_write(ring, PACKET3(PACKET3_MODE_CONTROL, 0));
radeon_ring_write(ring, 1);
if (ring->rptr_save_reg) {
next_rptr = ring->wptr + 3 + 4;
radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
radeon_ring_write(ring, ((ring->rptr_save_reg -
PACKET3_SET_CONFIG_REG_START) >> 2));
radeon_ring_write(ring, next_rptr);
} else if (rdev->wb.enabled) {
next_rptr = ring->wptr + 5 + 4;
radeon_ring_write(ring, PACKET3(PACKET3_MEM_WRITE, 3));
radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
radeon_ring_write(ring, (upper_32_bits(ring->next_rptr_gpu_addr) & 0xff) | (1 << 18));
radeon_ring_write(ring, next_rptr);
radeon_ring_write(ring, 0);
}
radeon_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
radeon_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFF);
radeon_ring_write(ring, ib->length_dw);
}
static int evergreen_cp_load_microcode(struct radeon_device *rdev)
{
const __be32 *fw_data;
int i;
if (!rdev->me_fw || !rdev->pfp_fw)
return -EINVAL;
r700_cp_stop(rdev);
WREG32(CP_RB_CNTL,
#ifdef __BIG_ENDIAN
BUF_SWAP_32BIT |
#endif
RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3));
fw_data = (const __be32 *)rdev->pfp_fw->data;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < EVERGREEN_PFP_UCODE_SIZE; i++)
WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
fw_data = (const __be32 *)rdev->me_fw->data;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < EVERGREEN_PM4_UCODE_SIZE; i++)
WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_ME_RAM_RADDR, 0);
return 0;
}
static int evergreen_cp_start(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
int r, i;
uint32_t cp_me;
r = radeon_ring_lock(rdev, ring, 7);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5));
radeon_ring_write(ring, 0x1);
radeon_ring_write(ring, 0x0);
radeon_ring_write(ring, rdev->config.evergreen.max_hw_contexts - 1);
radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, 0);
radeon_ring_unlock_commit(rdev, ring, false);
cp_me = 0xff;
WREG32(CP_ME_CNTL, cp_me);
r = radeon_ring_lock(rdev, ring, evergreen_default_size + 19);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
return r;
}
/* setup clear context state */
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
for (i = 0; i < evergreen_default_size; i++)
radeon_ring_write(ring, evergreen_default_state[i]);
radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
/* set clear context state */
radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
radeon_ring_write(ring, 0);
/* SQ_VTX_BASE_VTX_LOC */
radeon_ring_write(ring, 0xc0026f00);
radeon_ring_write(ring, 0x00000000);
radeon_ring_write(ring, 0x00000000);
radeon_ring_write(ring, 0x00000000);
/* Clear consts */
radeon_ring_write(ring, 0xc0036f00);
radeon_ring_write(ring, 0x00000bc4);
radeon_ring_write(ring, 0xffffffff);
radeon_ring_write(ring, 0xffffffff);
radeon_ring_write(ring, 0xffffffff);
radeon_ring_write(ring, 0xc0026900);
radeon_ring_write(ring, 0x00000316);
radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
radeon_ring_write(ring, 0x00000010); /* */
radeon_ring_unlock_commit(rdev, ring, false);
return 0;
}
static int evergreen_cp_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
u32 tmp;
u32 rb_bufsz;
int r;
/* Reset cp; if cp is reset, then PA, SH, VGT also need to be reset */
WREG32(GRBM_SOFT_RESET, (SOFT_RESET_CP |
SOFT_RESET_PA |
SOFT_RESET_SH |
SOFT_RESET_VGT |
SOFT_RESET_SPI |
SOFT_RESET_SX));
RREG32(GRBM_SOFT_RESET);
mdelay(15);
WREG32(GRBM_SOFT_RESET, 0);
RREG32(GRBM_SOFT_RESET);
/* Set ring buffer size */
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_SEM_WAIT_TIMER, 0x0);
WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);
/* Set the write pointer delay */
WREG32(CP_RB_WPTR_DELAY, 0);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA);
WREG32(CP_RB_RPTR_WR, 0);
ring->wptr = 0;
WREG32(CP_RB_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(CP_RB_RPTR_ADDR,
((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC));
WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
if (rdev->wb.enabled)
WREG32(SCRATCH_UMSK, 0xff);
else {
tmp |= RB_NO_UPDATE;
WREG32(SCRATCH_UMSK, 0);
}
mdelay(1);
WREG32(CP_RB_CNTL, tmp);
WREG32(CP_RB_BASE, ring->gpu_addr >> 8);
WREG32(CP_DEBUG, (1 << 27) | (1 << 28));
evergreen_cp_start(rdev);
ring->ready = true;
r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, ring);
if (r) {
ring->ready = false;
return r;
}
return 0;
}
/*
* Core functions
*/
static void evergreen_gpu_init(struct radeon_device *rdev)
{
u32 gb_addr_config;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 sx_debug_1;
u32 smx_dc_ctl0;
u32 sq_config;
u32 sq_lds_resource_mgmt;
u32 sq_gpr_resource_mgmt_1;
u32 sq_gpr_resource_mgmt_2;
u32 sq_gpr_resource_mgmt_3;
u32 sq_thread_resource_mgmt;
u32 sq_thread_resource_mgmt_2;
u32 sq_stack_resource_mgmt_1;
u32 sq_stack_resource_mgmt_2;
u32 sq_stack_resource_mgmt_3;
u32 vgt_cache_invalidation;
u32 hdp_host_path_cntl, tmp;
u32 disabled_rb_mask;
int i, j, ps_thread_count;
switch (rdev->family) {
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
rdev->config.evergreen.num_ses = 2;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 8;
rdev->config.evergreen.max_simds = 10;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CYPRESS_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_JUNIPER:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 10;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = JUNIPER_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_REDWOOD:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 5;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = REDWOOD_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_CEDAR:
default:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 2;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CEDAR_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_PALM:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 2;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CEDAR_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_SUMO:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
if (rdev->pdev->device == 0x9648)
rdev->config.evergreen.max_simds = 3;
else if ((rdev->pdev->device == 0x9647) ||
(rdev->pdev->device == 0x964a))
rdev->config.evergreen.max_simds = 4;
else
rdev->config.evergreen.max_simds = 5;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = SUMO_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_SUMO2:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = SUMO2_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_BARTS:
rdev->config.evergreen.num_ses = 2;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 8;
rdev->config.evergreen.max_simds = 7;
rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 512;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = BARTS_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_TURKS:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 4;
rdev->config.evergreen.max_tile_pipes = 4;
rdev->config.evergreen.max_simds = 6;
rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 248;
rdev->config.evergreen.max_gs_threads = 32;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 256;
rdev->config.evergreen.sx_max_export_pos_size = 64;
rdev->config.evergreen.sx_max_export_smx_size = 192;
rdev->config.evergreen.max_hw_contexts = 8;
rdev->config.evergreen.sq_num_cf_insts = 2;
rdev->config.evergreen.sc_prim_fifo_size = 0x100;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TURKS_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_CAICOS:
rdev->config.evergreen.num_ses = 1;
rdev->config.evergreen.max_pipes = 2;
rdev->config.evergreen.max_tile_pipes = 2;
rdev->config.evergreen.max_simds = 2;
rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses;
rdev->config.evergreen.max_gprs = 256;
rdev->config.evergreen.max_threads = 192;
rdev->config.evergreen.max_gs_threads = 16;
rdev->config.evergreen.max_stack_entries = 256;
rdev->config.evergreen.sx_num_of_sets = 4;
rdev->config.evergreen.sx_max_export_size = 128;
rdev->config.evergreen.sx_max_export_pos_size = 32;
rdev->config.evergreen.sx_max_export_smx_size = 96;
rdev->config.evergreen.max_hw_contexts = 4;
rdev->config.evergreen.sq_num_cf_insts = 1;
rdev->config.evergreen.sc_prim_fifo_size = 0x40;
rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30;
rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = CAICOS_GB_ADDR_CONFIG_GOLDEN;
break;
}
/* Initialize HDP */
for (i = 0, j = 0; i < 32; i++, j += 0x18) {
WREG32((0x2c14 + j), 0x00000000);
WREG32((0x2c18 + j), 0x00000000);
WREG32((0x2c1c + j), 0x00000000);
WREG32((0x2c20 + j), 0x00000000);
WREG32((0x2c24 + j), 0x00000000);
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
WREG32(SRBM_INT_CNTL, 0x1);
WREG32(SRBM_INT_ACK, 0x1);
evergreen_fix_pci_max_read_req_size(rdev);
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
if ((rdev->family == CHIP_PALM) ||
(rdev->family == CHIP_SUMO) ||
(rdev->family == CHIP_SUMO2))
mc_arb_ramcfg = RREG32(FUS_MC_ARB_RAMCFG);
else
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
/* setup tiling info dword. gb_addr_config is not adequate since it does
* not have bank info, so create a custom tiling dword.
* bits 3:0 num_pipes
* bits 7:4 num_banks
* bits 11:8 group_size
* bits 15:12 row_size
*/
rdev->config.evergreen.tile_config = 0;
switch (rdev->config.evergreen.max_tile_pipes) {
case 1:
default:
rdev->config.evergreen.tile_config |= (0 << 0);
break;
case 2:
rdev->config.evergreen.tile_config |= (1 << 0);
break;
case 4:
rdev->config.evergreen.tile_config |= (2 << 0);
break;
case 8:
rdev->config.evergreen.tile_config |= (3 << 0);
break;
}
/* num banks is 8 on all fusion asics. 0 = 4, 1 = 8, 2 = 16 */
if (rdev->flags & RADEON_IS_IGP)
rdev->config.evergreen.tile_config |= 1 << 4;
else {
switch ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) {
case 0: /* four banks */
rdev->config.evergreen.tile_config |= 0 << 4;
break;
case 1: /* eight banks */
rdev->config.evergreen.tile_config |= 1 << 4;
break;
case 2: /* sixteen banks */
default:
rdev->config.evergreen.tile_config |= 2 << 4;
break;
}
}
rdev->config.evergreen.tile_config |= 0 << 8;
rdev->config.evergreen.tile_config |=
((gb_addr_config & 0x30000000) >> 28) << 12;
if ((rdev->family >= CHIP_CEDAR) && (rdev->family <= CHIP_HEMLOCK)) {
u32 efuse_straps_4;
u32 efuse_straps_3;
efuse_straps_4 = RREG32_RCU(0x204);
efuse_straps_3 = RREG32_RCU(0x203);
tmp = (((efuse_straps_4 & 0xf) << 4) |
((efuse_straps_3 & 0xf0000000) >> 28));
} else {
tmp = 0;
for (i = (rdev->config.evergreen.num_ses - 1); i >= 0; i--) {
u32 rb_disable_bitmap;
WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i));
WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i));
rb_disable_bitmap = (RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000) >> 16;
tmp <<= 4;
tmp |= rb_disable_bitmap;
}
}
/* enabled rb are just the one not disabled :) */
disabled_rb_mask = tmp;
tmp = 0;
for (i = 0; i < rdev->config.evergreen.max_backends; i++)
tmp |= (1 << i);
/* if all the backends are disabled, fix it up here */
if ((disabled_rb_mask & tmp) == tmp) {
for (i = 0; i < rdev->config.evergreen.max_backends; i++)
disabled_rb_mask &= ~(1 << i);
}
for (i = 0; i < rdev->config.evergreen.num_ses; i++) {
u32 simd_disable_bitmap;
WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i));
WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i));
simd_disable_bitmap = (RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffff0000) >> 16;
simd_disable_bitmap |= 0xffffffff << rdev->config.evergreen.max_simds;
tmp <<= 16;
tmp |= simd_disable_bitmap;
}
rdev->config.evergreen.active_simds = hweight32(~tmp);
WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_BROADCAST_WRITES);
WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_BROADCAST_WRITES);
WREG32(GB_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CONFIG, gb_addr_config);
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
WREG32(DMA_TILING_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config);
if ((rdev->config.evergreen.max_backends == 1) &&
(rdev->flags & RADEON_IS_IGP)) {
if ((disabled_rb_mask & 3) == 1) {
/* RB0 disabled, RB1 enabled */
tmp = 0x11111111;
} else {
/* RB1 disabled, RB0 enabled */
tmp = 0x00000000;
}
} else {
tmp = gb_addr_config & NUM_PIPES_MASK;
tmp = r6xx_remap_render_backend(rdev, tmp, rdev->config.evergreen.max_backends,
EVERGREEN_MAX_BACKENDS, disabled_rb_mask);
}
rdev->config.evergreen.backend_map = tmp;
WREG32(GB_BACKEND_MAP, tmp);
WREG32(CGTS_SYS_TCC_DISABLE, 0);
WREG32(CGTS_TCC_DISABLE, 0);
WREG32(CGTS_USER_SYS_TCC_DISABLE, 0);
WREG32(CGTS_USER_TCC_DISABLE, 0);
/* set HW defaults for 3D engine */
WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) |
ROQ_IB2_START(0x2b)));
WREG32(CP_MEQ_THRESHOLDS, STQ_SPLIT(0x30));
WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO |
SYNC_GRADIENT |
SYNC_WALKER |
SYNC_ALIGNER));
sx_debug_1 = RREG32(SX_DEBUG_1);
sx_debug_1 |= ENABLE_NEW_SMX_ADDRESS;
WREG32(SX_DEBUG_1, sx_debug_1);
smx_dc_ctl0 = RREG32(SMX_DC_CTL0);
smx_dc_ctl0 &= ~NUMBER_OF_SETS(0x1ff);
smx_dc_ctl0 |= NUMBER_OF_SETS(rdev->config.evergreen.sx_num_of_sets);
WREG32(SMX_DC_CTL0, smx_dc_ctl0);
if (rdev->family <= CHIP_SUMO2)
WREG32(SMX_SAR_CTL0, 0x00010000);
WREG32(SX_EXPORT_BUFFER_SIZES, (COLOR_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_size / 4) - 1) |
POSITION_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_pos_size / 4) - 1) |
SMX_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_smx_size / 4) - 1)));
WREG32(PA_SC_FIFO_SIZE, (SC_PRIM_FIFO_SIZE(rdev->config.evergreen.sc_prim_fifo_size) |
SC_HIZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_hiz_tile_fifo_size) |
SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_earlyz_tile_fifo_size)));
WREG32(VGT_NUM_INSTANCES, 1);
WREG32(SPI_CONFIG_CNTL, 0);
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
WREG32(CP_PERFMON_CNTL, 0);
WREG32(SQ_MS_FIFO_SIZES, (CACHE_FIFO_SIZE(16 * rdev->config.evergreen.sq_num_cf_insts) |
FETCH_FIFO_HIWATER(0x4) |
DONE_FIFO_HIWATER(0xe0) |
ALU_UPDATE_FIFO_HIWATER(0x8)));
sq_config = RREG32(SQ_CONFIG);
sq_config &= ~(PS_PRIO(3) |
VS_PRIO(3) |
GS_PRIO(3) |
ES_PRIO(3));
sq_config |= (VC_ENABLE |
EXPORT_SRC_C |
PS_PRIO(0) |
VS_PRIO(1) |
GS_PRIO(2) |
ES_PRIO(3));
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_CAICOS:
/* no vertex cache */
sq_config &= ~VC_ENABLE;
break;
default:
break;
}
sq_lds_resource_mgmt = RREG32(SQ_LDS_RESOURCE_MGMT);
sq_gpr_resource_mgmt_1 = NUM_PS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2))* 12 / 32);
sq_gpr_resource_mgmt_1 |= NUM_VS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 6 / 32);
sq_gpr_resource_mgmt_1 |= NUM_CLAUSE_TEMP_GPRS(4);
sq_gpr_resource_mgmt_2 = NUM_GS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32);
sq_gpr_resource_mgmt_2 |= NUM_ES_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32);
sq_gpr_resource_mgmt_3 = NUM_HS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32);
sq_gpr_resource_mgmt_3 |= NUM_LS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32);
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
ps_thread_count = 96;
break;
default:
ps_thread_count = 128;
break;
}
sq_thread_resource_mgmt = NUM_PS_THREADS(ps_thread_count);
sq_thread_resource_mgmt |= NUM_VS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt |= NUM_GS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt |= NUM_ES_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt_2 = NUM_HS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_thread_resource_mgmt_2 |= NUM_LS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8);
sq_stack_resource_mgmt_1 = NUM_PS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_1 |= NUM_VS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_2 = NUM_GS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_2 |= NUM_ES_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_3 = NUM_HS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
sq_stack_resource_mgmt_3 |= NUM_LS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6);
WREG32(SQ_CONFIG, sq_config);
WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1);
WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2);
WREG32(SQ_GPR_RESOURCE_MGMT_3, sq_gpr_resource_mgmt_3);
WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt);
WREG32(SQ_THREAD_RESOURCE_MGMT_2, sq_thread_resource_mgmt_2);
WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1);
WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2);
WREG32(SQ_STACK_RESOURCE_MGMT_3, sq_stack_resource_mgmt_3);
WREG32(SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, 0);
WREG32(SQ_LDS_RESOURCE_MGMT, sq_lds_resource_mgmt);
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
FORCE_EOV_MAX_REZ_CNT(255)));
switch (rdev->family) {
case CHIP_CEDAR:
case CHIP_PALM:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_CAICOS:
vgt_cache_invalidation = CACHE_INVALIDATION(TC_ONLY);
break;
default:
vgt_cache_invalidation = CACHE_INVALIDATION(VC_AND_TC);
break;
}
vgt_cache_invalidation |= AUTO_INVLD_EN(ES_AND_GS_AUTO);
WREG32(VGT_CACHE_INVALIDATION, vgt_cache_invalidation);
WREG32(VGT_GS_VERTEX_REUSE, 16);
WREG32(PA_SU_LINE_STIPPLE_VALUE, 0);
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
WREG32(VGT_OUT_DEALLOC_CNTL, 16);
WREG32(CB_PERF_CTR0_SEL_0, 0);
WREG32(CB_PERF_CTR0_SEL_1, 0);
WREG32(CB_PERF_CTR1_SEL_0, 0);
WREG32(CB_PERF_CTR1_SEL_1, 0);
WREG32(CB_PERF_CTR2_SEL_0, 0);
WREG32(CB_PERF_CTR2_SEL_1, 0);
WREG32(CB_PERF_CTR3_SEL_0, 0);
WREG32(CB_PERF_CTR3_SEL_1, 0);
/* clear render buffer base addresses */
WREG32(CB_COLOR0_BASE, 0);
WREG32(CB_COLOR1_BASE, 0);
WREG32(CB_COLOR2_BASE, 0);
WREG32(CB_COLOR3_BASE, 0);
WREG32(CB_COLOR4_BASE, 0);
WREG32(CB_COLOR5_BASE, 0);
WREG32(CB_COLOR6_BASE, 0);
WREG32(CB_COLOR7_BASE, 0);
WREG32(CB_COLOR8_BASE, 0);
WREG32(CB_COLOR9_BASE, 0);
WREG32(CB_COLOR10_BASE, 0);
WREG32(CB_COLOR11_BASE, 0);
/* set the shader const cache sizes to 0 */
for (i = SQ_ALU_CONST_BUFFER_SIZE_PS_0; i < 0x28200; i += 4)
WREG32(i, 0);
for (i = SQ_ALU_CONST_BUFFER_SIZE_HS_0; i < 0x29000; i += 4)
WREG32(i, 0);
tmp = RREG32(HDP_MISC_CNTL);
tmp |= HDP_FLUSH_INVALIDATE_CACHE;
WREG32(HDP_MISC_CNTL, tmp);
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
udelay(50);
}
int evergreen_mc_init(struct radeon_device *rdev)
{
u32 tmp;
int chansize, numchan;
/* Get VRAM informations */
rdev->mc.vram_is_ddr = true;
if ((rdev->family == CHIP_PALM) ||
(rdev->family == CHIP_SUMO) ||
(rdev->family == CHIP_SUMO2))
tmp = RREG32(FUS_MC_ARB_RAMCFG);
else
tmp = RREG32(MC_ARB_RAMCFG);
if (tmp & CHANSIZE_OVERRIDE) {
chansize = 16;
} else if (tmp & CHANSIZE_MASK) {
chansize = 64;
} else {
chansize = 32;
}
tmp = RREG32(MC_SHARED_CHMAP);
switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
case 0:
default:
numchan = 1;
break;
case 1:
numchan = 2;
break;
case 2:
numchan = 4;
break;
case 3:
numchan = 8;
break;
}
rdev->mc.vram_width = numchan * chansize;
/* Could aper size report 0 ? */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
/* Setup GPU memory space */
if ((rdev->family == CHIP_PALM) ||
(rdev->family == CHIP_SUMO) ||
(rdev->family == CHIP_SUMO2)) {
/* size in bytes on fusion */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE);
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE);
} else {
/* size in MB on evergreen/cayman/tn */
rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024ULL * 1024ULL;
rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024ULL * 1024ULL;
}
rdev->mc.visible_vram_size = rdev->mc.aper_size;
r700_vram_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
return 0;
}
void evergreen_print_gpu_status_regs(struct radeon_device *rdev)
{
dev_info(rdev->dev, " GRBM_STATUS = 0x%08X\n",
RREG32(GRBM_STATUS));
dev_info(rdev->dev, " GRBM_STATUS_SE0 = 0x%08X\n",
RREG32(GRBM_STATUS_SE0));
dev_info(rdev->dev, " GRBM_STATUS_SE1 = 0x%08X\n",
RREG32(GRBM_STATUS_SE1));
dev_info(rdev->dev, " SRBM_STATUS = 0x%08X\n",
RREG32(SRBM_STATUS));
dev_info(rdev->dev, " SRBM_STATUS2 = 0x%08X\n",
RREG32(SRBM_STATUS2));
dev_info(rdev->dev, " R_008674_CP_STALLED_STAT1 = 0x%08X\n",
RREG32(CP_STALLED_STAT1));
dev_info(rdev->dev, " R_008678_CP_STALLED_STAT2 = 0x%08X\n",
RREG32(CP_STALLED_STAT2));
dev_info(rdev->dev, " R_00867C_CP_BUSY_STAT = 0x%08X\n",
RREG32(CP_BUSY_STAT));
dev_info(rdev->dev, " R_008680_CP_STAT = 0x%08X\n",
RREG32(CP_STAT));
dev_info(rdev->dev, " R_00D034_DMA_STATUS_REG = 0x%08X\n",
RREG32(DMA_STATUS_REG));
if (rdev->family >= CHIP_CAYMAN) {
dev_info(rdev->dev, " R_00D834_DMA_STATUS_REG = 0x%08X\n",
RREG32(DMA_STATUS_REG + 0x800));
}
}
bool evergreen_is_display_hung(struct radeon_device *rdev)
{
u32 crtc_hung = 0;
u32 crtc_status[6];
u32 i, j, tmp;
for (i = 0; i < rdev->num_crtc; i++) {
if (RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]) & EVERGREEN_CRTC_MASTER_EN) {
crtc_status[i] = RREG32(EVERGREEN_CRTC_STATUS_HV_COUNT + crtc_offsets[i]);
crtc_hung |= (1 << i);
}
}
for (j = 0; j < 10; j++) {
for (i = 0; i < rdev->num_crtc; i++) {
if (crtc_hung & (1 << i)) {
tmp = RREG32(EVERGREEN_CRTC_STATUS_HV_COUNT + crtc_offsets[i]);
if (tmp != crtc_status[i])
crtc_hung &= ~(1 << i);
}
}
if (crtc_hung == 0)
return false;
udelay(100);
}
return true;
}
u32 evergreen_gpu_check_soft_reset(struct radeon_device *rdev)
{
u32 reset_mask = 0;
u32 tmp;
/* GRBM_STATUS */
tmp = RREG32(GRBM_STATUS);
if (tmp & (PA_BUSY | SC_BUSY |
SH_BUSY | SX_BUSY |
TA_BUSY | VGT_BUSY |
DB_BUSY | CB_BUSY |
SPI_BUSY | VGT_BUSY_NO_DMA))
reset_mask |= RADEON_RESET_GFX;
if (tmp & (CF_RQ_PENDING | PF_RQ_PENDING |
CP_BUSY | CP_COHERENCY_BUSY))
reset_mask |= RADEON_RESET_CP;
if (tmp & GRBM_EE_BUSY)
reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP;
/* DMA_STATUS_REG */
tmp = RREG32(DMA_STATUS_REG);
if (!(tmp & DMA_IDLE))
reset_mask |= RADEON_RESET_DMA;
/* SRBM_STATUS2 */
tmp = RREG32(SRBM_STATUS2);
if (tmp & DMA_BUSY)
reset_mask |= RADEON_RESET_DMA;
/* SRBM_STATUS */
tmp = RREG32(SRBM_STATUS);
if (tmp & (RLC_RQ_PENDING | RLC_BUSY))
reset_mask |= RADEON_RESET_RLC;
if (tmp & IH_BUSY)
reset_mask |= RADEON_RESET_IH;
if (tmp & SEM_BUSY)
reset_mask |= RADEON_RESET_SEM;
if (tmp & GRBM_RQ_PENDING)
reset_mask |= RADEON_RESET_GRBM;
if (tmp & VMC_BUSY)
reset_mask |= RADEON_RESET_VMC;
if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY |
MCC_BUSY | MCD_BUSY))
reset_mask |= RADEON_RESET_MC;
if (evergreen_is_display_hung(rdev))
reset_mask |= RADEON_RESET_DISPLAY;
/* VM_L2_STATUS */
tmp = RREG32(VM_L2_STATUS);
if (tmp & L2_BUSY)
reset_mask |= RADEON_RESET_VMC;
/* Skip MC reset as it's mostly likely not hung, just busy */
if (reset_mask & RADEON_RESET_MC) {
DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask);
reset_mask &= ~RADEON_RESET_MC;
}
return reset_mask;
}
static void evergreen_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask)
{
struct evergreen_mc_save save;
u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
u32 tmp;
if (reset_mask == 0)
return;
dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask);
evergreen_print_gpu_status_regs(rdev);
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT);
if (reset_mask & RADEON_RESET_DMA) {
/* Disable DMA */
tmp = RREG32(DMA_RB_CNTL);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL, tmp);
}
udelay(50);
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
}
if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE)) {
grbm_soft_reset |= SOFT_RESET_DB |
SOFT_RESET_CB |
SOFT_RESET_PA |
SOFT_RESET_SC |
SOFT_RESET_SPI |
SOFT_RESET_SX |
SOFT_RESET_SH |
SOFT_RESET_TC |
SOFT_RESET_TA |
SOFT_RESET_VC |
SOFT_RESET_VGT;
}
if (reset_mask & RADEON_RESET_CP) {
grbm_soft_reset |= SOFT_RESET_CP |
SOFT_RESET_VGT;
srbm_soft_reset |= SOFT_RESET_GRBM;
}
if (reset_mask & RADEON_RESET_DMA)
srbm_soft_reset |= SOFT_RESET_DMA;
if (reset_mask & RADEON_RESET_DISPLAY)
srbm_soft_reset |= SOFT_RESET_DC;
if (reset_mask & RADEON_RESET_RLC)
srbm_soft_reset |= SOFT_RESET_RLC;
if (reset_mask & RADEON_RESET_SEM)
srbm_soft_reset |= SOFT_RESET_SEM;
if (reset_mask & RADEON_RESET_IH)
srbm_soft_reset |= SOFT_RESET_IH;
if (reset_mask & RADEON_RESET_GRBM)
srbm_soft_reset |= SOFT_RESET_GRBM;
if (reset_mask & RADEON_RESET_VMC)
srbm_soft_reset |= SOFT_RESET_VMC;
if (!(rdev->flags & RADEON_IS_IGP)) {
if (reset_mask & RADEON_RESET_MC)
srbm_soft_reset |= SOFT_RESET_MC;
}
if (grbm_soft_reset) {
tmp = RREG32(GRBM_SOFT_RESET);
tmp |= grbm_soft_reset;
dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(GRBM_SOFT_RESET, tmp);
tmp = RREG32(GRBM_SOFT_RESET);
udelay(50);
tmp &= ~grbm_soft_reset;
WREG32(GRBM_SOFT_RESET, tmp);
tmp = RREG32(GRBM_SOFT_RESET);
}
if (srbm_soft_reset) {
tmp = RREG32(SRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(SRBM_SOFT_RESET, tmp);
tmp = RREG32(SRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(SRBM_SOFT_RESET, tmp);
tmp = RREG32(SRBM_SOFT_RESET);
}
/* Wait a little for things to settle down */
udelay(50);
evergreen_mc_resume(rdev, &save);
udelay(50);
evergreen_print_gpu_status_regs(rdev);
}
void evergreen_gpu_pci_config_reset(struct radeon_device *rdev)
{
struct evergreen_mc_save save;
u32 tmp, i;
dev_info(rdev->dev, "GPU pci config reset\n");
/* disable dpm? */
/* Disable CP parsing/prefetching */
WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT);
udelay(50);
/* Disable DMA */
tmp = RREG32(DMA_RB_CNTL);
tmp &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL, tmp);
/* XXX other engines? */
/* halt the rlc */
r600_rlc_stop(rdev);
udelay(50);
/* set mclk/sclk to bypass */
rv770_set_clk_bypass_mode(rdev);
/* disable BM */
pci_clear_master(rdev->pdev);
/* disable mem access */
evergreen_mc_stop(rdev, &save);
if (evergreen_mc_wait_for_idle(rdev)) {
dev_warn(rdev->dev, "Wait for MC idle timed out !\n");
}
/* reset */
radeon_pci_config_reset(rdev);
/* wait for asic to come out of reset */
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(CONFIG_MEMSIZE) != 0xffffffff)
break;
udelay(1);
}
}
int evergreen_asic_reset(struct radeon_device *rdev, bool hard)
{
u32 reset_mask;
if (hard) {
evergreen_gpu_pci_config_reset(rdev);
return 0;
}
reset_mask = evergreen_gpu_check_soft_reset(rdev);
if (reset_mask)
r600_set_bios_scratch_engine_hung(rdev, true);
/* try soft reset */
evergreen_gpu_soft_reset(rdev, reset_mask);
reset_mask = evergreen_gpu_check_soft_reset(rdev);
/* try pci config reset */
if (reset_mask && radeon_hard_reset)
evergreen_gpu_pci_config_reset(rdev);
reset_mask = evergreen_gpu_check_soft_reset(rdev);
if (!reset_mask)
r600_set_bios_scratch_engine_hung(rdev, false);
return 0;
}
/**
* evergreen_gfx_is_lockup - Check if the GFX engine is locked up
*
* @rdev: radeon_device pointer
* @ring: radeon_ring structure holding ring information
*
* Check if the GFX engine is locked up.
* Returns true if the engine appears to be locked up, false if not.
*/
bool evergreen_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
u32 reset_mask = evergreen_gpu_check_soft_reset(rdev);
if (!(reset_mask & (RADEON_RESET_GFX |
RADEON_RESET_COMPUTE |
RADEON_RESET_CP))) {
radeon_ring_lockup_update(rdev, ring);
return false;
}
return radeon_ring_test_lockup(rdev, ring);
}
/*
* RLC
*/
#define RLC_SAVE_RESTORE_LIST_END_MARKER 0x00000000
#define RLC_CLEAR_STATE_END_MARKER 0x00000001
void sumo_rlc_fini(struct radeon_device *rdev)
{
int r;
/* save restore block */
if (rdev->rlc.save_restore_obj) {
r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false);
if (unlikely(r != 0))
dev_warn(rdev->dev, "(%d) reserve RLC sr bo failed\n", r);
radeon_bo_unpin(rdev->rlc.save_restore_obj);
radeon_bo_unreserve(rdev->rlc.save_restore_obj);
radeon_bo_unref(&rdev->rlc.save_restore_obj);
rdev->rlc.save_restore_obj = NULL;
}
/* clear state block */
if (rdev->rlc.clear_state_obj) {
r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false);
if (unlikely(r != 0))
dev_warn(rdev->dev, "(%d) reserve RLC c bo failed\n", r);
radeon_bo_unpin(rdev->rlc.clear_state_obj);
radeon_bo_unreserve(rdev->rlc.clear_state_obj);
radeon_bo_unref(&rdev->rlc.clear_state_obj);
rdev->rlc.clear_state_obj = NULL;
}
/* clear state block */
if (rdev->rlc.cp_table_obj) {
r = radeon_bo_reserve(rdev->rlc.cp_table_obj, false);
if (unlikely(r != 0))
dev_warn(rdev->dev, "(%d) reserve RLC cp table bo failed\n", r);
radeon_bo_unpin(rdev->rlc.cp_table_obj);
radeon_bo_unreserve(rdev->rlc.cp_table_obj);
radeon_bo_unref(&rdev->rlc.cp_table_obj);
rdev->rlc.cp_table_obj = NULL;
}
}
#define CP_ME_TABLE_SIZE 96
int sumo_rlc_init(struct radeon_device *rdev)
{
const u32 *src_ptr;
volatile u32 *dst_ptr;
u32 dws, data, i, j, k, reg_num;
u32 reg_list_num, reg_list_hdr_blk_index, reg_list_blk_index = 0;
u64 reg_list_mc_addr;
const struct cs_section_def *cs_data;
int r;
src_ptr = rdev->rlc.reg_list;
dws = rdev->rlc.reg_list_size;
if (rdev->family >= CHIP_BONAIRE) {
dws += (5 * 16) + 48 + 48 + 64;
}
cs_data = rdev->rlc.cs_data;
if (src_ptr) {
/* save restore block */
if (rdev->rlc.save_restore_obj == NULL) {
r = radeon_bo_create(rdev, dws * 4, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &rdev->rlc.save_restore_obj);
if (r) {
dev_warn(rdev->dev, "(%d) create RLC sr bo failed\n", r);
return r;
}
}
r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false);
if (unlikely(r != 0)) {
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_pin(rdev->rlc.save_restore_obj, RADEON_GEM_DOMAIN_VRAM,
&rdev->rlc.save_restore_gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->rlc.save_restore_obj);
dev_warn(rdev->dev, "(%d) pin RLC sr bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_kmap(rdev->rlc.save_restore_obj, (void **)&rdev->rlc.sr_ptr);
if (r) {
dev_warn(rdev->dev, "(%d) map RLC sr bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
/* write the sr buffer */
dst_ptr = rdev->rlc.sr_ptr;
if (rdev->family >= CHIP_TAHITI) {
/* SI */
for (i = 0; i < rdev->rlc.reg_list_size; i++)
dst_ptr[i] = cpu_to_le32(src_ptr[i]);
} else {
/* ON/LN/TN */
/* format:
* dw0: (reg2 << 16) | reg1
* dw1: reg1 save space
* dw2: reg2 save space
*/
for (i = 0; i < dws; i++) {
data = src_ptr[i] >> 2;
i++;
if (i < dws)
data |= (src_ptr[i] >> 2) << 16;
j = (((i - 1) * 3) / 2);
dst_ptr[j] = cpu_to_le32(data);
}
j = ((i * 3) / 2);
dst_ptr[j] = cpu_to_le32(RLC_SAVE_RESTORE_LIST_END_MARKER);
}
radeon_bo_kunmap(rdev->rlc.save_restore_obj);
radeon_bo_unreserve(rdev->rlc.save_restore_obj);
}
if (cs_data) {
/* clear state block */
if (rdev->family >= CHIP_BONAIRE) {
rdev->rlc.clear_state_size = dws = cik_get_csb_size(rdev);
} else if (rdev->family >= CHIP_TAHITI) {
rdev->rlc.clear_state_size = si_get_csb_size(rdev);
dws = rdev->rlc.clear_state_size + (256 / 4);
} else {
reg_list_num = 0;
dws = 0;
for (i = 0; cs_data[i].section != NULL; i++) {
for (j = 0; cs_data[i].section[j].extent != NULL; j++) {
reg_list_num++;
dws += cs_data[i].section[j].reg_count;
}
}
reg_list_blk_index = (3 * reg_list_num + 2);
dws += reg_list_blk_index;
rdev->rlc.clear_state_size = dws;
}
if (rdev->rlc.clear_state_obj == NULL) {
r = radeon_bo_create(rdev, dws * 4, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &rdev->rlc.clear_state_obj);
if (r) {
dev_warn(rdev->dev, "(%d) create RLC c bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
}
r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false);
if (unlikely(r != 0)) {
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_pin(rdev->rlc.clear_state_obj, RADEON_GEM_DOMAIN_VRAM,
&rdev->rlc.clear_state_gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->rlc.clear_state_obj);
dev_warn(rdev->dev, "(%d) pin RLC c bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_kmap(rdev->rlc.clear_state_obj, (void **)&rdev->rlc.cs_ptr);
if (r) {
dev_warn(rdev->dev, "(%d) map RLC c bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
/* set up the cs buffer */
dst_ptr = rdev->rlc.cs_ptr;
if (rdev->family >= CHIP_BONAIRE) {
cik_get_csb_buffer(rdev, dst_ptr);
} else if (rdev->family >= CHIP_TAHITI) {
reg_list_mc_addr = rdev->rlc.clear_state_gpu_addr + 256;
dst_ptr[0] = cpu_to_le32(upper_32_bits(reg_list_mc_addr));
dst_ptr[1] = cpu_to_le32(lower_32_bits(reg_list_mc_addr));
dst_ptr[2] = cpu_to_le32(rdev->rlc.clear_state_size);
si_get_csb_buffer(rdev, &dst_ptr[(256/4)]);
} else {
reg_list_hdr_blk_index = 0;
reg_list_mc_addr = rdev->rlc.clear_state_gpu_addr + (reg_list_blk_index * 4);
data = upper_32_bits(reg_list_mc_addr);
dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data);
reg_list_hdr_blk_index++;
for (i = 0; cs_data[i].section != NULL; i++) {
for (j = 0; cs_data[i].section[j].extent != NULL; j++) {
reg_num = cs_data[i].section[j].reg_count;
data = reg_list_mc_addr & 0xffffffff;
dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data);
reg_list_hdr_blk_index++;
data = (cs_data[i].section[j].reg_index * 4) & 0xffffffff;
dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data);
reg_list_hdr_blk_index++;
data = 0x08000000 | (reg_num * 4);
dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data);
reg_list_hdr_blk_index++;
for (k = 0; k < reg_num; k++) {
data = cs_data[i].section[j].extent[k];
dst_ptr[reg_list_blk_index + k] = cpu_to_le32(data);
}
reg_list_mc_addr += reg_num * 4;
reg_list_blk_index += reg_num;
}
}
dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(RLC_CLEAR_STATE_END_MARKER);
}
radeon_bo_kunmap(rdev->rlc.clear_state_obj);
radeon_bo_unreserve(rdev->rlc.clear_state_obj);
}
if (rdev->rlc.cp_table_size) {
if (rdev->rlc.cp_table_obj == NULL) {
r = radeon_bo_create(rdev, rdev->rlc.cp_table_size,
PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &rdev->rlc.cp_table_obj);
if (r) {
dev_warn(rdev->dev, "(%d) create RLC cp table bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
}
r = radeon_bo_reserve(rdev->rlc.cp_table_obj, false);
if (unlikely(r != 0)) {
dev_warn(rdev->dev, "(%d) reserve RLC cp table bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_pin(rdev->rlc.cp_table_obj, RADEON_GEM_DOMAIN_VRAM,
&rdev->rlc.cp_table_gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->rlc.cp_table_obj);
dev_warn(rdev->dev, "(%d) pin RLC cp_table bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
r = radeon_bo_kmap(rdev->rlc.cp_table_obj, (void **)&rdev->rlc.cp_table_ptr);
if (r) {
dev_warn(rdev->dev, "(%d) map RLC cp table bo failed\n", r);
sumo_rlc_fini(rdev);
return r;
}
cik_init_cp_pg_table(rdev);
radeon_bo_kunmap(rdev->rlc.cp_table_obj);
radeon_bo_unreserve(rdev->rlc.cp_table_obj);
}
return 0;
}
static void evergreen_rlc_start(struct radeon_device *rdev)
{
u32 mask = RLC_ENABLE;
if (rdev->flags & RADEON_IS_IGP) {
mask |= GFX_POWER_GATING_ENABLE | GFX_POWER_GATING_SRC;
}
WREG32(RLC_CNTL, mask);
}
int evergreen_rlc_resume(struct radeon_device *rdev)
{
u32 i;
const __be32 *fw_data;
if (!rdev->rlc_fw)
return -EINVAL;
r600_rlc_stop(rdev);
WREG32(RLC_HB_CNTL, 0);
if (rdev->flags & RADEON_IS_IGP) {
if (rdev->family == CHIP_ARUBA) {
u32 always_on_bitmap =
3 | (3 << (16 * rdev->config.cayman.max_shader_engines));
/* find out the number of active simds */
u32 tmp = (RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffff0000) >> 16;
tmp |= 0xffffffff << rdev->config.cayman.max_simds_per_se;
tmp = hweight32(~tmp);
if (tmp == rdev->config.cayman.max_simds_per_se) {
WREG32(TN_RLC_LB_ALWAYS_ACTIVE_SIMD_MASK, always_on_bitmap);
WREG32(TN_RLC_LB_PARAMS, 0x00601004);
WREG32(TN_RLC_LB_INIT_SIMD_MASK, 0xffffffff);
WREG32(TN_RLC_LB_CNTR_INIT, 0x00000000);
WREG32(TN_RLC_LB_CNTR_MAX, 0x00002000);
}
} else {
WREG32(RLC_HB_WPTR_LSB_ADDR, 0);
WREG32(RLC_HB_WPTR_MSB_ADDR, 0);
}
WREG32(TN_RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8);
WREG32(TN_RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8);
} else {
WREG32(RLC_HB_BASE, 0);
WREG32(RLC_HB_RPTR, 0);
WREG32(RLC_HB_WPTR, 0);
WREG32(RLC_HB_WPTR_LSB_ADDR, 0);
WREG32(RLC_HB_WPTR_MSB_ADDR, 0);
}
WREG32(RLC_MC_CNTL, 0);
WREG32(RLC_UCODE_CNTL, 0);
fw_data = (const __be32 *)rdev->rlc_fw->data;
if (rdev->family >= CHIP_ARUBA) {
for (i = 0; i < ARUBA_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
} else if (rdev->family >= CHIP_CAYMAN) {
for (i = 0; i < CAYMAN_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
} else {
for (i = 0; i < EVERGREEN_RLC_UCODE_SIZE; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++));
}
}
WREG32(RLC_UCODE_ADDR, 0);
evergreen_rlc_start(rdev);
return 0;
}
/* Interrupts */
u32 evergreen_get_vblank_counter(struct radeon_device *rdev, int crtc)
{
if (crtc >= rdev->num_crtc)
return 0;
else
return RREG32(CRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]);
}
void evergreen_disable_interrupt_state(struct radeon_device *rdev)
{
int i;
u32 tmp;
if (rdev->family >= CHIP_CAYMAN) {
cayman_cp_int_cntl_setup(rdev, 0,
CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
cayman_cp_int_cntl_setup(rdev, 1, 0);
cayman_cp_int_cntl_setup(rdev, 2, 0);
tmp = RREG32(CAYMAN_DMA1_CNTL) & ~TRAP_ENABLE;
WREG32(CAYMAN_DMA1_CNTL, tmp);
} else
WREG32(CP_INT_CNTL, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
tmp = RREG32(DMA_CNTL) & ~TRAP_ENABLE;
WREG32(DMA_CNTL, tmp);
WREG32(GRBM_INT_CNTL, 0);
WREG32(SRBM_INT_CNTL, 0);
for (i = 0; i < rdev->num_crtc; i++)
WREG32(INT_MASK + crtc_offsets[i], 0);
for (i = 0; i < rdev->num_crtc; i++)
WREG32(GRPH_INT_CONTROL + crtc_offsets[i], 0);
/* only one DAC on DCE5 */
if (!ASIC_IS_DCE5(rdev))
WREG32(DACA_AUTODETECT_INT_CONTROL, 0);
WREG32(DACB_AUTODETECT_INT_CONTROL, 0);
for (i = 0; i < 6; i++)
WREG32_AND(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_POLARITY);
}
/* Note that the order we write back regs here is important */
int evergreen_irq_set(struct radeon_device *rdev)
{
int i;
u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE;
u32 cp_int_cntl1 = 0, cp_int_cntl2 = 0;
u32 grbm_int_cntl = 0;
u32 dma_cntl, dma_cntl1 = 0;
u32 thermal_int = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
return -EINVAL;
}
/* don't enable anything if the ih is disabled */
if (!rdev->ih.enabled) {
r600_disable_interrupts(rdev);
/* force the active interrupt state to all disabled */
evergreen_disable_interrupt_state(rdev);
return 0;
}
if (rdev->family == CHIP_ARUBA)
thermal_int = RREG32(TN_CG_THERMAL_INT_CTRL) &
~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW);
else
thermal_int = RREG32(CG_THERMAL_INT) &
~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW);
dma_cntl = RREG32(DMA_CNTL) & ~TRAP_ENABLE;
if (rdev->family >= CHIP_CAYMAN) {
/* enable CP interrupts on all rings */
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
DRM_DEBUG("evergreen_irq_set: sw int gfx\n");
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) {
DRM_DEBUG("evergreen_irq_set: sw int cp1\n");
cp_int_cntl1 |= TIME_STAMP_INT_ENABLE;
}
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) {
DRM_DEBUG("evergreen_irq_set: sw int cp2\n");
cp_int_cntl2 |= TIME_STAMP_INT_ENABLE;
}
} else {
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
DRM_DEBUG("evergreen_irq_set: sw int gfx\n");
cp_int_cntl |= RB_INT_ENABLE;
cp_int_cntl |= TIME_STAMP_INT_ENABLE;
}
}
if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) {
DRM_DEBUG("r600_irq_set: sw int dma\n");
dma_cntl |= TRAP_ENABLE;
}
if (rdev->family >= CHIP_CAYMAN) {
dma_cntl1 = RREG32(CAYMAN_DMA1_CNTL) & ~TRAP_ENABLE;
if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) {
DRM_DEBUG("r600_irq_set: sw int dma1\n");
dma_cntl1 |= TRAP_ENABLE;
}
}
if (rdev->irq.dpm_thermal) {
DRM_DEBUG("dpm thermal\n");
thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW;
}
if (rdev->family >= CHIP_CAYMAN) {
cayman_cp_int_cntl_setup(rdev, 0, cp_int_cntl);
cayman_cp_int_cntl_setup(rdev, 1, cp_int_cntl1);
cayman_cp_int_cntl_setup(rdev, 2, cp_int_cntl2);
} else
WREG32(CP_INT_CNTL, cp_int_cntl);
WREG32(DMA_CNTL, dma_cntl);
if (rdev->family >= CHIP_CAYMAN)
WREG32(CAYMAN_DMA1_CNTL, dma_cntl1);
WREG32(GRBM_INT_CNTL, grbm_int_cntl);
for (i = 0; i < rdev->num_crtc; i++) {
radeon_irq_kms_set_irq_n_enabled(
rdev, INT_MASK + crtc_offsets[i],
VBLANK_INT_MASK,
rdev->irq.crtc_vblank_int[i] ||
atomic_read(&rdev->irq.pflip[i]), "vblank", i);
}
for (i = 0; i < rdev->num_crtc; i++)
WREG32(GRPH_INT_CONTROL + crtc_offsets[i], GRPH_PFLIP_INT_MASK);
for (i = 0; i < 6; i++) {
radeon_irq_kms_set_irq_n_enabled(
rdev, DC_HPDx_INT_CONTROL(i),
DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN,
rdev->irq.hpd[i], "HPD", i);
}
if (rdev->family == CHIP_ARUBA)
WREG32(TN_CG_THERMAL_INT_CTRL, thermal_int);
else
WREG32(CG_THERMAL_INT, thermal_int);
for (i = 0; i < 6; i++) {
radeon_irq_kms_set_irq_n_enabled(
rdev, AFMT_AUDIO_PACKET_CONTROL + crtc_offsets[i],
AFMT_AZ_FORMAT_WTRIG_MASK,
rdev->irq.afmt[i], "HDMI", i);
}
/* posting read */
RREG32(SRBM_STATUS);
return 0;
}
/* Note that the order we write back regs here is important */
static void evergreen_irq_ack(struct radeon_device *rdev)
{
int i, j;
u32 *grph_int = rdev->irq.stat_regs.evergreen.grph_int;
u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int;
u32 *afmt_status = rdev->irq.stat_regs.evergreen.afmt_status;
for (i = 0; i < 6; i++) {
disp_int[i] = RREG32(evergreen_disp_int_status[i]);
afmt_status[i] = RREG32(AFMT_STATUS + crtc_offsets[i]);
if (i < rdev->num_crtc)
grph_int[i] = RREG32(GRPH_INT_STATUS + crtc_offsets[i]);
}
/* We write back each interrupt register in pairs of two */
for (i = 0; i < rdev->num_crtc; i += 2) {
for (j = i; j < (i + 2); j++) {
if (grph_int[j] & GRPH_PFLIP_INT_OCCURRED)
WREG32(GRPH_INT_STATUS + crtc_offsets[j],
GRPH_PFLIP_INT_CLEAR);
}
for (j = i; j < (i + 2); j++) {
if (disp_int[j] & LB_D1_VBLANK_INTERRUPT)
WREG32(VBLANK_STATUS + crtc_offsets[j],
VBLANK_ACK);
if (disp_int[j] & LB_D1_VLINE_INTERRUPT)
WREG32(VLINE_STATUS + crtc_offsets[j],
VLINE_ACK);
}
}
for (i = 0; i < 6; i++) {
if (disp_int[i] & DC_HPD1_INTERRUPT)
WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_ACK);
}
for (i = 0; i < 6; i++) {
if (disp_int[i] & DC_HPD1_RX_INTERRUPT)
WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_RX_INT_ACK);
}
for (i = 0; i < 6; i++) {
if (afmt_status[i] & AFMT_AZ_FORMAT_WTRIG)
WREG32_OR(AFMT_AUDIO_PACKET_CONTROL + crtc_offsets[i],
AFMT_AZ_FORMAT_WTRIG_ACK);
}
}
static void evergreen_irq_disable(struct radeon_device *rdev)
{
r600_disable_interrupts(rdev);
/* Wait and acknowledge irq */
mdelay(1);
evergreen_irq_ack(rdev);
evergreen_disable_interrupt_state(rdev);
}
void evergreen_irq_suspend(struct radeon_device *rdev)
{
evergreen_irq_disable(rdev);
r600_rlc_stop(rdev);
}
static u32 evergreen_get_ih_wptr(struct radeon_device *rdev)
{
u32 wptr, tmp;
if (rdev->wb.enabled)
wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
else
wptr = RREG32(IH_RB_WPTR);
if (wptr & RB_OVERFLOW) {
wptr &= ~RB_OVERFLOW;
/* When a ring buffer overflow happen start parsing interrupt
* from the last not overwritten vector (wptr + 16). Hopefully
* this should allow us to catchup.
*/
dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
wptr, rdev->ih.rptr, (wptr + 16) & rdev->ih.ptr_mask);
rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
tmp = RREG32(IH_RB_CNTL);
tmp |= IH_WPTR_OVERFLOW_CLEAR;
WREG32(IH_RB_CNTL, tmp);
}
return (wptr & rdev->ih.ptr_mask);
}
int evergreen_irq_process(struct radeon_device *rdev)
{
u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int;
u32 *afmt_status = rdev->irq.stat_regs.evergreen.afmt_status;
u32 crtc_idx, hpd_idx, afmt_idx;
u32 mask;
u32 wptr;
u32 rptr;
u32 src_id, src_data;
u32 ring_index;
bool queue_hotplug = false;
bool queue_hdmi = false;
bool queue_dp = false;
bool queue_thermal = false;
u32 status, addr;
const char *event_name;
if (!rdev->ih.enabled || rdev->shutdown)
return IRQ_NONE;
wptr = evergreen_get_ih_wptr(rdev);
restart_ih:
/* is somebody else already processing irqs? */
if (atomic_xchg(&rdev->ih.lock, 1))
return IRQ_NONE;
rptr = rdev->ih.rptr;
DRM_DEBUG("evergreen_irq_process start: rptr %d, wptr %d\n", rptr, wptr);
/* Order reading of wptr vs. reading of IH ring data */
rmb();
/* display interrupts */
evergreen_irq_ack(rdev);
while (rptr != wptr) {
/* wptr/rptr are in bytes! */
ring_index = rptr / 4;
src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
switch (src_id) {
case 1: /* D1 vblank/vline */
case 2: /* D2 vblank/vline */
case 3: /* D3 vblank/vline */
case 4: /* D4 vblank/vline */
case 5: /* D5 vblank/vline */
case 6: /* D6 vblank/vline */
crtc_idx = src_id - 1;
if (src_data == 0) { /* vblank */
mask = LB_D1_VBLANK_INTERRUPT;
event_name = "vblank";
if (rdev->irq.crtc_vblank_int[crtc_idx]) {
drm_handle_vblank(rdev->ddev, crtc_idx);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (atomic_read(&rdev->irq.pflip[crtc_idx])) {
radeon_crtc_handle_vblank(rdev,
crtc_idx);
}
} else if (src_data == 1) { /* vline */
mask = LB_D1_VLINE_INTERRUPT;
event_name = "vline";
} else {
DRM_DEBUG("Unhandled interrupt: %d %d\n",
src_id, src_data);
break;
}
if (!(disp_int[crtc_idx] & mask)) {
DRM_DEBUG("IH: D%d %s - IH event w/o asserted irq bit?\n",
crtc_idx + 1, event_name);
}
disp_int[crtc_idx] &= ~mask;
DRM_DEBUG("IH: D%d %s\n", crtc_idx + 1, event_name);
break;
case 8: /* D1 page flip */
case 10: /* D2 page flip */
case 12: /* D3 page flip */
case 14: /* D4 page flip */
case 16: /* D5 page flip */
case 18: /* D6 page flip */
DRM_DEBUG("IH: D%d flip\n", ((src_id - 8) >> 1) + 1);
if (radeon_use_pflipirq > 0)
radeon_crtc_handle_flip(rdev, (src_id - 8) >> 1);
break;
case 42: /* HPD hotplug */
if (src_data <= 5) {
hpd_idx = src_data;
mask = DC_HPD1_INTERRUPT;
queue_hotplug = true;
event_name = "HPD";
} else if (src_data <= 11) {
hpd_idx = src_data - 6;
mask = DC_HPD1_RX_INTERRUPT;
queue_dp = true;
event_name = "HPD_RX";
} else {
DRM_DEBUG("Unhandled interrupt: %d %d\n",
src_id, src_data);
break;
}
if (!(disp_int[hpd_idx] & mask))
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
disp_int[hpd_idx] &= ~mask;
DRM_DEBUG("IH: %s%d\n", event_name, hpd_idx + 1);
break;
case 44: /* hdmi */
afmt_idx = src_data;
if (!(afmt_status[afmt_idx] & AFMT_AZ_FORMAT_WTRIG))
DRM_DEBUG("IH: IH event w/o asserted irq bit?\n");
if (afmt_idx > 5) {
DRM_ERROR("Unhandled interrupt: %d %d\n",
src_id, src_data);
break;
}
afmt_status[afmt_idx] &= ~AFMT_AZ_FORMAT_WTRIG;
queue_hdmi = true;
DRM_DEBUG("IH: HDMI%d\n", afmt_idx + 1);
break;
case 96:
DRM_ERROR("SRBM_READ_ERROR: 0x%x\n", RREG32(SRBM_READ_ERROR));
WREG32(SRBM_INT_ACK, 0x1);
break;
case 124: /* UVD */
DRM_DEBUG("IH: UVD int: 0x%08x\n", src_data);
radeon_fence_process(rdev, R600_RING_TYPE_UVD_INDEX);
break;
case 146:
case 147:
addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR);
status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS);
/* reset addr and status */
WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1);
if (addr == 0x0 && status == 0x0)
break;
dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data);
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n",
addr);
dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
status);
cayman_vm_decode_fault(rdev, status, addr);
break;
case 176: /* CP_INT in ring buffer */
case 177: /* CP_INT in IB1 */
case 178: /* CP_INT in IB2 */
DRM_DEBUG("IH: CP int: 0x%08x\n", src_data);
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 181: /* CP EOP event */
DRM_DEBUG("IH: CP EOP\n");
if (rdev->family >= CHIP_CAYMAN) {
switch (src_data) {
case 0:
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 1:
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX);
break;
case 2:
radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX);
break;
}
} else
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
break;
case 224: /* DMA trap event */
DRM_DEBUG("IH: DMA trap\n");
radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX);
break;
case 230: /* thermal low to high */
DRM_DEBUG("IH: thermal low to high\n");
rdev->pm.dpm.thermal.high_to_low = false;
queue_thermal = true;
break;
case 231: /* thermal high to low */
DRM_DEBUG("IH: thermal high to low\n");
rdev->pm.dpm.thermal.high_to_low = true;
queue_thermal = true;
break;
case 233: /* GUI IDLE */
DRM_DEBUG("IH: GUI idle\n");
break;
case 244: /* DMA trap event */
if (rdev->family >= CHIP_CAYMAN) {
DRM_DEBUG("IH: DMA1 trap\n");
radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
}
break;
default:
DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
break;
}
/* wptr/rptr are in bytes! */
rptr += 16;
rptr &= rdev->ih.ptr_mask;
WREG32(IH_RB_RPTR, rptr);
}
if (queue_dp)
schedule_work(&rdev->dp_work);
if (queue_hotplug)
schedule_delayed_work(&rdev->hotplug_work, 0);
if (queue_hdmi)
schedule_work(&rdev->audio_work);
if (queue_thermal && rdev->pm.dpm_enabled)
schedule_work(&rdev->pm.dpm.thermal.work);
rdev->ih.rptr = rptr;
atomic_set(&rdev->ih.lock, 0);
/* make sure wptr hasn't changed while processing */
wptr = evergreen_get_ih_wptr(rdev);
if (wptr != rptr)
goto restart_ih;
return IRQ_HANDLED;
}
static void evergreen_uvd_init(struct radeon_device *rdev)
{
int r;
if (!rdev->has_uvd)
return;
r = radeon_uvd_init(rdev);
if (r) {
dev_err(rdev->dev, "failed UVD (%d) init.\n", r);
/*
* At this point rdev->uvd.vcpu_bo is NULL which trickles down
* to early fails uvd_v2_2_resume() and thus nothing happens
* there. So it is pointless to try to go through that code
* hence why we disable uvd here.
*/
rdev->has_uvd = 0;
return;
}
rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_UVD_INDEX], 4096);
}
static void evergreen_uvd_start(struct radeon_device *rdev)
{
int r;
if (!rdev->has_uvd)
return;
r = uvd_v2_2_resume(rdev);
if (r) {
dev_err(rdev->dev, "failed UVD resume (%d).\n", r);
goto error;
}
r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_UVD_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing UVD fences (%d).\n", r);
goto error;
}
return;
error:
rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0;
}
static void evergreen_uvd_resume(struct radeon_device *rdev)
{
struct radeon_ring *ring;
int r;
if (!rdev->has_uvd || !rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size)
return;
ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, 0, PACKET0(UVD_NO_OP, 0));
if (r) {
dev_err(rdev->dev, "failed initializing UVD ring (%d).\n", r);
return;
}
r = uvd_v1_0_init(rdev);
if (r) {
dev_err(rdev->dev, "failed initializing UVD (%d).\n", r);
return;
}
}
static int evergreen_startup(struct radeon_device *rdev)
{
struct radeon_ring *ring;
int r;
/* enable pcie gen2 link */
evergreen_pcie_gen2_enable(rdev);
/* enable aspm */
evergreen_program_aspm(rdev);
/* scratch needs to be initialized before MC */
r = r600_vram_scratch_init(rdev);
if (r)
return r;
evergreen_mc_program(rdev);
if (ASIC_IS_DCE5(rdev) && !rdev->pm.dpm_enabled) {
r = ni_mc_load_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load MC firmware!\n");
return r;
}
}
if (rdev->flags & RADEON_IS_AGP) {
evergreen_agp_enable(rdev);
} else {
r = evergreen_pcie_gart_enable(rdev);
if (r)
return r;
}
evergreen_gpu_init(rdev);
/* allocate rlc buffers */
if (rdev->flags & RADEON_IS_IGP) {
rdev->rlc.reg_list = sumo_rlc_save_restore_register_list;
rdev->rlc.reg_list_size =
(u32)ARRAY_SIZE(sumo_rlc_save_restore_register_list);
rdev->rlc.cs_data = evergreen_cs_data;
r = sumo_rlc_init(rdev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
return r;
}
evergreen_uvd_start(rdev);
/* Enable IRQ */
if (!rdev->irq.installed) {
r = radeon_irq_kms_init(rdev);
if (r)
return r;
}
r = r600_irq_init(rdev);
if (r) {
DRM_ERROR("radeon: IH init failed (%d).\n", r);
radeon_irq_kms_fini(rdev);
return r;
}
evergreen_irq_set(rdev);
ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET,
RADEON_CP_PACKET2);
if (r)
return r;
ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET,
DMA_PACKET(DMA_PACKET_NOP, 0, 0));
if (r)
return r;
r = evergreen_cp_load_microcode(rdev);
if (r)
return r;
r = evergreen_cp_resume(rdev);
if (r)
return r;
r = r600_dma_resume(rdev);
if (r)
return r;
evergreen_uvd_resume(rdev);
r = radeon_ib_pool_init(rdev);
if (r) {
dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
return r;
}
r = radeon_audio_init(rdev);
if (r) {
DRM_ERROR("radeon: audio init failed\n");
return r;
}
return 0;
}
int evergreen_resume(struct radeon_device *rdev)
{
int r;
/* reset the asic, the gfx blocks are often in a bad state
* after the driver is unloaded or after a resume
*/
if (radeon_asic_reset(rdev))
dev_warn(rdev->dev, "GPU reset failed !\n");
/* Do not reset GPU before posting, on rv770 hw unlike on r500 hw,
* posting will perform necessary task to bring back GPU into good
* shape.
*/
/* post card */
atom_asic_init(rdev->mode_info.atom_context);
/* init golden registers */
evergreen_init_golden_registers(rdev);
if (rdev->pm.pm_method == PM_METHOD_DPM)
radeon_pm_resume(rdev);
rdev->accel_working = true;
r = evergreen_startup(rdev);
if (r) {
DRM_ERROR("evergreen startup failed on resume\n");
rdev->accel_working = false;
return r;
}
return r;
}
int evergreen_suspend(struct radeon_device *rdev)
{
radeon_pm_suspend(rdev);
radeon_audio_fini(rdev);
if (rdev->has_uvd) {
uvd_v1_0_fini(rdev);
radeon_uvd_suspend(rdev);
}
r700_cp_stop(rdev);
r600_dma_stop(rdev);
evergreen_irq_suspend(rdev);
radeon_wb_disable(rdev);
evergreen_pcie_gart_disable(rdev);
return 0;
}
/* Plan is to move initialization in that function and use
* helper function so that radeon_device_init pretty much
* do nothing more than calling asic specific function. This
* should also allow to remove a bunch of callback function
* like vram_info.
*/
int evergreen_init(struct radeon_device *rdev)
{
int r;
/* Read BIOS */
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
/* Must be an ATOMBIOS */
if (!rdev->is_atom_bios) {
dev_err(rdev->dev, "Expecting atombios for evergreen GPU\n");
return -EINVAL;
}
r = radeon_atombios_init(rdev);
if (r)
return r;
/* reset the asic, the gfx blocks are often in a bad state
* after the driver is unloaded or after a resume
*/
if (radeon_asic_reset(rdev))
dev_warn(rdev->dev, "GPU reset failed !\n");
/* Post card if necessary */
if (!radeon_card_posted(rdev)) {
if (!rdev->bios) {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return -EINVAL;
}
DRM_INFO("GPU not posted. posting now...\n");
atom_asic_init(rdev->mode_info.atom_context);
}
/* init golden registers */
evergreen_init_golden_registers(rdev);
/* Initialize scratch registers */
r600_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
/* initialize AGP */
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r)
radeon_agp_disable(rdev);
}
/* initialize memory controller */
r = evergreen_mc_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
if (ASIC_IS_DCE5(rdev)) {
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw || !rdev->mc_fw) {
r = ni_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
} else {
if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) {
r = r600_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
}
/* Initialize power management */
radeon_pm_init(rdev);
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX], 1024 * 1024);
rdev->ring[R600_RING_TYPE_DMA_INDEX].ring_obj = NULL;
r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX], 64 * 1024);
evergreen_uvd_init(rdev);
rdev->ih.ring_obj = NULL;
r600_ih_ring_init(rdev, 64 * 1024);
r = r600_pcie_gart_init(rdev);
if (r)
return r;
rdev->accel_working = true;
r = evergreen_startup(rdev);
if (r) {
dev_err(rdev->dev, "disabling GPU acceleration\n");
r700_cp_fini(rdev);
r600_dma_fini(rdev);
r600_irq_fini(rdev);
if (rdev->flags & RADEON_IS_IGP)
sumo_rlc_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
evergreen_pcie_gart_fini(rdev);
rdev->accel_working = false;
}
/* Don't start up if the MC ucode is missing on BTC parts.
* The default clocks and voltages before the MC ucode
* is loaded are not suffient for advanced operations.
*/
if (ASIC_IS_DCE5(rdev)) {
if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) {
DRM_ERROR("radeon: MC ucode required for NI+.\n");
return -EINVAL;
}
}
return 0;
}
void evergreen_fini(struct radeon_device *rdev)
{
radeon_pm_fini(rdev);
radeon_audio_fini(rdev);
r700_cp_fini(rdev);
r600_dma_fini(rdev);
r600_irq_fini(rdev);
if (rdev->flags & RADEON_IS_IGP)
sumo_rlc_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
uvd_v1_0_fini(rdev);
radeon_uvd_fini(rdev);
evergreen_pcie_gart_fini(rdev);
r600_vram_scratch_fini(rdev);
radeon_gem_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_agp_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
void evergreen_pcie_gen2_enable(struct radeon_device *rdev)
{
u32 link_width_cntl, speed_cntl;
if (radeon_pcie_gen2 == 0)
return;
if (rdev->flags & RADEON_IS_IGP)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
/* x2 cards have a special sequence */
if (ASIC_IS_X2(rdev))
return;
if ((rdev->pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT) &&
(rdev->pdev->bus->max_bus_speed != PCIE_SPEED_8_0GT))
return;
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if (speed_cntl & LC_CURRENT_DATA_RATE) {
DRM_INFO("PCIE gen 2 link speeds already enabled\n");
return;
}
DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n");
if ((speed_cntl & LC_OTHER_SIDE_EVER_SENT_GEN2) ||
(speed_cntl & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
link_width_cntl = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL);
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
speed_cntl &= ~LC_TARGET_LINK_SPEED_OVERRIDE_EN;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
speed_cntl &= ~LC_CLR_FAILED_SPD_CHANGE_CNT;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
speed_cntl |= LC_GEN2_EN_STRAP;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl);
} else {
link_width_cntl = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL);
/* XXX: only disable it if gen1 bridge vendor == 0x111d or 0x1106 */
if (1)
link_width_cntl |= LC_UPCONFIGURE_DIS;
else
link_width_cntl &= ~LC_UPCONFIGURE_DIS;
WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl);
}
}
void evergreen_program_aspm(struct radeon_device *rdev)
{
u32 data, orig;
u32 pcie_lc_cntl, pcie_lc_cntl_old;
bool disable_l0s, disable_l1 = false, disable_plloff_in_l1 = false;
/* fusion_platform = true
* if the system is a fusion system
* (APU or DGPU in a fusion system).
* todo: check if the system is a fusion platform.
*/
bool fusion_platform = false;
if (radeon_aspm == 0)
return;
if (!(rdev->flags & RADEON_IS_PCIE))
return;
switch (rdev->family) {
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
case CHIP_JUNIPER:
case CHIP_REDWOOD:
case CHIP_CEDAR:
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_PALM:
case CHIP_ARUBA:
disable_l0s = true;
break;
default:
disable_l0s = false;
break;
}
if (rdev->flags & RADEON_IS_IGP)
fusion_platform = true; /* XXX also dGPUs in a fusion system */
data = orig = RREG32_PIF_PHY0(PB0_PIF_PAIRING);
if (fusion_platform)
data &= ~MULTI_PIF;
else
data |= MULTI_PIF;
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_PAIRING, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_PAIRING);
if (fusion_platform)
data &= ~MULTI_PIF;
else
data |= MULTI_PIF;
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_PAIRING, data);
pcie_lc_cntl = pcie_lc_cntl_old = RREG32_PCIE_PORT(PCIE_LC_CNTL);
pcie_lc_cntl &= ~(LC_L0S_INACTIVITY_MASK | LC_L1_INACTIVITY_MASK);
if (!disable_l0s) {
if (rdev->family >= CHIP_BARTS)
pcie_lc_cntl |= LC_L0S_INACTIVITY(7);
else
pcie_lc_cntl |= LC_L0S_INACTIVITY(3);
}
if (!disable_l1) {
if (rdev->family >= CHIP_BARTS)
pcie_lc_cntl |= LC_L1_INACTIVITY(7);
else
pcie_lc_cntl |= LC_L1_INACTIVITY(8);
if (!disable_plloff_in_l1) {
data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0);
data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK);
data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7);
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data);
data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1);
data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK);
data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7);
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0);
data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK);
data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7);
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1);
data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK);
data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7);
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data);
if (rdev->family >= CHIP_BARTS) {
data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0);
data &= ~PLL_RAMP_UP_TIME_0_MASK;
data |= PLL_RAMP_UP_TIME_0(4);
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data);
data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1);
data &= ~PLL_RAMP_UP_TIME_1_MASK;
data |= PLL_RAMP_UP_TIME_1(4);
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0);
data &= ~PLL_RAMP_UP_TIME_0_MASK;
data |= PLL_RAMP_UP_TIME_0(4);
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1);
data &= ~PLL_RAMP_UP_TIME_1_MASK;
data |= PLL_RAMP_UP_TIME_1(4);
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data);
}
data = orig = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL);
data &= ~LC_DYN_LANES_PWR_STATE_MASK;
data |= LC_DYN_LANES_PWR_STATE(3);
if (data != orig)
WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, data);
if (rdev->family >= CHIP_BARTS) {
data = orig = RREG32_PIF_PHY0(PB0_PIF_CNTL);
data &= ~LS2_EXIT_TIME_MASK;
data |= LS2_EXIT_TIME(1);
if (data != orig)
WREG32_PIF_PHY0(PB0_PIF_CNTL, data);
data = orig = RREG32_PIF_PHY1(PB1_PIF_CNTL);
data &= ~LS2_EXIT_TIME_MASK;
data |= LS2_EXIT_TIME(1);
if (data != orig)
WREG32_PIF_PHY1(PB1_PIF_CNTL, data);
}
}
}
/* evergreen parts only */
if (rdev->family < CHIP_BARTS)
pcie_lc_cntl |= LC_PMI_TO_L1_DIS;
if (pcie_lc_cntl != pcie_lc_cntl_old)
WREG32_PCIE_PORT(PCIE_LC_CNTL, pcie_lc_cntl);
}