634 lines
14 KiB
C
634 lines
14 KiB
C
/*
|
|
* drivers/sbus/char/jsflash.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
|
|
* Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
|
|
* Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
|
|
* Copyright (C) 1999-2000 Pete Zaitcev
|
|
*
|
|
* This driver is used to program OS into a Flash SIMM on
|
|
* Krups and Espresso platforms.
|
|
*
|
|
* TODO: do not allow erase/programming if file systems are mounted.
|
|
* TODO: Erase/program both banks of a 8MB SIMM.
|
|
*
|
|
* It is anticipated that programming an OS Flash will be a routine
|
|
* procedure. In the same time it is exeedingly dangerous because
|
|
* a user can program its OBP flash with OS image and effectively
|
|
* kill the machine.
|
|
*
|
|
* This driver uses an interface different from Eddie's flash.c
|
|
* as a silly safeguard.
|
|
*
|
|
* XXX The flash.c manipulates page caching characteristics in a certain
|
|
* dubious way; also it assumes that remap_pfn_range() can remap
|
|
* PCI bus locations, which may be false. ioremap() must be used
|
|
* instead. We should discuss this.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/blkdev.h>
|
|
|
|
#define MAJOR_NR JSFD_MAJOR
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/io.h>
|
|
#include <asm/pcic.h>
|
|
#include <asm/oplib.h>
|
|
|
|
#include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
|
|
#define JSFIDSZ (sizeof(struct jsflash_ident_arg))
|
|
#define JSFPRGSZ (sizeof(struct jsflash_program_arg))
|
|
|
|
/*
|
|
* Our device numbers have no business in system headers.
|
|
* The only thing a user knows is the device name /dev/jsflash.
|
|
*
|
|
* Block devices are laid out like this:
|
|
* minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
|
|
* minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
|
|
* minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
|
|
* Total 3 minors per flash device.
|
|
*
|
|
* It is easier to have static size vectors, so we define
|
|
* a total minor range JSF_MAX, which must cover all minors.
|
|
*/
|
|
/* character device */
|
|
#define JSF_MINOR 178 /* 178 is registered with hpa */
|
|
/* block device */
|
|
#define JSF_MAX 3 /* 3 minors wasted total so far. */
|
|
#define JSF_NPART 3 /* 3 minors per flash device */
|
|
#define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
|
|
#define JSF_PART_MASK 0x3 /* 2 bits mask */
|
|
|
|
/*
|
|
* Access functions.
|
|
* We could ioremap(), but it's easier this way.
|
|
*/
|
|
static unsigned int jsf_inl(unsigned long addr)
|
|
{
|
|
unsigned long retval;
|
|
|
|
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
|
|
"=r" (retval) :
|
|
"r" (addr), "i" (ASI_M_BYPASS));
|
|
return retval;
|
|
}
|
|
|
|
static void jsf_outl(unsigned long addr, __u32 data)
|
|
{
|
|
|
|
__asm__ __volatile__("sta %0, [%1] %2\n\t" : :
|
|
"r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
|
|
"memory");
|
|
}
|
|
|
|
/*
|
|
* soft carrier
|
|
*/
|
|
|
|
struct jsfd_part {
|
|
unsigned long dbase;
|
|
unsigned long dsize;
|
|
};
|
|
|
|
struct jsflash {
|
|
unsigned long base;
|
|
unsigned long size;
|
|
unsigned long busy; /* In use? */
|
|
struct jsflash_ident_arg id;
|
|
/* int mbase; */ /* Minor base, typically zero */
|
|
struct jsfd_part dv[JSF_NPART];
|
|
};
|
|
|
|
/*
|
|
* We do not map normal memory or obio as a safety precaution.
|
|
* But offsets are real, for ease of userland programming.
|
|
*/
|
|
#define JSF_BASE_TOP 0x30000000
|
|
#define JSF_BASE_ALL 0x20000000
|
|
|
|
#define JSF_BASE_JK 0x20400000
|
|
|
|
/*
|
|
*/
|
|
static struct gendisk *jsfd_disk[JSF_MAX];
|
|
|
|
/*
|
|
* Let's pretend we may have several of these...
|
|
*/
|
|
static struct jsflash jsf0;
|
|
|
|
/*
|
|
* Wait for AMD to finish its embedded algorithm.
|
|
* We use the Toggle bit DQ6 (0x40) because it does not
|
|
* depend on the data value as /DATA bit DQ7 does.
|
|
*
|
|
* XXX Do we need any timeout here? So far it never hanged, beware broken hw.
|
|
*/
|
|
static void jsf_wait(unsigned long p) {
|
|
unsigned int x1, x2;
|
|
|
|
for (;;) {
|
|
x1 = jsf_inl(p);
|
|
x2 = jsf_inl(p);
|
|
if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Programming will only work if Flash is clean,
|
|
* we leave it to the programmer application.
|
|
*
|
|
* AMD must be programmed one byte at a time;
|
|
* thus, Simple Tech SIMM must be written 4 bytes at a time.
|
|
*
|
|
* Write waits for the chip to become ready after the write
|
|
* was finished. This is done so that application would read
|
|
* consistent data after the write is done.
|
|
*/
|
|
static void jsf_write4(unsigned long fa, u32 data) {
|
|
|
|
jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */
|
|
jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */
|
|
jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */
|
|
jsf_outl(fa, data);
|
|
|
|
jsf_wait(fa);
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static void jsfd_read(char *buf, unsigned long p, size_t togo) {
|
|
union byte4 {
|
|
char s[4];
|
|
unsigned int n;
|
|
} b;
|
|
|
|
while (togo >= 4) {
|
|
togo -= 4;
|
|
b.n = jsf_inl(p);
|
|
memcpy(buf, b.s, 4);
|
|
p += 4;
|
|
buf += 4;
|
|
}
|
|
}
|
|
|
|
static void jsfd_do_request(struct request_queue *q)
|
|
{
|
|
struct request *req;
|
|
|
|
while ((req = elv_next_request(q)) != NULL) {
|
|
struct jsfd_part *jdp = req->rq_disk->private_data;
|
|
unsigned long offset = req->sector << 9;
|
|
size_t len = req->current_nr_sectors << 9;
|
|
|
|
if ((offset + len) > jdp->dsize) {
|
|
end_request(req, 0);
|
|
continue;
|
|
}
|
|
|
|
if (rq_data_dir(req) != READ) {
|
|
printk(KERN_ERR "jsfd: write\n");
|
|
end_request(req, 0);
|
|
continue;
|
|
}
|
|
|
|
if ((jdp->dbase & 0xff000000) != 0x20000000) {
|
|
printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
|
|
end_request(req, 0);
|
|
continue;
|
|
}
|
|
|
|
jsfd_read(req->buffer, jdp->dbase + offset, len);
|
|
|
|
end_request(req, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The memory devices use the full 32/64 bits of the offset, and so we cannot
|
|
* check against negative addresses: they are ok. The return value is weird,
|
|
* though, in that case (0).
|
|
*
|
|
* also note that seeking relative to the "end of file" isn't supported:
|
|
* it has no meaning, so it returns -EINVAL.
|
|
*/
|
|
static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
|
|
{
|
|
loff_t ret;
|
|
|
|
lock_kernel();
|
|
switch (orig) {
|
|
case 0:
|
|
file->f_pos = offset;
|
|
ret = file->f_pos;
|
|
break;
|
|
case 1:
|
|
file->f_pos += offset;
|
|
ret = file->f_pos;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* OS SIMM Cannot be read in other size but a 32bits word.
|
|
*/
|
|
static ssize_t jsf_read(struct file * file, char __user * buf,
|
|
size_t togo, loff_t *ppos)
|
|
{
|
|
unsigned long p = *ppos;
|
|
char __user *tmp = buf;
|
|
|
|
union byte4 {
|
|
char s[4];
|
|
unsigned int n;
|
|
} b;
|
|
|
|
if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
|
|
return 0;
|
|
}
|
|
|
|
if ((p + togo) < p /* wrap */
|
|
|| (p + togo) >= JSF_BASE_TOP) {
|
|
togo = JSF_BASE_TOP - p;
|
|
}
|
|
|
|
if (p < JSF_BASE_ALL && togo != 0) {
|
|
#if 0 /* __bzero XXX */
|
|
size_t x = JSF_BASE_ALL - p;
|
|
if (x > togo) x = togo;
|
|
clear_user(tmp, x);
|
|
tmp += x;
|
|
p += x;
|
|
togo -= x;
|
|
#else
|
|
/*
|
|
* Implementation of clear_user() calls __bzero
|
|
* without regard to modversions,
|
|
* so we cannot build a module.
|
|
*/
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
while (togo >= 4) {
|
|
togo -= 4;
|
|
b.n = jsf_inl(p);
|
|
if (copy_to_user(tmp, b.s, 4))
|
|
return -EFAULT;
|
|
tmp += 4;
|
|
p += 4;
|
|
}
|
|
|
|
/*
|
|
* XXX Small togo may remain if 1 byte is ordered.
|
|
* It would be nice if we did a word size read and unpacked it.
|
|
*/
|
|
|
|
*ppos = p;
|
|
return tmp-buf;
|
|
}
|
|
|
|
static ssize_t jsf_write(struct file * file, const char __user * buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
*/
|
|
static int jsf_ioctl_erase(unsigned long arg)
|
|
{
|
|
unsigned long p;
|
|
|
|
/* p = jsf0.base; hits wrong bank */
|
|
p = 0x20400000;
|
|
|
|
jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */
|
|
jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */
|
|
jsf_outl(p, 0x80808080); /* Erase setup */
|
|
jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */
|
|
jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */
|
|
jsf_outl(p, 0x10101010); /* Chip erase */
|
|
|
|
#if 0
|
|
/*
|
|
* This code is ok, except that counter based timeout
|
|
* has no place in this world. Let's just drop timeouts...
|
|
*/
|
|
{
|
|
int i;
|
|
__u32 x;
|
|
for (i = 0; i < 1000000; i++) {
|
|
x = jsf_inl(p);
|
|
if ((x & 0x80808080) == 0x80808080) break;
|
|
}
|
|
if ((x & 0x80808080) != 0x80808080) {
|
|
printk("jsf0: erase timeout with 0x%08x\n", x);
|
|
} else {
|
|
printk("jsf0: erase done with 0x%08x\n", x);
|
|
}
|
|
}
|
|
#else
|
|
jsf_wait(p);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Program a block of flash.
|
|
* Very simple because we can do it byte by byte anyway.
|
|
*/
|
|
static int jsf_ioctl_program(void __user *arg)
|
|
{
|
|
struct jsflash_program_arg abuf;
|
|
char __user *uptr;
|
|
unsigned long p;
|
|
unsigned int togo;
|
|
union {
|
|
unsigned int n;
|
|
char s[4];
|
|
} b;
|
|
|
|
if (copy_from_user(&abuf, arg, JSFPRGSZ))
|
|
return -EFAULT;
|
|
p = abuf.off;
|
|
togo = abuf.size;
|
|
if ((togo & 3) || (p & 3)) return -EINVAL;
|
|
|
|
uptr = (char __user *) (unsigned long) abuf.data;
|
|
while (togo != 0) {
|
|
togo -= 4;
|
|
if (copy_from_user(&b.s[0], uptr, 4))
|
|
return -EFAULT;
|
|
jsf_write4(p, b.n);
|
|
p += 4;
|
|
uptr += 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
int error = -ENOTTY;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
switch (cmd) {
|
|
case JSFLASH_IDENT:
|
|
if (copy_to_user(argp, &jsf0.id, JSFIDSZ))
|
|
return -EFAULT;
|
|
break;
|
|
case JSFLASH_ERASE:
|
|
error = jsf_ioctl_erase(arg);
|
|
break;
|
|
case JSFLASH_PROGRAM:
|
|
error = jsf_ioctl_program(argp);
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int jsf_open(struct inode * inode, struct file * filp)
|
|
{
|
|
lock_kernel();
|
|
if (jsf0.base == 0) {
|
|
unlock_kernel();
|
|
return -ENXIO;
|
|
}
|
|
if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) {
|
|
unlock_kernel();
|
|
return -EBUSY;
|
|
}
|
|
|
|
unlock_kernel();
|
|
return 0; /* XXX What security? */
|
|
}
|
|
|
|
static int jsf_release(struct inode *inode, struct file *file)
|
|
{
|
|
jsf0.busy = 0;
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations jsf_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = jsf_lseek,
|
|
.read = jsf_read,
|
|
.write = jsf_write,
|
|
.ioctl = jsf_ioctl,
|
|
.mmap = jsf_mmap,
|
|
.open = jsf_open,
|
|
.release = jsf_release,
|
|
};
|
|
|
|
static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
|
|
|
|
static struct block_device_operations jsfd_fops = {
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int jsflash_init(void)
|
|
{
|
|
int rc;
|
|
struct jsflash *jsf;
|
|
int node;
|
|
char banner[128];
|
|
struct linux_prom_registers reg0;
|
|
|
|
node = prom_getchild(prom_root_node);
|
|
node = prom_searchsiblings(node, "flash-memory");
|
|
if (node != 0 && node != -1) {
|
|
if (prom_getproperty(node, "reg",
|
|
(char *)®0, sizeof(reg0)) == -1) {
|
|
printk("jsflash: no \"reg\" property\n");
|
|
return -ENXIO;
|
|
}
|
|
if (reg0.which_io != 0) {
|
|
printk("jsflash: bus number nonzero: 0x%x:%x\n",
|
|
reg0.which_io, reg0.phys_addr);
|
|
return -ENXIO;
|
|
}
|
|
/*
|
|
* Flash may be somewhere else, for instance on Ebus.
|
|
* So, don't do the following check for IIep flash space.
|
|
*/
|
|
#if 0
|
|
if ((reg0.phys_addr >> 24) != 0x20) {
|
|
printk("jsflash: suspicious address: 0x%x:%x\n",
|
|
reg0.which_io, reg0.phys_addr);
|
|
return -ENXIO;
|
|
}
|
|
#endif
|
|
if ((int)reg0.reg_size <= 0) {
|
|
printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
|
|
return -ENXIO;
|
|
}
|
|
} else {
|
|
/* XXX Remove this code once PROLL ID12 got widespread */
|
|
printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
|
|
prom_getproperty(prom_root_node, "banner-name", banner, 128);
|
|
if (strcmp (banner, "JavaStation-NC") != 0 &&
|
|
strcmp (banner, "JavaStation-E") != 0) {
|
|
return -ENXIO;
|
|
}
|
|
reg0.which_io = 0;
|
|
reg0.phys_addr = 0x20400000;
|
|
reg0.reg_size = 0x00800000;
|
|
}
|
|
|
|
/* Let us be really paranoid for modifications to probing code. */
|
|
/* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */
|
|
if (sparc_cpu_model != sun4m) {
|
|
/* We must be on sun4m because we use MMU Bypass ASI. */
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (jsf0.base == 0) {
|
|
jsf = &jsf0;
|
|
|
|
jsf->base = reg0.phys_addr;
|
|
jsf->size = reg0.reg_size;
|
|
|
|
/* XXX Redo the userland interface. */
|
|
jsf->id.off = JSF_BASE_ALL;
|
|
jsf->id.size = 0x01000000; /* 16M - all segments */
|
|
strcpy(jsf->id.name, "Krups_all");
|
|
|
|
jsf->dv[0].dbase = jsf->base;
|
|
jsf->dv[0].dsize = jsf->size;
|
|
jsf->dv[1].dbase = jsf->base + 1024;
|
|
jsf->dv[1].dsize = jsf->size - 1024;
|
|
jsf->dv[2].dbase = JSF_BASE_ALL;
|
|
jsf->dv[2].dsize = 0x01000000;
|
|
|
|
printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
|
|
(int) (jsf->size / (1024*1024)));
|
|
}
|
|
|
|
if ((rc = misc_register(&jsf_dev)) != 0) {
|
|
printk(KERN_ERR "jsf: unable to get misc minor %d\n",
|
|
JSF_MINOR);
|
|
jsf0.base = 0;
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct request_queue *jsf_queue;
|
|
|
|
static int jsfd_init(void)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
struct jsflash *jsf;
|
|
struct jsfd_part *jdp;
|
|
int err;
|
|
int i;
|
|
|
|
if (jsf0.base == 0)
|
|
return -ENXIO;
|
|
|
|
err = -ENOMEM;
|
|
for (i = 0; i < JSF_MAX; i++) {
|
|
struct gendisk *disk = alloc_disk(1);
|
|
if (!disk)
|
|
goto out;
|
|
jsfd_disk[i] = disk;
|
|
}
|
|
|
|
if (register_blkdev(JSFD_MAJOR, "jsfd")) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
jsf_queue = blk_init_queue(jsfd_do_request, &lock);
|
|
if (!jsf_queue) {
|
|
err = -ENOMEM;
|
|
unregister_blkdev(JSFD_MAJOR, "jsfd");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < JSF_MAX; i++) {
|
|
struct gendisk *disk = jsfd_disk[i];
|
|
if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
|
|
jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */
|
|
jdp = &jsf->dv[i&JSF_PART_MASK];
|
|
|
|
disk->major = JSFD_MAJOR;
|
|
disk->first_minor = i;
|
|
sprintf(disk->disk_name, "jsfd%d", i);
|
|
disk->fops = &jsfd_fops;
|
|
set_capacity(disk, jdp->dsize >> 9);
|
|
disk->private_data = jdp;
|
|
disk->queue = jsf_queue;
|
|
add_disk(disk);
|
|
set_disk_ro(disk, 1);
|
|
}
|
|
return 0;
|
|
out:
|
|
while (i--)
|
|
put_disk(jsfd_disk[i]);
|
|
return err;
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __init jsflash_init_module(void) {
|
|
int rc;
|
|
|
|
if ((rc = jsflash_init()) == 0) {
|
|
jsfd_init();
|
|
return 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void __exit jsflash_cleanup_module(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < JSF_MAX; i++) {
|
|
if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
|
|
del_gendisk(jsfd_disk[i]);
|
|
put_disk(jsfd_disk[i]);
|
|
}
|
|
if (jsf0.busy)
|
|
printk("jsf0: cleaning busy unit\n");
|
|
jsf0.base = 0;
|
|
jsf0.busy = 0;
|
|
|
|
misc_deregister(&jsf_dev);
|
|
unregister_blkdev(JSFD_MAJOR, "jsfd");
|
|
blk_cleanup_queue(jsf_queue);
|
|
}
|
|
|
|
module_init(jsflash_init_module);
|
|
module_exit(jsflash_cleanup_module);
|