429 lines
10 KiB
C
429 lines
10 KiB
C
/*
|
|
* Copyright © 2012 NetCommWireless
|
|
* Iwo Mergler <Iwo.Mergler@netcommwireless.com.au>
|
|
*
|
|
* Test for multi-bit error recovery on a NAND page This mostly tests the
|
|
* ECC controller / driver.
|
|
*
|
|
* There are two test modes:
|
|
*
|
|
* 0 - artificially inserting bit errors until the ECC fails
|
|
* This is the default method and fairly quick. It should
|
|
* be independent of the quality of the FLASH.
|
|
*
|
|
* 1 - re-writing the same pattern repeatedly until the ECC fails.
|
|
* This method relies on the physics of NAND FLASH to eventually
|
|
* generate '0' bits if '1' has been written sufficient times.
|
|
* Depending on the NAND, the first bit errors will appear after
|
|
* 1000 or more writes and then will usually snowball, reaching the
|
|
* limits of the ECC quickly.
|
|
*
|
|
* The test stops after 10000 cycles, should your FLASH be
|
|
* exceptionally good and not generate bit errors before that. Try
|
|
* a different page in that case.
|
|
*
|
|
* Please note that neither of these tests will significantly 'use up' any
|
|
* FLASH endurance. Only a maximum of two erase operations will be performed.
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; see the file COPYING. If not, write to the Free Software
|
|
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/slab.h>
|
|
#include "mtd_test.h"
|
|
|
|
static int dev;
|
|
module_param(dev, int, S_IRUGO);
|
|
MODULE_PARM_DESC(dev, "MTD device number to use");
|
|
|
|
static unsigned page_offset;
|
|
module_param(page_offset, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(page_offset, "Page number relative to dev start");
|
|
|
|
static unsigned seed;
|
|
module_param(seed, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(seed, "Random seed");
|
|
|
|
static int mode;
|
|
module_param(mode, int, S_IRUGO);
|
|
MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test");
|
|
|
|
static unsigned max_overwrite = 10000;
|
|
|
|
static loff_t offset; /* Offset of the page we're using. */
|
|
static unsigned eraseblock; /* Eraseblock number for our page. */
|
|
|
|
/* We assume that the ECC can correct up to a certain number
|
|
* of biterrors per subpage. */
|
|
static unsigned subsize; /* Size of subpages */
|
|
static unsigned subcount; /* Number of subpages per page */
|
|
|
|
static struct mtd_info *mtd; /* MTD device */
|
|
|
|
static uint8_t *wbuffer; /* One page write / compare buffer */
|
|
static uint8_t *rbuffer; /* One page read buffer */
|
|
|
|
/* 'random' bytes from known offsets */
|
|
static uint8_t hash(unsigned offset)
|
|
{
|
|
unsigned v = offset;
|
|
unsigned char c;
|
|
v ^= 0x7f7edfd3;
|
|
v = v ^ (v >> 3);
|
|
v = v ^ (v >> 5);
|
|
v = v ^ (v >> 13);
|
|
c = v & 0xFF;
|
|
/* Reverse bits of result. */
|
|
c = (c & 0x0F) << 4 | (c & 0xF0) >> 4;
|
|
c = (c & 0x33) << 2 | (c & 0xCC) >> 2;
|
|
c = (c & 0x55) << 1 | (c & 0xAA) >> 1;
|
|
return c;
|
|
}
|
|
|
|
/* Writes wbuffer to page */
|
|
static int write_page(int log)
|
|
{
|
|
if (log)
|
|
pr_info("write_page\n");
|
|
|
|
return mtdtest_write(mtd, offset, mtd->writesize, wbuffer);
|
|
}
|
|
|
|
/* Re-writes the data area while leaving the OOB alone. */
|
|
static int rewrite_page(int log)
|
|
{
|
|
int err = 0;
|
|
struct mtd_oob_ops ops;
|
|
|
|
if (log)
|
|
pr_info("rewrite page\n");
|
|
|
|
ops.mode = MTD_OPS_RAW; /* No ECC */
|
|
ops.len = mtd->writesize;
|
|
ops.retlen = 0;
|
|
ops.ooblen = 0;
|
|
ops.oobretlen = 0;
|
|
ops.ooboffs = 0;
|
|
ops.datbuf = wbuffer;
|
|
ops.oobbuf = NULL;
|
|
|
|
err = mtd_write_oob(mtd, offset, &ops);
|
|
if (err || ops.retlen != mtd->writesize) {
|
|
pr_err("error: write_oob failed (%d)\n", err);
|
|
if (!err)
|
|
err = -EIO;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Reads page into rbuffer. Returns number of corrected bit errors (>=0)
|
|
* or error (<0) */
|
|
static int read_page(int log)
|
|
{
|
|
int err = 0;
|
|
size_t read;
|
|
struct mtd_ecc_stats oldstats;
|
|
|
|
if (log)
|
|
pr_info("read_page\n");
|
|
|
|
/* Saving last mtd stats */
|
|
memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats));
|
|
|
|
err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer);
|
|
if (err == -EUCLEAN)
|
|
err = mtd->ecc_stats.corrected - oldstats.corrected;
|
|
|
|
if (err < 0 || read != mtd->writesize) {
|
|
pr_err("error: read failed at %#llx\n", (long long)offset);
|
|
if (err >= 0)
|
|
err = -EIO;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Verifies rbuffer against random sequence */
|
|
static int verify_page(int log)
|
|
{
|
|
unsigned i, errs = 0;
|
|
|
|
if (log)
|
|
pr_info("verify_page\n");
|
|
|
|
for (i = 0; i < mtd->writesize; i++) {
|
|
if (rbuffer[i] != hash(i+seed)) {
|
|
pr_err("Error: page offset %u, expected %02x, got %02x\n",
|
|
i, hash(i+seed), rbuffer[i]);
|
|
errs++;
|
|
}
|
|
}
|
|
|
|
if (errs)
|
|
return -EIO;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#define CBIT(v, n) ((v) & (1 << (n)))
|
|
#define BCLR(v, n) ((v) = (v) & ~(1 << (n)))
|
|
|
|
/* Finds the first '1' bit in wbuffer starting at offset 'byte'
|
|
* and sets it to '0'. */
|
|
static int insert_biterror(unsigned byte)
|
|
{
|
|
int bit;
|
|
|
|
while (byte < mtd->writesize) {
|
|
for (bit = 7; bit >= 0; bit--) {
|
|
if (CBIT(wbuffer[byte], bit)) {
|
|
BCLR(wbuffer[byte], bit);
|
|
pr_info("Inserted biterror @ %u/%u\n", byte, bit);
|
|
return 0;
|
|
}
|
|
}
|
|
byte++;
|
|
}
|
|
pr_err("biterror: Failed to find a '1' bit\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Writes 'random' data to page and then introduces deliberate bit
|
|
* errors into the page, while verifying each step. */
|
|
static int incremental_errors_test(void)
|
|
{
|
|
int err = 0;
|
|
unsigned i;
|
|
unsigned errs_per_subpage = 0;
|
|
|
|
pr_info("incremental biterrors test\n");
|
|
|
|
for (i = 0; i < mtd->writesize; i++)
|
|
wbuffer[i] = hash(i+seed);
|
|
|
|
err = write_page(1);
|
|
if (err)
|
|
goto exit;
|
|
|
|
while (1) {
|
|
|
|
err = rewrite_page(1);
|
|
if (err)
|
|
goto exit;
|
|
|
|
err = read_page(1);
|
|
if (err > 0)
|
|
pr_info("Read reported %d corrected bit errors\n", err);
|
|
if (err < 0) {
|
|
pr_err("After %d biterrors per subpage, read reported error %d\n",
|
|
errs_per_subpage, err);
|
|
err = 0;
|
|
goto exit;
|
|
}
|
|
|
|
err = verify_page(1);
|
|
if (err) {
|
|
pr_err("ECC failure, read data is incorrect despite read success\n");
|
|
goto exit;
|
|
}
|
|
|
|
pr_info("Successfully corrected %d bit errors per subpage\n",
|
|
errs_per_subpage);
|
|
|
|
for (i = 0; i < subcount; i++) {
|
|
err = insert_biterror(i * subsize);
|
|
if (err < 0)
|
|
goto exit;
|
|
}
|
|
errs_per_subpage++;
|
|
}
|
|
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Writes 'random' data to page and then re-writes that same data repeatedly.
|
|
This eventually develops bit errors (bits written as '1' will slowly become
|
|
'0'), which are corrected as far as the ECC is capable of. */
|
|
static int overwrite_test(void)
|
|
{
|
|
int err = 0;
|
|
unsigned i;
|
|
unsigned max_corrected = 0;
|
|
unsigned opno = 0;
|
|
/* We don't expect more than this many correctable bit errors per
|
|
* page. */
|
|
#define MAXBITS 512
|
|
static unsigned bitstats[MAXBITS]; /* bit error histogram. */
|
|
|
|
memset(bitstats, 0, sizeof(bitstats));
|
|
|
|
pr_info("overwrite biterrors test\n");
|
|
|
|
for (i = 0; i < mtd->writesize; i++)
|
|
wbuffer[i] = hash(i+seed);
|
|
|
|
err = write_page(1);
|
|
if (err)
|
|
goto exit;
|
|
|
|
while (opno < max_overwrite) {
|
|
|
|
err = rewrite_page(0);
|
|
if (err)
|
|
break;
|
|
|
|
err = read_page(0);
|
|
if (err >= 0) {
|
|
if (err >= MAXBITS) {
|
|
pr_info("Implausible number of bit errors corrected\n");
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
bitstats[err]++;
|
|
if (err > max_corrected) {
|
|
max_corrected = err;
|
|
pr_info("Read reported %d corrected bit errors\n",
|
|
err);
|
|
}
|
|
} else { /* err < 0 */
|
|
pr_info("Read reported error %d\n", err);
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
err = verify_page(0);
|
|
if (err) {
|
|
bitstats[max_corrected] = opno;
|
|
pr_info("ECC failure, read data is incorrect despite read success\n");
|
|
break;
|
|
}
|
|
|
|
opno++;
|
|
}
|
|
|
|
/* At this point bitstats[0] contains the number of ops with no bit
|
|
* errors, bitstats[1] the number of ops with 1 bit error, etc. */
|
|
pr_info("Bit error histogram (%d operations total):\n", opno);
|
|
for (i = 0; i < max_corrected; i++)
|
|
pr_info("Page reads with %3d corrected bit errors: %d\n",
|
|
i, bitstats[i]);
|
|
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
static int __init mtd_nandbiterrs_init(void)
|
|
{
|
|
int err = 0;
|
|
|
|
printk("\n");
|
|
printk(KERN_INFO "==================================================\n");
|
|
pr_info("MTD device: %d\n", dev);
|
|
|
|
mtd = get_mtd_device(NULL, dev);
|
|
if (IS_ERR(mtd)) {
|
|
err = PTR_ERR(mtd);
|
|
pr_err("error: cannot get MTD device\n");
|
|
goto exit_mtddev;
|
|
}
|
|
|
|
if (!mtd_type_is_nand(mtd)) {
|
|
pr_info("this test requires NAND flash\n");
|
|
err = -ENODEV;
|
|
goto exit_nand;
|
|
}
|
|
|
|
pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n",
|
|
(unsigned long long)mtd->size, mtd->erasesize,
|
|
mtd->writesize, mtd->oobsize);
|
|
|
|
subsize = mtd->writesize >> mtd->subpage_sft;
|
|
subcount = mtd->writesize / subsize;
|
|
|
|
pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);
|
|
|
|
offset = (loff_t)page_offset * mtd->writesize;
|
|
eraseblock = mtd_div_by_eb(offset, mtd);
|
|
|
|
pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",
|
|
page_offset, offset, eraseblock);
|
|
|
|
wbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!wbuffer) {
|
|
err = -ENOMEM;
|
|
goto exit_wbuffer;
|
|
}
|
|
|
|
rbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!rbuffer) {
|
|
err = -ENOMEM;
|
|
goto exit_rbuffer;
|
|
}
|
|
|
|
err = mtdtest_erase_eraseblock(mtd, eraseblock);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
if (mode == 0)
|
|
err = incremental_errors_test();
|
|
else
|
|
err = overwrite_test();
|
|
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
/* We leave the block un-erased in case of test failure. */
|
|
err = mtdtest_erase_eraseblock(mtd, eraseblock);
|
|
if (err)
|
|
goto exit_error;
|
|
|
|
err = -EIO;
|
|
pr_info("finished successfully.\n");
|
|
printk(KERN_INFO "==================================================\n");
|
|
|
|
exit_error:
|
|
kfree(rbuffer);
|
|
exit_rbuffer:
|
|
kfree(wbuffer);
|
|
exit_wbuffer:
|
|
/* Nothing */
|
|
exit_nand:
|
|
put_mtd_device(mtd);
|
|
exit_mtddev:
|
|
return err;
|
|
}
|
|
|
|
static void __exit mtd_nandbiterrs_exit(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
module_init(mtd_nandbiterrs_init);
|
|
module_exit(mtd_nandbiterrs_exit);
|
|
|
|
MODULE_DESCRIPTION("NAND bit error recovery test");
|
|
MODULE_AUTHOR("Iwo Mergler");
|
|
MODULE_LICENSE("GPL");
|