OpenCloudOS-Kernel/drivers/mfd/ab3100-core.c

995 lines
22 KiB
C

/*
* Copyright (C) 2007-2009 ST-Ericsson
* License terms: GNU General Public License (GPL) version 2
* Low-level core for exclusive access to the AB3100 IC on the I2C bus
* and some basic chip-configuration.
* Author: Linus Walleij <linus.walleij@stericsson.com>
*/
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/mfd/ab3100.h>
/* These are the only registers inside AB3100 used in this main file */
/* Interrupt event registers */
#define AB3100_EVENTA1 0x21
#define AB3100_EVENTA2 0x22
#define AB3100_EVENTA3 0x23
/* AB3100 DAC converter registers */
#define AB3100_DIS 0x00
#define AB3100_D0C 0x01
#define AB3100_D1C 0x02
#define AB3100_D2C 0x03
#define AB3100_D3C 0x04
/* Chip ID register */
#define AB3100_CID 0x20
/* AB3100 interrupt registers */
#define AB3100_IMRA1 0x24
#define AB3100_IMRA2 0x25
#define AB3100_IMRA3 0x26
#define AB3100_IMRB1 0x2B
#define AB3100_IMRB2 0x2C
#define AB3100_IMRB3 0x2D
/* System Power Monitoring and control registers */
#define AB3100_MCA 0x2E
#define AB3100_MCB 0x2F
/* SIM power up */
#define AB3100_SUP 0x50
/*
* I2C communication
*
* The AB3100 is usually assigned address 0x48 (7-bit)
* The chip is defined in the platform i2c_board_data section.
*/
u8 ab3100_get_chip_type(struct ab3100 *ab3100)
{
u8 chip = ABUNKNOWN;
switch (ab3100->chip_id & 0xf0) {
case 0xa0:
chip = AB3000;
break;
case 0xc0:
chip = AB3100;
break;
}
return chip;
}
EXPORT_SYMBOL(ab3100_get_chip_type);
int ab3100_set_register_interruptible(struct ab3100 *ab3100, u8 reg, u8 regval)
{
u8 regandval[2] = {reg, regval};
int err;
err = mutex_lock_interruptible(&ab3100->access_mutex);
if (err)
return err;
/*
* A two-byte write message with the first byte containing the register
* number and the second byte containing the value to be written
* effectively sets a register in the AB3100.
*/
err = i2c_master_send(ab3100->i2c_client, regandval, 2);
if (err < 0) {
dev_err(ab3100->dev,
"write error (write register): %d\n",
err);
} else if (err != 2) {
dev_err(ab3100->dev,
"write error (write register) "
"%d bytes transferred (expected 2)\n",
err);
err = -EIO;
} else {
/* All is well */
err = 0;
}
mutex_unlock(&ab3100->access_mutex);
return err;
}
EXPORT_SYMBOL(ab3100_set_register_interruptible);
/*
* The test registers exist at an I2C bus address up one
* from the ordinary base. They are not supposed to be used
* in production code, but sometimes you have to do that
* anyway. It's currently only used from this file so declare
* it static and do not export.
*/
static int ab3100_set_test_register_interruptible(struct ab3100 *ab3100,
u8 reg, u8 regval)
{
u8 regandval[2] = {reg, regval};
int err;
err = mutex_lock_interruptible(&ab3100->access_mutex);
if (err)
return err;
err = i2c_master_send(ab3100->testreg_client, regandval, 2);
if (err < 0) {
dev_err(ab3100->dev,
"write error (write test register): %d\n",
err);
} else if (err != 2) {
dev_err(ab3100->dev,
"write error (write test register) "
"%d bytes transferred (expected 2)\n",
err);
err = -EIO;
} else {
/* All is well */
err = 0;
}
mutex_unlock(&ab3100->access_mutex);
return err;
}
int ab3100_get_register_interruptible(struct ab3100 *ab3100, u8 reg, u8 *regval)
{
int err;
err = mutex_lock_interruptible(&ab3100->access_mutex);
if (err)
return err;
/*
* AB3100 require an I2C "stop" command between each message, else
* it will not work. The only way of achieveing this with the
* message transport layer is to send the read and write messages
* separately.
*/
err = i2c_master_send(ab3100->i2c_client, &reg, 1);
if (err < 0) {
dev_err(ab3100->dev,
"write error (send register address): %d\n",
err);
goto get_reg_out_unlock;
} else if (err != 1) {
dev_err(ab3100->dev,
"write error (send register address) "
"%d bytes transferred (expected 1)\n",
err);
err = -EIO;
goto get_reg_out_unlock;
} else {
/* All is well */
err = 0;
}
err = i2c_master_recv(ab3100->i2c_client, regval, 1);
if (err < 0) {
dev_err(ab3100->dev,
"write error (read register): %d\n",
err);
goto get_reg_out_unlock;
} else if (err != 1) {
dev_err(ab3100->dev,
"write error (read register) "
"%d bytes transferred (expected 1)\n",
err);
err = -EIO;
goto get_reg_out_unlock;
} else {
/* All is well */
err = 0;
}
get_reg_out_unlock:
mutex_unlock(&ab3100->access_mutex);
return err;
}
EXPORT_SYMBOL(ab3100_get_register_interruptible);
int ab3100_get_register_page_interruptible(struct ab3100 *ab3100,
u8 first_reg, u8 *regvals, u8 numregs)
{
int err;
if (ab3100->chip_id == 0xa0 ||
ab3100->chip_id == 0xa1)
/* These don't support paged reads */
return -EIO;
err = mutex_lock_interruptible(&ab3100->access_mutex);
if (err)
return err;
/*
* Paged read also require an I2C "stop" command.
*/
err = i2c_master_send(ab3100->i2c_client, &first_reg, 1);
if (err < 0) {
dev_err(ab3100->dev,
"write error (send first register address): %d\n",
err);
goto get_reg_page_out_unlock;
} else if (err != 1) {
dev_err(ab3100->dev,
"write error (send first register address) "
"%d bytes transferred (expected 1)\n",
err);
err = -EIO;
goto get_reg_page_out_unlock;
}
err = i2c_master_recv(ab3100->i2c_client, regvals, numregs);
if (err < 0) {
dev_err(ab3100->dev,
"write error (read register page): %d\n",
err);
goto get_reg_page_out_unlock;
} else if (err != numregs) {
dev_err(ab3100->dev,
"write error (read register page) "
"%d bytes transferred (expected %d)\n",
err, numregs);
err = -EIO;
goto get_reg_page_out_unlock;
}
/* All is well */
err = 0;
get_reg_page_out_unlock:
mutex_unlock(&ab3100->access_mutex);
return err;
}
EXPORT_SYMBOL(ab3100_get_register_page_interruptible);
int ab3100_mask_and_set_register_interruptible(struct ab3100 *ab3100,
u8 reg, u8 andmask, u8 ormask)
{
u8 regandval[2] = {reg, 0};
int err;
err = mutex_lock_interruptible(&ab3100->access_mutex);
if (err)
return err;
/* First read out the target register */
err = i2c_master_send(ab3100->i2c_client, &reg, 1);
if (err < 0) {
dev_err(ab3100->dev,
"write error (maskset send address): %d\n",
err);
goto get_maskset_unlock;
} else if (err != 1) {
dev_err(ab3100->dev,
"write error (maskset send address) "
"%d bytes transferred (expected 1)\n",
err);
err = -EIO;
goto get_maskset_unlock;
}
err = i2c_master_recv(ab3100->i2c_client, &regandval[1], 1);
if (err < 0) {
dev_err(ab3100->dev,
"write error (maskset read register): %d\n",
err);
goto get_maskset_unlock;
} else if (err != 1) {
dev_err(ab3100->dev,
"write error (maskset read register) "
"%d bytes transferred (expected 1)\n",
err);
err = -EIO;
goto get_maskset_unlock;
}
/* Modify the register */
regandval[1] &= andmask;
regandval[1] |= ormask;
/* Write the register */
err = i2c_master_send(ab3100->i2c_client, regandval, 2);
if (err < 0) {
dev_err(ab3100->dev,
"write error (write register): %d\n",
err);
goto get_maskset_unlock;
} else if (err != 2) {
dev_err(ab3100->dev,
"write error (write register) "
"%d bytes transferred (expected 2)\n",
err);
err = -EIO;
goto get_maskset_unlock;
}
/* All is well */
err = 0;
get_maskset_unlock:
mutex_unlock(&ab3100->access_mutex);
return err;
}
EXPORT_SYMBOL(ab3100_mask_and_set_register_interruptible);
/*
* Register a simple callback for handling any AB3100 events.
*/
int ab3100_event_register(struct ab3100 *ab3100,
struct notifier_block *nb)
{
return blocking_notifier_chain_register(&ab3100->event_subscribers,
nb);
}
EXPORT_SYMBOL(ab3100_event_register);
/*
* Remove a previously registered callback.
*/
int ab3100_event_unregister(struct ab3100 *ab3100,
struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&ab3100->event_subscribers,
nb);
}
EXPORT_SYMBOL(ab3100_event_unregister);
int ab3100_event_registers_startup_state_get(struct ab3100 *ab3100,
u32 *fatevent)
{
if (!ab3100->startup_events_read)
return -EAGAIN; /* Try again later */
*fatevent = ab3100->startup_events;
return 0;
}
EXPORT_SYMBOL(ab3100_event_registers_startup_state_get);
/* Interrupt handling worker */
static void ab3100_work(struct work_struct *work)
{
struct ab3100 *ab3100 = container_of(work, struct ab3100, work);
u8 event_regs[3];
u32 fatevent;
int err;
err = ab3100_get_register_page_interruptible(ab3100, AB3100_EVENTA1,
event_regs, 3);
if (err)
goto err_event_wq;
fatevent = (event_regs[0] << 16) |
(event_regs[1] << 8) |
event_regs[2];
if (!ab3100->startup_events_read) {
ab3100->startup_events = fatevent;
ab3100->startup_events_read = true;
}
/*
* The notified parties will have to mask out the events
* they're interested in and react to them. They will be
* notified on all events, then they use the fatevent value
* to determine if they're interested.
*/
blocking_notifier_call_chain(&ab3100->event_subscribers,
fatevent, NULL);
dev_dbg(ab3100->dev,
"IRQ Event: 0x%08x\n", fatevent);
/* By now the IRQ should be acked and deasserted so enable it again */
enable_irq(ab3100->i2c_client->irq);
return;
err_event_wq:
dev_dbg(ab3100->dev,
"error in event workqueue\n");
/* Enable the IRQ anyway, what choice do we have? */
enable_irq(ab3100->i2c_client->irq);
return;
}
static irqreturn_t ab3100_irq_handler(int irq, void *data)
{
struct ab3100 *ab3100 = data;
/*
* Disable the IRQ and dispatch a worker to handle the
* event. Since the chip resides on I2C this is slow
* stuff and we will re-enable the interrupts once th
* worker has finished.
*/
disable_irq_nosync(irq);
schedule_work(&ab3100->work);
return IRQ_HANDLED;
}
#ifdef CONFIG_DEBUG_FS
/*
* Some debugfs entries only exposed if we're using debug
*/
static int ab3100_registers_print(struct seq_file *s, void *p)
{
struct ab3100 *ab3100 = s->private;
u8 value;
u8 reg;
seq_printf(s, "AB3100 registers:\n");
for (reg = 0; reg < 0xff; reg++) {
ab3100_get_register_interruptible(ab3100, reg, &value);
seq_printf(s, "[0x%x]: 0x%x\n", reg, value);
}
return 0;
}
static int ab3100_registers_open(struct inode *inode, struct file *file)
{
return single_open(file, ab3100_registers_print, inode->i_private);
}
static const struct file_operations ab3100_registers_fops = {
.open = ab3100_registers_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.owner = THIS_MODULE,
};
struct ab3100_get_set_reg_priv {
struct ab3100 *ab3100;
bool mode;
};
static int ab3100_get_set_reg_open_file(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t ab3100_get_set_reg(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct ab3100_get_set_reg_priv *priv = file->private_data;
struct ab3100 *ab3100 = priv->ab3100;
char buf[32];
ssize_t buf_size;
int regp;
unsigned long user_reg;
int err;
int i = 0;
/* Get userspace string and assure termination */
buf_size = min(count, (sizeof(buf)-1));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
buf[buf_size] = 0;
/*
* The idea is here to parse a string which is either
* "0xnn" for reading a register, or "0xaa 0xbb" for
* writing 0xbb to the register 0xaa. First move past
* whitespace and then begin to parse the register.
*/
while ((i < buf_size) && (buf[i] == ' '))
i++;
regp = i;
/*
* Advance pointer to end of string then terminate
* the register string. This is needed to satisfy
* the strict_strtoul() function.
*/
while ((i < buf_size) && (buf[i] != ' '))
i++;
buf[i] = '\0';
err = strict_strtoul(&buf[regp], 16, &user_reg);
if (err)
return err;
if (user_reg > 0xff)
return -EINVAL;
/* Either we read or we write a register here */
if (!priv->mode) {
/* Reading */
u8 reg = (u8) user_reg;
u8 regvalue;
ab3100_get_register_interruptible(ab3100, reg, &regvalue);
dev_info(ab3100->dev,
"debug read AB3100 reg[0x%02x]: 0x%02x\n",
reg, regvalue);
} else {
int valp;
unsigned long user_value;
u8 reg = (u8) user_reg;
u8 value;
u8 regvalue;
/*
* Writing, we need some value to write to
* the register so keep parsing the string
* from userspace.
*/
i++;
while ((i < buf_size) && (buf[i] == ' '))
i++;
valp = i;
while ((i < buf_size) && (buf[i] != ' '))
i++;
buf[i] = '\0';
err = strict_strtoul(&buf[valp], 16, &user_value);
if (err)
return err;
if (user_reg > 0xff)
return -EINVAL;
value = (u8) user_value;
ab3100_set_register_interruptible(ab3100, reg, value);
ab3100_get_register_interruptible(ab3100, reg, &regvalue);
dev_info(ab3100->dev,
"debug write reg[0x%02x] with 0x%02x, "
"after readback: 0x%02x\n",
reg, value, regvalue);
}
return buf_size;
}
static const struct file_operations ab3100_get_set_reg_fops = {
.open = ab3100_get_set_reg_open_file,
.write = ab3100_get_set_reg,
};
static struct dentry *ab3100_dir;
static struct dentry *ab3100_reg_file;
static struct ab3100_get_set_reg_priv ab3100_get_priv;
static struct dentry *ab3100_get_reg_file;
static struct ab3100_get_set_reg_priv ab3100_set_priv;
static struct dentry *ab3100_set_reg_file;
static void ab3100_setup_debugfs(struct ab3100 *ab3100)
{
int err;
ab3100_dir = debugfs_create_dir("ab3100", NULL);
if (!ab3100_dir)
goto exit_no_debugfs;
ab3100_reg_file = debugfs_create_file("registers",
S_IRUGO, ab3100_dir, ab3100,
&ab3100_registers_fops);
if (!ab3100_reg_file) {
err = -ENOMEM;
goto exit_destroy_dir;
}
ab3100_get_priv.ab3100 = ab3100;
ab3100_get_priv.mode = false;
ab3100_get_reg_file = debugfs_create_file("get_reg",
S_IWUGO, ab3100_dir, &ab3100_get_priv,
&ab3100_get_set_reg_fops);
if (!ab3100_get_reg_file) {
err = -ENOMEM;
goto exit_destroy_reg;
}
ab3100_set_priv.ab3100 = ab3100;
ab3100_set_priv.mode = true;
ab3100_set_reg_file = debugfs_create_file("set_reg",
S_IWUGO, ab3100_dir, &ab3100_set_priv,
&ab3100_get_set_reg_fops);
if (!ab3100_set_reg_file) {
err = -ENOMEM;
goto exit_destroy_get_reg;
}
return;
exit_destroy_get_reg:
debugfs_remove(ab3100_get_reg_file);
exit_destroy_reg:
debugfs_remove(ab3100_reg_file);
exit_destroy_dir:
debugfs_remove(ab3100_dir);
exit_no_debugfs:
return;
}
static inline void ab3100_remove_debugfs(void)
{
debugfs_remove(ab3100_set_reg_file);
debugfs_remove(ab3100_get_reg_file);
debugfs_remove(ab3100_reg_file);
debugfs_remove(ab3100_dir);
}
#else
static inline void ab3100_setup_debugfs(struct ab3100 *ab3100)
{
}
static inline void ab3100_remove_debugfs(void)
{
}
#endif
/*
* Basic set-up, datastructure creation/destruction and I2C interface.
* This sets up a default config in the AB3100 chip so that it
* will work as expected.
*/
struct ab3100_init_setting {
u8 abreg;
u8 setting;
};
static const struct ab3100_init_setting __initconst
ab3100_init_settings[] = {
{
.abreg = AB3100_MCA,
.setting = 0x01
}, {
.abreg = AB3100_MCB,
.setting = 0x30
}, {
.abreg = AB3100_IMRA1,
.setting = 0x00
}, {
.abreg = AB3100_IMRA2,
.setting = 0xFF
}, {
.abreg = AB3100_IMRA3,
.setting = 0x01
}, {
.abreg = AB3100_IMRB1,
.setting = 0xBF
}, {
.abreg = AB3100_IMRB2,
.setting = 0xFF
}, {
.abreg = AB3100_IMRB3,
.setting = 0xFF
}, {
.abreg = AB3100_SUP,
.setting = 0x00
}, {
.abreg = AB3100_DIS,
.setting = 0xF0
}, {
.abreg = AB3100_D0C,
.setting = 0x00
}, {
.abreg = AB3100_D1C,
.setting = 0x00
}, {
.abreg = AB3100_D2C,
.setting = 0x00
}, {
.abreg = AB3100_D3C,
.setting = 0x00
},
};
static int __init ab3100_setup(struct ab3100 *ab3100)
{
int err = 0;
int i;
for (i = 0; i < ARRAY_SIZE(ab3100_init_settings); i++) {
err = ab3100_set_register_interruptible(ab3100,
ab3100_init_settings[i].abreg,
ab3100_init_settings[i].setting);
if (err)
goto exit_no_setup;
}
/*
* Special trick to make the AB3100 use the 32kHz clock (RTC)
* bit 3 in test register 0x02 is a special, undocumented test
* register bit that only exist in AB3100 P1E
*/
if (ab3100->chip_id == 0xc4) {
dev_warn(ab3100->dev,
"AB3100 P1E variant detected, "
"forcing chip to 32KHz\n");
err = ab3100_set_test_register_interruptible(ab3100, 0x02, 0x08);
}
exit_no_setup:
return err;
}
/*
* Here we define all the platform devices that appear
* as children of the AB3100. These are regular platform
* devices with the IORESOURCE_IO .start and .end set
* to correspond to the internal AB3100 register range
* mapping to the corresponding subdevice.
*/
#define AB3100_DEVICE(devname, devid) \
static struct platform_device ab3100_##devname##_device = { \
.name = devid, \
.id = -1, \
}
/*
* This lists all the subdevices and corresponding register
* ranges.
*/
AB3100_DEVICE(dac, "ab3100-dac");
AB3100_DEVICE(leds, "ab3100-leds");
AB3100_DEVICE(power, "ab3100-power");
AB3100_DEVICE(regulators, "ab3100-regulators");
AB3100_DEVICE(sim, "ab3100-sim");
AB3100_DEVICE(uart, "ab3100-uart");
AB3100_DEVICE(rtc, "ab3100-rtc");
AB3100_DEVICE(charger, "ab3100-charger");
AB3100_DEVICE(boost, "ab3100-boost");
AB3100_DEVICE(adc, "ab3100-adc");
AB3100_DEVICE(fuelgauge, "ab3100-fuelgauge");
AB3100_DEVICE(vibrator, "ab3100-vibrator");
AB3100_DEVICE(otp, "ab3100-otp");
AB3100_DEVICE(codec, "ab3100-codec");
static struct platform_device *
ab3100_platform_devs[] = {
&ab3100_dac_device,
&ab3100_leds_device,
&ab3100_power_device,
&ab3100_regulators_device,
&ab3100_sim_device,
&ab3100_uart_device,
&ab3100_rtc_device,
&ab3100_charger_device,
&ab3100_boost_device,
&ab3100_adc_device,
&ab3100_fuelgauge_device,
&ab3100_vibrator_device,
&ab3100_otp_device,
&ab3100_codec_device,
};
struct ab_family_id {
u8 id;
char *name;
};
static const struct ab_family_id ids[] __initdata = {
/* AB3100 */
{
.id = 0xc0,
.name = "P1A"
}, {
.id = 0xc1,
.name = "P1B"
}, {
.id = 0xc2,
.name = "P1C"
}, {
.id = 0xc3,
.name = "P1D"
}, {
.id = 0xc4,
.name = "P1E"
}, {
.id = 0xc5,
.name = "P1F/R1A"
}, {
.id = 0xc6,
.name = "P1G/R1A"
}, {
.id = 0xc7,
.name = "P2A/R2A"
}, {
.id = 0xc8,
.name = "P2B/R2B"
},
/* AB3000 variants, not supported */
{
.id = 0xa0
}, {
.id = 0xa1
}, {
.id = 0xa2
}, {
.id = 0xa3
}, {
.id = 0xa4
}, {
.id = 0xa5
}, {
.id = 0xa6
}, {
.id = 0xa7
},
/* Terminator */
{
.id = 0x00,
},
};
static int __init ab3100_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ab3100 *ab3100;
struct ab3100_platform_data *ab3100_plf_data =
client->dev.platform_data;
int err;
int i;
ab3100 = kzalloc(sizeof(struct ab3100), GFP_KERNEL);
if (!ab3100) {
dev_err(&client->dev, "could not allocate AB3100 device\n");
return -ENOMEM;
}
/* Initialize data structure */
mutex_init(&ab3100->access_mutex);
BLOCKING_INIT_NOTIFIER_HEAD(&ab3100->event_subscribers);
ab3100->i2c_client = client;
ab3100->dev = &ab3100->i2c_client->dev;
i2c_set_clientdata(client, ab3100);
/* Read chip ID register */
err = ab3100_get_register_interruptible(ab3100, AB3100_CID,
&ab3100->chip_id);
if (err) {
dev_err(&client->dev,
"could not communicate with the AB3100 analog "
"baseband chip\n");
goto exit_no_detect;
}
for (i = 0; ids[i].id != 0x0; i++) {
if (ids[i].id == ab3100->chip_id) {
if (ids[i].name != NULL) {
snprintf(&ab3100->chip_name[0],
sizeof(ab3100->chip_name) - 1,
"AB3100 %s",
ids[i].name);
break;
} else {
dev_err(&client->dev,
"AB3000 is not supported\n");
goto exit_no_detect;
}
}
}
if (ids[i].id == 0x0) {
dev_err(&client->dev, "unknown analog baseband chip id: 0x%x\n",
ab3100->chip_id);
dev_err(&client->dev, "accepting it anyway. Please update "
"the driver.\n");
goto exit_no_detect;
}
dev_info(&client->dev, "Detected chip: %s\n",
&ab3100->chip_name[0]);
/* Attach a second dummy i2c_client to the test register address */
ab3100->testreg_client = i2c_new_dummy(client->adapter,
client->addr + 1);
if (!ab3100->testreg_client) {
err = -ENOMEM;
goto exit_no_testreg_client;
}
err = ab3100_setup(ab3100);
if (err)
goto exit_no_setup;
INIT_WORK(&ab3100->work, ab3100_work);
/* This real unpredictable IRQ is of course sampled for entropy */
err = request_irq(client->irq, ab3100_irq_handler,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
"AB3100 IRQ", ab3100);
if (err)
goto exit_no_irq;
/* Set parent and a pointer back to the container in device data */
for (i = 0; i < ARRAY_SIZE(ab3100_platform_devs); i++) {
ab3100_platform_devs[i]->dev.parent =
&client->dev;
ab3100_platform_devs[i]->dev.platform_data =
ab3100_plf_data;
platform_set_drvdata(ab3100_platform_devs[i], ab3100);
}
/* Register the platform devices */
platform_add_devices(ab3100_platform_devs,
ARRAY_SIZE(ab3100_platform_devs));
ab3100_setup_debugfs(ab3100);
return 0;
exit_no_irq:
exit_no_setup:
i2c_unregister_device(ab3100->testreg_client);
exit_no_testreg_client:
exit_no_detect:
kfree(ab3100);
return err;
}
static int __exit ab3100_remove(struct i2c_client *client)
{
struct ab3100 *ab3100 = i2c_get_clientdata(client);
int i;
/* Unregister subdevices */
for (i = 0; i < ARRAY_SIZE(ab3100_platform_devs); i++)
platform_device_unregister(ab3100_platform_devs[i]);
ab3100_remove_debugfs();
i2c_unregister_device(ab3100->testreg_client);
/*
* At this point, all subscribers should have unregistered
* their notifiers so deactivate IRQ
*/
free_irq(client->irq, ab3100);
kfree(ab3100);
return 0;
}
static const struct i2c_device_id ab3100_id[] = {
{ "ab3100", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ab3100_id);
static struct i2c_driver ab3100_driver = {
.driver = {
.name = "ab3100",
.owner = THIS_MODULE,
},
.id_table = ab3100_id,
.probe = ab3100_probe,
.remove = __exit_p(ab3100_remove),
};
static int __init ab3100_i2c_init(void)
{
return i2c_add_driver(&ab3100_driver);
}
static void __exit ab3100_i2c_exit(void)
{
i2c_del_driver(&ab3100_driver);
}
subsys_initcall(ab3100_i2c_init);
module_exit(ab3100_i2c_exit);
MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
MODULE_DESCRIPTION("AB3100 core driver");
MODULE_LICENSE("GPL");