b76becde2b
With a recent change to our send path for FSF commands we introduced a
possible use-after-free of request-objects, that might further lead to
zfcp crafting bad requests, which the FCP channel correctly complains
about with an error (FSF_PROT_SEQ_NUMB_ERROR). This error is then handled
by an adapter-wide recovery.
The following sequence illustrates the possible use-after-free:
Send Path:
int zfcp_fsf_open_port(struct zfcp_erp_action *erp_action)
{
struct zfcp_fsf_req *req;
...
spin_lock_irq(&qdio->req_q_lock);
// ^^^^^^^^^^^^^^^^
// protects QDIO queue during sending
...
req = zfcp_fsf_req_create(qdio,
FSF_QTCB_OPEN_PORT_WITH_DID,
SBAL_SFLAGS0_TYPE_READ,
qdio->adapter->pool.erp_req);
// ^^^^^^^^^^^^^^^^^^^
// allocation of the request-object
...
retval = zfcp_fsf_req_send(req);
...
spin_unlock_irq(&qdio->req_q_lock);
return retval;
}
static int zfcp_fsf_req_send(struct zfcp_fsf_req *req)
{
struct zfcp_adapter *adapter = req->adapter;
struct zfcp_qdio *qdio = adapter->qdio;
...
zfcp_reqlist_add(adapter->req_list, req);
// ^^^^^^^^^^^^^^^^
// add request to our driver-internal hash-table for tracking
// (protected by separate lock req_list->lock)
...
if (zfcp_qdio_send(qdio, &req->qdio_req)) {
// ^^^^^^^^^^^^^^
// hand-off the request to FCP channel;
// the request can complete at any point now
...
}
/* Don't increase for unsolicited status */
if (!zfcp_fsf_req_is_status_read_buffer(req))
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// possible use-after-free
adapter->fsf_req_seq_no++;
// ^^^^^^^^^^^^^^^^
// because of the use-after-free we might
// miss this accounting, and as follow-up
// this results in the FCP channel error
// FSF_PROT_SEQ_NUMB_ERROR
adapter->req_no++;
return 0;
}
static inline bool
zfcp_fsf_req_is_status_read_buffer(struct zfcp_fsf_req *req)
{
return req->qtcb == NULL;
// ^^^^^^^^^
// possible use-after-free
}
Response Path:
void zfcp_fsf_reqid_check(struct zfcp_qdio *qdio, int sbal_idx)
{
...
struct zfcp_fsf_req *fsf_req;
...
for (idx = 0; idx < QDIO_MAX_ELEMENTS_PER_BUFFER; idx++) {
...
fsf_req = zfcp_reqlist_find_rm(adapter->req_list,
req_id);
// ^^^^^^^^^^^^^^^^^^^^
// remove request from our driver-internal
// hash-table (lock req_list->lock)
...
zfcp_fsf_req_complete(fsf_req);
}
}
static void zfcp_fsf_req_complete(struct zfcp_fsf_req *req)
{
...
if (likely(req->status & ZFCP_STATUS_FSFREQ_CLEANUP))
zfcp_fsf_req_free(req);
// ^^^^^^^^^^^^^^^^^
// free memory for request-object
else
complete(&req->completion);
// ^^^^^^^^
// completion notification for code-paths that wait
// synchronous for the completion of the request; in
// those the memory is freed separately
}
The result of the use-after-free only affects the send path, and can not
lead to any data corruption. In case we miss the sequence-number
accounting, because the memory was already re-purposed, the next FSF
command will fail with said FCP channel error, and we will recover the
whole adapter. This causes no additional errors, but it slows down
traffic. There is a slight chance of the same thing happen again
recursively after the adapter recovery, but so far this has not been seen.
This was seen under z/VM, where the send path might run on a virtual CPU
that gets scheduled away by z/VM, while the return path might still run,
and so create the necessary timing. Running with KASAN can also slow down
the kernel sufficiently to run into this user-after-free, and then see the
report by KASAN.
To fix this, simply pull the test for the sequence-number accounting in
front of the hand-off to the FCP channel (this information doesn't change
during hand-off), but leave the sequence-number accounting itself where it
is.
To make future regressions of the same kind less likely, add comments to
all closely related code-paths.
Signed-off-by: Benjamin Block <bblock@linux.ibm.com>
Fixes:
|
||
---|---|---|
Documentation | ||
LICENSES | ||
arch | ||
block | ||
certs | ||
crypto | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
README
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.