3700 lines
106 KiB
C
3700 lines
106 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_dir_sf.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_rw.h"
|
|
|
|
|
|
#define xlog_write_adv_cnt(ptr, len, off, bytes) \
|
|
{ (ptr) += (bytes); \
|
|
(len) -= (bytes); \
|
|
(off) += (bytes);}
|
|
|
|
/* Local miscellaneous function prototypes */
|
|
STATIC int xlog_bdstrat_cb(struct xfs_buf *);
|
|
STATIC int xlog_commit_record(xfs_mount_t *mp, xlog_ticket_t *ticket,
|
|
xlog_in_core_t **, xfs_lsn_t *);
|
|
STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks);
|
|
STATIC int xlog_space_left(xlog_t *log, int cycle, int bytes);
|
|
STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
|
|
STATIC void xlog_dealloc_log(xlog_t *log);
|
|
STATIC int xlog_write(xfs_mount_t *mp, xfs_log_iovec_t region[],
|
|
int nentries, xfs_log_ticket_t tic,
|
|
xfs_lsn_t *start_lsn,
|
|
xlog_in_core_t **commit_iclog,
|
|
uint flags);
|
|
|
|
/* local state machine functions */
|
|
STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
|
|
STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
|
|
STATIC int xlog_state_get_iclog_space(xlog_t *log,
|
|
int len,
|
|
xlog_in_core_t **iclog,
|
|
xlog_ticket_t *ticket,
|
|
int *continued_write,
|
|
int *logoffsetp);
|
|
STATIC void xlog_state_put_ticket(xlog_t *log,
|
|
xlog_ticket_t *tic);
|
|
STATIC int xlog_state_release_iclog(xlog_t *log,
|
|
xlog_in_core_t *iclog);
|
|
STATIC void xlog_state_switch_iclogs(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int eventual_size);
|
|
STATIC int xlog_state_sync(xlog_t *log,
|
|
xfs_lsn_t lsn,
|
|
uint flags,
|
|
int *log_flushed);
|
|
STATIC int xlog_state_sync_all(xlog_t *log, uint flags, int *log_flushed);
|
|
STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
|
|
|
|
/* local functions to manipulate grant head */
|
|
STATIC int xlog_grant_log_space(xlog_t *log,
|
|
xlog_ticket_t *xtic);
|
|
STATIC void xlog_grant_push_ail(xfs_mount_t *mp,
|
|
int need_bytes);
|
|
STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket);
|
|
STATIC int xlog_regrant_write_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket);
|
|
STATIC void xlog_ungrant_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket);
|
|
|
|
|
|
/* local ticket functions */
|
|
STATIC void xlog_state_ticket_alloc(xlog_t *log);
|
|
STATIC xlog_ticket_t *xlog_ticket_get(xlog_t *log,
|
|
int unit_bytes,
|
|
int count,
|
|
char clientid,
|
|
uint flags);
|
|
STATIC void xlog_ticket_put(xlog_t *log, xlog_ticket_t *ticket);
|
|
|
|
#if defined(DEBUG)
|
|
STATIC void xlog_verify_dest_ptr(xlog_t *log, __psint_t ptr);
|
|
STATIC void xlog_verify_grant_head(xlog_t *log, int equals);
|
|
STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
|
|
int count, boolean_t syncing);
|
|
STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
|
|
xfs_lsn_t tail_lsn);
|
|
#else
|
|
#define xlog_verify_dest_ptr(a,b)
|
|
#define xlog_verify_grant_head(a,b)
|
|
#define xlog_verify_iclog(a,b,c,d)
|
|
#define xlog_verify_tail_lsn(a,b,c)
|
|
#endif
|
|
|
|
STATIC int xlog_iclogs_empty(xlog_t *log);
|
|
|
|
#if defined(XFS_LOG_TRACE)
|
|
void
|
|
xlog_trace_loggrant(xlog_t *log, xlog_ticket_t *tic, xfs_caddr_t string)
|
|
{
|
|
unsigned long cnts;
|
|
|
|
if (!log->l_grant_trace) {
|
|
log->l_grant_trace = ktrace_alloc(2048, KM_NOSLEEP);
|
|
if (!log->l_grant_trace)
|
|
return;
|
|
}
|
|
/* ticket counts are 1 byte each */
|
|
cnts = ((unsigned long)tic->t_ocnt) | ((unsigned long)tic->t_cnt) << 8;
|
|
|
|
ktrace_enter(log->l_grant_trace,
|
|
(void *)tic,
|
|
(void *)log->l_reserve_headq,
|
|
(void *)log->l_write_headq,
|
|
(void *)((unsigned long)log->l_grant_reserve_cycle),
|
|
(void *)((unsigned long)log->l_grant_reserve_bytes),
|
|
(void *)((unsigned long)log->l_grant_write_cycle),
|
|
(void *)((unsigned long)log->l_grant_write_bytes),
|
|
(void *)((unsigned long)log->l_curr_cycle),
|
|
(void *)((unsigned long)log->l_curr_block),
|
|
(void *)((unsigned long)CYCLE_LSN(log->l_tail_lsn)),
|
|
(void *)((unsigned long)BLOCK_LSN(log->l_tail_lsn)),
|
|
(void *)string,
|
|
(void *)((unsigned long)tic->t_trans_type),
|
|
(void *)cnts,
|
|
(void *)((unsigned long)tic->t_curr_res),
|
|
(void *)((unsigned long)tic->t_unit_res));
|
|
}
|
|
|
|
void
|
|
xlog_trace_iclog(xlog_in_core_t *iclog, uint state)
|
|
{
|
|
if (!iclog->ic_trace)
|
|
iclog->ic_trace = ktrace_alloc(256, KM_SLEEP);
|
|
ktrace_enter(iclog->ic_trace,
|
|
(void *)((unsigned long)state),
|
|
(void *)((unsigned long)current_pid()),
|
|
(void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL,
|
|
(void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL,
|
|
(void *)NULL, (void *)NULL, (void *)NULL, (void *)NULL,
|
|
(void *)NULL, (void *)NULL);
|
|
}
|
|
#else
|
|
#define xlog_trace_loggrant(log,tic,string)
|
|
#define xlog_trace_iclog(iclog,state)
|
|
#endif /* XFS_LOG_TRACE */
|
|
|
|
|
|
static void
|
|
xlog_ins_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
|
|
{
|
|
if (*qp) {
|
|
tic->t_next = (*qp);
|
|
tic->t_prev = (*qp)->t_prev;
|
|
(*qp)->t_prev->t_next = tic;
|
|
(*qp)->t_prev = tic;
|
|
} else {
|
|
tic->t_prev = tic->t_next = tic;
|
|
*qp = tic;
|
|
}
|
|
|
|
tic->t_flags |= XLOG_TIC_IN_Q;
|
|
}
|
|
|
|
static void
|
|
xlog_del_ticketq(struct xlog_ticket **qp, struct xlog_ticket *tic)
|
|
{
|
|
if (tic == tic->t_next) {
|
|
*qp = NULL;
|
|
} else {
|
|
*qp = tic->t_next;
|
|
tic->t_next->t_prev = tic->t_prev;
|
|
tic->t_prev->t_next = tic->t_next;
|
|
}
|
|
|
|
tic->t_next = tic->t_prev = NULL;
|
|
tic->t_flags &= ~XLOG_TIC_IN_Q;
|
|
}
|
|
|
|
static void
|
|
xlog_grant_sub_space(struct log *log, int bytes)
|
|
{
|
|
log->l_grant_write_bytes -= bytes;
|
|
if (log->l_grant_write_bytes < 0) {
|
|
log->l_grant_write_bytes += log->l_logsize;
|
|
log->l_grant_write_cycle--;
|
|
}
|
|
|
|
log->l_grant_reserve_bytes -= bytes;
|
|
if ((log)->l_grant_reserve_bytes < 0) {
|
|
log->l_grant_reserve_bytes += log->l_logsize;
|
|
log->l_grant_reserve_cycle--;
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
xlog_grant_add_space_write(struct log *log, int bytes)
|
|
{
|
|
log->l_grant_write_bytes += bytes;
|
|
if (log->l_grant_write_bytes > log->l_logsize) {
|
|
log->l_grant_write_bytes -= log->l_logsize;
|
|
log->l_grant_write_cycle++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xlog_grant_add_space_reserve(struct log *log, int bytes)
|
|
{
|
|
log->l_grant_reserve_bytes += bytes;
|
|
if (log->l_grant_reserve_bytes > log->l_logsize) {
|
|
log->l_grant_reserve_bytes -= log->l_logsize;
|
|
log->l_grant_reserve_cycle++;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
xlog_grant_add_space(struct log *log, int bytes)
|
|
{
|
|
xlog_grant_add_space_write(log, bytes);
|
|
xlog_grant_add_space_reserve(log, bytes);
|
|
}
|
|
|
|
|
|
/*
|
|
* NOTES:
|
|
*
|
|
* 1. currblock field gets updated at startup and after in-core logs
|
|
* marked as with WANT_SYNC.
|
|
*/
|
|
|
|
/*
|
|
* This routine is called when a user of a log manager ticket is done with
|
|
* the reservation. If the ticket was ever used, then a commit record for
|
|
* the associated transaction is written out as a log operation header with
|
|
* no data. The flag XLOG_TIC_INITED is set when the first write occurs with
|
|
* a given ticket. If the ticket was one with a permanent reservation, then
|
|
* a few operations are done differently. Permanent reservation tickets by
|
|
* default don't release the reservation. They just commit the current
|
|
* transaction with the belief that the reservation is still needed. A flag
|
|
* must be passed in before permanent reservations are actually released.
|
|
* When these type of tickets are not released, they need to be set into
|
|
* the inited state again. By doing this, a start record will be written
|
|
* out when the next write occurs.
|
|
*/
|
|
xfs_lsn_t
|
|
xfs_log_done(xfs_mount_t *mp,
|
|
xfs_log_ticket_t xtic,
|
|
void **iclog,
|
|
uint flags)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_ticket_t *ticket = (xfs_log_ticket_t) xtic;
|
|
xfs_lsn_t lsn = 0;
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log) ||
|
|
/*
|
|
* If nothing was ever written, don't write out commit record.
|
|
* If we get an error, just continue and give back the log ticket.
|
|
*/
|
|
(((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
|
|
(xlog_commit_record(mp, ticket,
|
|
(xlog_in_core_t **)iclog, &lsn)))) {
|
|
lsn = (xfs_lsn_t) -1;
|
|
if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
|
|
flags |= XFS_LOG_REL_PERM_RESERV;
|
|
}
|
|
}
|
|
|
|
|
|
if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
|
|
(flags & XFS_LOG_REL_PERM_RESERV)) {
|
|
/*
|
|
* Release ticket if not permanent reservation or a specific
|
|
* request has been made to release a permanent reservation.
|
|
*/
|
|
xlog_trace_loggrant(log, ticket, "xfs_log_done: (non-permanent)");
|
|
xlog_ungrant_log_space(log, ticket);
|
|
xlog_state_put_ticket(log, ticket);
|
|
} else {
|
|
xlog_trace_loggrant(log, ticket, "xfs_log_done: (permanent)");
|
|
xlog_regrant_reserve_log_space(log, ticket);
|
|
}
|
|
|
|
/* If this ticket was a permanent reservation and we aren't
|
|
* trying to release it, reset the inited flags; so next time
|
|
* we write, a start record will be written out.
|
|
*/
|
|
if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) &&
|
|
(flags & XFS_LOG_REL_PERM_RESERV) == 0)
|
|
ticket->t_flags |= XLOG_TIC_INITED;
|
|
|
|
return lsn;
|
|
} /* xfs_log_done */
|
|
|
|
|
|
/*
|
|
* Force the in-core log to disk. If flags == XFS_LOG_SYNC,
|
|
* the force is done synchronously.
|
|
*
|
|
* Asynchronous forces are implemented by setting the WANT_SYNC
|
|
* bit in the appropriate in-core log and then returning.
|
|
*
|
|
* Synchronous forces are implemented with a semaphore. All callers
|
|
* to force a given lsn to disk will wait on a semaphore attached to the
|
|
* specific in-core log. When given in-core log finally completes its
|
|
* write to disk, that thread will wake up all threads waiting on the
|
|
* semaphore.
|
|
*/
|
|
int
|
|
_xfs_log_force(
|
|
xfs_mount_t *mp,
|
|
xfs_lsn_t lsn,
|
|
uint flags,
|
|
int *log_flushed)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
int dummy;
|
|
|
|
if (!log_flushed)
|
|
log_flushed = &dummy;
|
|
|
|
ASSERT(flags & XFS_LOG_FORCE);
|
|
|
|
XFS_STATS_INC(xs_log_force);
|
|
|
|
if (log->l_flags & XLOG_IO_ERROR)
|
|
return XFS_ERROR(EIO);
|
|
if (lsn == 0)
|
|
return xlog_state_sync_all(log, flags, log_flushed);
|
|
else
|
|
return xlog_state_sync(log, lsn, flags, log_flushed);
|
|
} /* xfs_log_force */
|
|
|
|
/*
|
|
* Attaches a new iclog I/O completion callback routine during
|
|
* transaction commit. If the log is in error state, a non-zero
|
|
* return code is handed back and the caller is responsible for
|
|
* executing the callback at an appropriate time.
|
|
*/
|
|
int
|
|
xfs_log_notify(xfs_mount_t *mp, /* mount of partition */
|
|
void *iclog_hndl, /* iclog to hang callback off */
|
|
xfs_log_callback_t *cb)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_in_core_t *iclog = (xlog_in_core_t *)iclog_hndl;
|
|
int abortflg, spl;
|
|
|
|
cb->cb_next = NULL;
|
|
spl = LOG_LOCK(log);
|
|
abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
|
|
if (!abortflg) {
|
|
ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
|
|
(iclog->ic_state == XLOG_STATE_WANT_SYNC));
|
|
cb->cb_next = NULL;
|
|
*(iclog->ic_callback_tail) = cb;
|
|
iclog->ic_callback_tail = &(cb->cb_next);
|
|
}
|
|
LOG_UNLOCK(log, spl);
|
|
return abortflg;
|
|
} /* xfs_log_notify */
|
|
|
|
int
|
|
xfs_log_release_iclog(xfs_mount_t *mp,
|
|
void *iclog_hndl)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_in_core_t *iclog = (xlog_in_core_t *)iclog_hndl;
|
|
|
|
if (xlog_state_release_iclog(log, iclog)) {
|
|
xfs_force_shutdown(mp, XFS_LOG_IO_ERROR);
|
|
return EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1. Reserve an amount of on-disk log space and return a ticket corresponding
|
|
* to the reservation.
|
|
* 2. Potentially, push buffers at tail of log to disk.
|
|
*
|
|
* Each reservation is going to reserve extra space for a log record header.
|
|
* When writes happen to the on-disk log, we don't subtract the length of the
|
|
* log record header from any reservation. By wasting space in each
|
|
* reservation, we prevent over allocation problems.
|
|
*/
|
|
int
|
|
xfs_log_reserve(xfs_mount_t *mp,
|
|
int unit_bytes,
|
|
int cnt,
|
|
xfs_log_ticket_t *ticket,
|
|
__uint8_t client,
|
|
uint flags,
|
|
uint t_type)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_ticket_t *internal_ticket;
|
|
int retval = 0;
|
|
|
|
ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
|
|
ASSERT((flags & XFS_LOG_NOSLEEP) == 0);
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return XFS_ERROR(EIO);
|
|
|
|
XFS_STATS_INC(xs_try_logspace);
|
|
|
|
if (*ticket != NULL) {
|
|
ASSERT(flags & XFS_LOG_PERM_RESERV);
|
|
internal_ticket = (xlog_ticket_t *)*ticket;
|
|
xlog_trace_loggrant(log, internal_ticket, "xfs_log_reserve: existing ticket (permanent trans)");
|
|
xlog_grant_push_ail(mp, internal_ticket->t_unit_res);
|
|
retval = xlog_regrant_write_log_space(log, internal_ticket);
|
|
} else {
|
|
/* may sleep if need to allocate more tickets */
|
|
internal_ticket = xlog_ticket_get(log, unit_bytes, cnt,
|
|
client, flags);
|
|
internal_ticket->t_trans_type = t_type;
|
|
*ticket = internal_ticket;
|
|
xlog_trace_loggrant(log, internal_ticket,
|
|
(internal_ticket->t_flags & XLOG_TIC_PERM_RESERV) ?
|
|
"xfs_log_reserve: create new ticket (permanent trans)" :
|
|
"xfs_log_reserve: create new ticket");
|
|
xlog_grant_push_ail(mp,
|
|
(internal_ticket->t_unit_res *
|
|
internal_ticket->t_cnt));
|
|
retval = xlog_grant_log_space(log, internal_ticket);
|
|
}
|
|
|
|
return retval;
|
|
} /* xfs_log_reserve */
|
|
|
|
|
|
/*
|
|
* Mount a log filesystem
|
|
*
|
|
* mp - ubiquitous xfs mount point structure
|
|
* log_target - buftarg of on-disk log device
|
|
* blk_offset - Start block # where block size is 512 bytes (BBSIZE)
|
|
* num_bblocks - Number of BBSIZE blocks in on-disk log
|
|
*
|
|
* Return error or zero.
|
|
*/
|
|
int
|
|
xfs_log_mount(xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks)
|
|
{
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
|
cmn_err(CE_NOTE, "XFS mounting filesystem %s", mp->m_fsname);
|
|
else {
|
|
cmn_err(CE_NOTE,
|
|
"!Mounting filesystem \"%s\" in no-recovery mode. Filesystem will be inconsistent.",
|
|
mp->m_fsname);
|
|
ASSERT(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY);
|
|
}
|
|
|
|
mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
|
|
|
|
/*
|
|
* skip log recovery on a norecovery mount. pretend it all
|
|
* just worked.
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
|
|
int error;
|
|
vfs_t *vfsp = XFS_MTOVFS(mp);
|
|
int readonly = (vfsp->vfs_flag & VFS_RDONLY);
|
|
|
|
if (readonly)
|
|
vfsp->vfs_flag &= ~VFS_RDONLY;
|
|
|
|
error = xlog_recover(mp->m_log);
|
|
|
|
if (readonly)
|
|
vfsp->vfs_flag |= VFS_RDONLY;
|
|
if (error) {
|
|
cmn_err(CE_WARN, "XFS: log mount/recovery failed: error %d", error);
|
|
xlog_dealloc_log(mp->m_log);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Normal transactions can now occur */
|
|
mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
|
|
|
|
/* End mounting message in xfs_log_mount_finish */
|
|
return 0;
|
|
} /* xfs_log_mount */
|
|
|
|
/*
|
|
* Finish the recovery of the file system. This is separate from
|
|
* the xfs_log_mount() call, because it depends on the code in
|
|
* xfs_mountfs() to read in the root and real-time bitmap inodes
|
|
* between calling xfs_log_mount() and here.
|
|
*
|
|
* mp - ubiquitous xfs mount point structure
|
|
*/
|
|
int
|
|
xfs_log_mount_finish(xfs_mount_t *mp, int mfsi_flags)
|
|
{
|
|
int error;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
|
error = xlog_recover_finish(mp->m_log, mfsi_flags);
|
|
else {
|
|
error = 0;
|
|
ASSERT(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Unmount processing for the log.
|
|
*/
|
|
int
|
|
xfs_log_unmount(xfs_mount_t *mp)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_log_unmount_write(mp);
|
|
xfs_log_unmount_dealloc(mp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Final log writes as part of unmount.
|
|
*
|
|
* Mark the filesystem clean as unmount happens. Note that during relocation
|
|
* this routine needs to be executed as part of source-bag while the
|
|
* deallocation must not be done until source-end.
|
|
*/
|
|
|
|
/*
|
|
* Unmount record used to have a string "Unmount filesystem--" in the
|
|
* data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
|
|
* We just write the magic number now since that particular field isn't
|
|
* currently architecture converted and "nUmount" is a bit foo.
|
|
* As far as I know, there weren't any dependencies on the old behaviour.
|
|
*/
|
|
|
|
int
|
|
xfs_log_unmount_write(xfs_mount_t *mp)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_in_core_t *iclog;
|
|
#ifdef DEBUG
|
|
xlog_in_core_t *first_iclog;
|
|
#endif
|
|
xfs_log_iovec_t reg[1];
|
|
xfs_log_ticket_t tic = NULL;
|
|
xfs_lsn_t lsn;
|
|
int error;
|
|
SPLDECL(s);
|
|
|
|
/* the data section must be 32 bit size aligned */
|
|
struct {
|
|
__uint16_t magic;
|
|
__uint16_t pad1;
|
|
__uint32_t pad2; /* may as well make it 64 bits */
|
|
} magic = { XLOG_UNMOUNT_TYPE, 0, 0 };
|
|
|
|
/*
|
|
* Don't write out unmount record on read-only mounts.
|
|
* Or, if we are doing a forced umount (typically because of IO errors).
|
|
*/
|
|
if (XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY)
|
|
return 0;
|
|
|
|
xfs_log_force(mp, 0, XFS_LOG_FORCE|XFS_LOG_SYNC);
|
|
|
|
#ifdef DEBUG
|
|
first_iclog = iclog = log->l_iclog;
|
|
do {
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
|
|
ASSERT(iclog->ic_offset == 0);
|
|
}
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != first_iclog);
|
|
#endif
|
|
if (! (XLOG_FORCED_SHUTDOWN(log))) {
|
|
reg[0].i_addr = (void*)&magic;
|
|
reg[0].i_len = sizeof(magic);
|
|
XLOG_VEC_SET_TYPE(®[0], XLOG_REG_TYPE_UNMOUNT);
|
|
|
|
error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0, 0);
|
|
if (!error) {
|
|
/* remove inited flag */
|
|
((xlog_ticket_t *)tic)->t_flags = 0;
|
|
error = xlog_write(mp, reg, 1, tic, &lsn,
|
|
NULL, XLOG_UNMOUNT_TRANS);
|
|
/*
|
|
* At this point, we're umounting anyway,
|
|
* so there's no point in transitioning log state
|
|
* to IOERROR. Just continue...
|
|
*/
|
|
}
|
|
|
|
if (error) {
|
|
xfs_fs_cmn_err(CE_ALERT, mp,
|
|
"xfs_log_unmount: unmount record failed");
|
|
}
|
|
|
|
|
|
s = LOG_LOCK(log);
|
|
iclog = log->l_iclog;
|
|
iclog->ic_refcnt++;
|
|
LOG_UNLOCK(log, s);
|
|
xlog_state_want_sync(log, iclog);
|
|
(void) xlog_state_release_iclog(log, iclog);
|
|
|
|
s = LOG_LOCK(log);
|
|
if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY)) {
|
|
if (!XLOG_FORCED_SHUTDOWN(log)) {
|
|
sv_wait(&iclog->ic_forcesema, PMEM,
|
|
&log->l_icloglock, s);
|
|
} else {
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
} else {
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
if (tic)
|
|
xlog_state_put_ticket(log, tic);
|
|
} else {
|
|
/*
|
|
* We're already in forced_shutdown mode, couldn't
|
|
* even attempt to write out the unmount transaction.
|
|
*
|
|
* Go through the motions of sync'ing and releasing
|
|
* the iclog, even though no I/O will actually happen,
|
|
* we need to wait for other log I/Os that may already
|
|
* be in progress. Do this as a separate section of
|
|
* code so we'll know if we ever get stuck here that
|
|
* we're in this odd situation of trying to unmount
|
|
* a file system that went into forced_shutdown as
|
|
* the result of an unmount..
|
|
*/
|
|
s = LOG_LOCK(log);
|
|
iclog = log->l_iclog;
|
|
iclog->ic_refcnt++;
|
|
LOG_UNLOCK(log, s);
|
|
|
|
xlog_state_want_sync(log, iclog);
|
|
(void) xlog_state_release_iclog(log, iclog);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
|
|
|| iclog->ic_state == XLOG_STATE_DIRTY
|
|
|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
|
|
|
|
sv_wait(&iclog->ic_forcesema, PMEM,
|
|
&log->l_icloglock, s);
|
|
} else {
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} /* xfs_log_unmount_write */
|
|
|
|
/*
|
|
* Deallocate log structures for unmount/relocation.
|
|
*/
|
|
void
|
|
xfs_log_unmount_dealloc(xfs_mount_t *mp)
|
|
{
|
|
xlog_dealloc_log(mp->m_log);
|
|
}
|
|
|
|
/*
|
|
* Write region vectors to log. The write happens using the space reservation
|
|
* of the ticket (tic). It is not a requirement that all writes for a given
|
|
* transaction occur with one call to xfs_log_write().
|
|
*/
|
|
int
|
|
xfs_log_write(xfs_mount_t * mp,
|
|
xfs_log_iovec_t reg[],
|
|
int nentries,
|
|
xfs_log_ticket_t tic,
|
|
xfs_lsn_t *start_lsn)
|
|
{
|
|
int error;
|
|
xlog_t *log = mp->m_log;
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return XFS_ERROR(EIO);
|
|
|
|
if ((error = xlog_write(mp, reg, nentries, tic, start_lsn, NULL, 0))) {
|
|
xfs_force_shutdown(mp, XFS_LOG_IO_ERROR);
|
|
}
|
|
return error;
|
|
} /* xfs_log_write */
|
|
|
|
|
|
void
|
|
xfs_log_move_tail(xfs_mount_t *mp,
|
|
xfs_lsn_t tail_lsn)
|
|
{
|
|
xlog_ticket_t *tic;
|
|
xlog_t *log = mp->m_log;
|
|
int need_bytes, free_bytes, cycle, bytes;
|
|
SPLDECL(s);
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return;
|
|
ASSERT(!XFS_FORCED_SHUTDOWN(mp));
|
|
|
|
if (tail_lsn == 0) {
|
|
/* needed since sync_lsn is 64 bits */
|
|
s = LOG_LOCK(log);
|
|
tail_lsn = log->l_last_sync_lsn;
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
|
|
s = GRANT_LOCK(log);
|
|
|
|
/* Also an invalid lsn. 1 implies that we aren't passing in a valid
|
|
* tail_lsn.
|
|
*/
|
|
if (tail_lsn != 1) {
|
|
log->l_tail_lsn = tail_lsn;
|
|
}
|
|
|
|
if ((tic = log->l_write_headq)) {
|
|
#ifdef DEBUG
|
|
if (log->l_flags & XLOG_ACTIVE_RECOVERY)
|
|
panic("Recovery problem");
|
|
#endif
|
|
cycle = log->l_grant_write_cycle;
|
|
bytes = log->l_grant_write_bytes;
|
|
free_bytes = xlog_space_left(log, cycle, bytes);
|
|
do {
|
|
ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
|
|
|
|
if (free_bytes < tic->t_unit_res && tail_lsn != 1)
|
|
break;
|
|
tail_lsn = 0;
|
|
free_bytes -= tic->t_unit_res;
|
|
sv_signal(&tic->t_sema);
|
|
tic = tic->t_next;
|
|
} while (tic != log->l_write_headq);
|
|
}
|
|
if ((tic = log->l_reserve_headq)) {
|
|
#ifdef DEBUG
|
|
if (log->l_flags & XLOG_ACTIVE_RECOVERY)
|
|
panic("Recovery problem");
|
|
#endif
|
|
cycle = log->l_grant_reserve_cycle;
|
|
bytes = log->l_grant_reserve_bytes;
|
|
free_bytes = xlog_space_left(log, cycle, bytes);
|
|
do {
|
|
if (tic->t_flags & XLOG_TIC_PERM_RESERV)
|
|
need_bytes = tic->t_unit_res*tic->t_cnt;
|
|
else
|
|
need_bytes = tic->t_unit_res;
|
|
if (free_bytes < need_bytes && tail_lsn != 1)
|
|
break;
|
|
tail_lsn = 0;
|
|
free_bytes -= need_bytes;
|
|
sv_signal(&tic->t_sema);
|
|
tic = tic->t_next;
|
|
} while (tic != log->l_reserve_headq);
|
|
}
|
|
GRANT_UNLOCK(log, s);
|
|
} /* xfs_log_move_tail */
|
|
|
|
/*
|
|
* Determine if we have a transaction that has gone to disk
|
|
* that needs to be covered. Log activity needs to be idle (no AIL and
|
|
* nothing in the iclogs). And, we need to be in the right state indicating
|
|
* something has gone out.
|
|
*/
|
|
int
|
|
xfs_log_need_covered(xfs_mount_t *mp)
|
|
{
|
|
SPLDECL(s);
|
|
int needed = 0, gen;
|
|
xlog_t *log = mp->m_log;
|
|
vfs_t *vfsp = XFS_MTOVFS(mp);
|
|
|
|
if (fs_frozen(vfsp) || XFS_FORCED_SHUTDOWN(mp) ||
|
|
(vfsp->vfs_flag & VFS_RDONLY))
|
|
return 0;
|
|
|
|
s = LOG_LOCK(log);
|
|
if (((log->l_covered_state == XLOG_STATE_COVER_NEED) ||
|
|
(log->l_covered_state == XLOG_STATE_COVER_NEED2))
|
|
&& !xfs_trans_first_ail(mp, &gen)
|
|
&& xlog_iclogs_empty(log)) {
|
|
if (log->l_covered_state == XLOG_STATE_COVER_NEED)
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE;
|
|
else {
|
|
ASSERT(log->l_covered_state == XLOG_STATE_COVER_NEED2);
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE2;
|
|
}
|
|
needed = 1;
|
|
}
|
|
LOG_UNLOCK(log, s);
|
|
return needed;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* local routines
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* xfs_trans_tail_ail returns 0 when there is nothing in the list.
|
|
* The log manager must keep track of the last LR which was committed
|
|
* to disk. The lsn of this LR will become the new tail_lsn whenever
|
|
* xfs_trans_tail_ail returns 0. If we don't do this, we run into
|
|
* the situation where stuff could be written into the log but nothing
|
|
* was ever in the AIL when asked. Eventually, we panic since the
|
|
* tail hits the head.
|
|
*
|
|
* We may be holding the log iclog lock upon entering this routine.
|
|
*/
|
|
xfs_lsn_t
|
|
xlog_assign_tail_lsn(xfs_mount_t *mp)
|
|
{
|
|
xfs_lsn_t tail_lsn;
|
|
SPLDECL(s);
|
|
xlog_t *log = mp->m_log;
|
|
|
|
tail_lsn = xfs_trans_tail_ail(mp);
|
|
s = GRANT_LOCK(log);
|
|
if (tail_lsn != 0) {
|
|
log->l_tail_lsn = tail_lsn;
|
|
} else {
|
|
tail_lsn = log->l_tail_lsn = log->l_last_sync_lsn;
|
|
}
|
|
GRANT_UNLOCK(log, s);
|
|
|
|
return tail_lsn;
|
|
} /* xlog_assign_tail_lsn */
|
|
|
|
|
|
/*
|
|
* Return the space in the log between the tail and the head. The head
|
|
* is passed in the cycle/bytes formal parms. In the special case where
|
|
* the reserve head has wrapped passed the tail, this calculation is no
|
|
* longer valid. In this case, just return 0 which means there is no space
|
|
* in the log. This works for all places where this function is called
|
|
* with the reserve head. Of course, if the write head were to ever
|
|
* wrap the tail, we should blow up. Rather than catch this case here,
|
|
* we depend on other ASSERTions in other parts of the code. XXXmiken
|
|
*
|
|
* This code also handles the case where the reservation head is behind
|
|
* the tail. The details of this case are described below, but the end
|
|
* result is that we return the size of the log as the amount of space left.
|
|
*/
|
|
int
|
|
xlog_space_left(xlog_t *log, int cycle, int bytes)
|
|
{
|
|
int free_bytes;
|
|
int tail_bytes;
|
|
int tail_cycle;
|
|
|
|
tail_bytes = BBTOB(BLOCK_LSN(log->l_tail_lsn));
|
|
tail_cycle = CYCLE_LSN(log->l_tail_lsn);
|
|
if ((tail_cycle == cycle) && (bytes >= tail_bytes)) {
|
|
free_bytes = log->l_logsize - (bytes - tail_bytes);
|
|
} else if ((tail_cycle + 1) < cycle) {
|
|
return 0;
|
|
} else if (tail_cycle < cycle) {
|
|
ASSERT(tail_cycle == (cycle - 1));
|
|
free_bytes = tail_bytes - bytes;
|
|
} else {
|
|
/*
|
|
* The reservation head is behind the tail.
|
|
* In this case we just want to return the size of the
|
|
* log as the amount of space left.
|
|
*/
|
|
xfs_fs_cmn_err(CE_ALERT, log->l_mp,
|
|
"xlog_space_left: head behind tail\n"
|
|
" tail_cycle = %d, tail_bytes = %d\n"
|
|
" GH cycle = %d, GH bytes = %d",
|
|
tail_cycle, tail_bytes, cycle, bytes);
|
|
ASSERT(0);
|
|
free_bytes = log->l_logsize;
|
|
}
|
|
return free_bytes;
|
|
} /* xlog_space_left */
|
|
|
|
|
|
/*
|
|
* Log function which is called when an io completes.
|
|
*
|
|
* The log manager needs its own routine, in order to control what
|
|
* happens with the buffer after the write completes.
|
|
*/
|
|
void
|
|
xlog_iodone(xfs_buf_t *bp)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
xlog_t *l;
|
|
int aborted;
|
|
|
|
iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
|
|
ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
|
|
XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
|
|
aborted = 0;
|
|
|
|
/*
|
|
* Some versions of cpp barf on the recursive definition of
|
|
* ic_log -> hic_fields.ic_log and expand ic_log twice when
|
|
* it is passed through two macros. Workaround broken cpp.
|
|
*/
|
|
l = iclog->ic_log;
|
|
|
|
/*
|
|
* Race to shutdown the filesystem if we see an error.
|
|
*/
|
|
if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
|
|
XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
|
|
xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
|
|
XFS_BUF_STALE(bp);
|
|
xfs_force_shutdown(l->l_mp, XFS_LOG_IO_ERROR);
|
|
/*
|
|
* This flag will be propagated to the trans-committed
|
|
* callback routines to let them know that the log-commit
|
|
* didn't succeed.
|
|
*/
|
|
aborted = XFS_LI_ABORTED;
|
|
} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
aborted = XFS_LI_ABORTED;
|
|
}
|
|
xlog_state_done_syncing(iclog, aborted);
|
|
if (!(XFS_BUF_ISASYNC(bp))) {
|
|
/*
|
|
* Corresponding psema() will be done in bwrite(). If we don't
|
|
* vsema() here, panic.
|
|
*/
|
|
XFS_BUF_V_IODONESEMA(bp);
|
|
}
|
|
} /* xlog_iodone */
|
|
|
|
/*
|
|
* The bdstrat callback function for log bufs. This gives us a central
|
|
* place to trap bufs in case we get hit by a log I/O error and need to
|
|
* shutdown. Actually, in practice, even when we didn't get a log error,
|
|
* we transition the iclogs to IOERROR state *after* flushing all existing
|
|
* iclogs to disk. This is because we don't want anymore new transactions to be
|
|
* started or completed afterwards.
|
|
*/
|
|
STATIC int
|
|
xlog_bdstrat_cb(struct xfs_buf *bp)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
|
|
iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
|
|
|
|
if ((iclog->ic_state & XLOG_STATE_IOERROR) == 0) {
|
|
/* note for irix bstrat will need struct bdevsw passed
|
|
* Fix the following macro if the code ever is merged
|
|
*/
|
|
XFS_bdstrat(bp);
|
|
return 0;
|
|
}
|
|
|
|
xfs_buftrace("XLOG__BDSTRAT IOERROR", bp);
|
|
XFS_BUF_ERROR(bp, EIO);
|
|
XFS_BUF_STALE(bp);
|
|
xfs_biodone(bp);
|
|
return XFS_ERROR(EIO);
|
|
|
|
|
|
}
|
|
|
|
/*
|
|
* Return size of each in-core log record buffer.
|
|
*
|
|
* Low memory machines only get 2 16KB buffers. We don't want to waste
|
|
* memory here. However, all other machines get at least 2 32KB buffers.
|
|
* The number is hard coded because we don't care about the minimum
|
|
* memory size, just 32MB systems.
|
|
*
|
|
* If the filesystem blocksize is too large, we may need to choose a
|
|
* larger size since the directory code currently logs entire blocks.
|
|
*/
|
|
|
|
STATIC void
|
|
xlog_get_iclog_buffer_size(xfs_mount_t *mp,
|
|
xlog_t *log)
|
|
{
|
|
int size;
|
|
int xhdrs;
|
|
|
|
if (mp->m_logbufs <= 0) {
|
|
if (xfs_physmem <= btoc(128*1024*1024)) {
|
|
log->l_iclog_bufs = XLOG_MIN_ICLOGS;
|
|
} else if (xfs_physmem <= btoc(400*1024*1024)) {
|
|
log->l_iclog_bufs = XLOG_MED_ICLOGS;
|
|
} else { /* 256K with 32K bufs */
|
|
log->l_iclog_bufs = XLOG_MAX_ICLOGS;
|
|
}
|
|
} else {
|
|
log->l_iclog_bufs = mp->m_logbufs;
|
|
}
|
|
|
|
/*
|
|
* Buffer size passed in from mount system call.
|
|
*/
|
|
if (mp->m_logbsize > 0) {
|
|
size = log->l_iclog_size = mp->m_logbsize;
|
|
log->l_iclog_size_log = 0;
|
|
while (size != 1) {
|
|
log->l_iclog_size_log++;
|
|
size >>= 1;
|
|
}
|
|
|
|
if (XFS_SB_VERSION_HASLOGV2(&mp->m_sb)) {
|
|
/* # headers = size / 32K
|
|
* one header holds cycles from 32K of data
|
|
*/
|
|
|
|
xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
|
|
if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
|
|
xhdrs++;
|
|
log->l_iclog_hsize = xhdrs << BBSHIFT;
|
|
log->l_iclog_heads = xhdrs;
|
|
} else {
|
|
ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
|
|
log->l_iclog_hsize = BBSIZE;
|
|
log->l_iclog_heads = 1;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Special case machines that have less than 32MB of memory.
|
|
* All machines with more memory use 32KB buffers.
|
|
*/
|
|
if (xfs_physmem <= btoc(32*1024*1024)) {
|
|
/* Don't change; min configuration */
|
|
log->l_iclog_size = XLOG_RECORD_BSIZE; /* 16k */
|
|
log->l_iclog_size_log = XLOG_RECORD_BSHIFT;
|
|
} else {
|
|
log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; /* 32k */
|
|
log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
|
|
}
|
|
|
|
/* the default log size is 16k or 32k which is one header sector */
|
|
log->l_iclog_hsize = BBSIZE;
|
|
log->l_iclog_heads = 1;
|
|
|
|
/*
|
|
* For 16KB, we use 3 32KB buffers. For 32KB block sizes, we use
|
|
* 4 32KB buffers. For 64KB block sizes, we use 8 32KB buffers.
|
|
*/
|
|
if (mp->m_sb.sb_blocksize >= 16*1024) {
|
|
log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
|
|
log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
|
|
if (mp->m_logbufs <= 0) {
|
|
switch (mp->m_sb.sb_blocksize) {
|
|
case 16*1024: /* 16 KB */
|
|
log->l_iclog_bufs = 3;
|
|
break;
|
|
case 32*1024: /* 32 KB */
|
|
log->l_iclog_bufs = 4;
|
|
break;
|
|
case 64*1024: /* 64 KB */
|
|
log->l_iclog_bufs = 8;
|
|
break;
|
|
default:
|
|
xlog_panic("XFS: Invalid blocksize");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
done: /* are we being asked to make the sizes selected above visible? */
|
|
if (mp->m_logbufs == 0)
|
|
mp->m_logbufs = log->l_iclog_bufs;
|
|
if (mp->m_logbsize == 0)
|
|
mp->m_logbsize = log->l_iclog_size;
|
|
} /* xlog_get_iclog_buffer_size */
|
|
|
|
|
|
/*
|
|
* This routine initializes some of the log structure for a given mount point.
|
|
* Its primary purpose is to fill in enough, so recovery can occur. However,
|
|
* some other stuff may be filled in too.
|
|
*/
|
|
STATIC xlog_t *
|
|
xlog_alloc_log(xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks)
|
|
{
|
|
xlog_t *log;
|
|
xlog_rec_header_t *head;
|
|
xlog_in_core_t **iclogp;
|
|
xlog_in_core_t *iclog, *prev_iclog=NULL;
|
|
xfs_buf_t *bp;
|
|
int i;
|
|
int iclogsize;
|
|
|
|
log = (xlog_t *)kmem_zalloc(sizeof(xlog_t), KM_SLEEP);
|
|
|
|
log->l_mp = mp;
|
|
log->l_targ = log_target;
|
|
log->l_logsize = BBTOB(num_bblks);
|
|
log->l_logBBstart = blk_offset;
|
|
log->l_logBBsize = num_bblks;
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
log->l_flags |= XLOG_ACTIVE_RECOVERY;
|
|
|
|
log->l_prev_block = -1;
|
|
ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, 1, 0);
|
|
/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
|
|
log->l_last_sync_lsn = log->l_tail_lsn;
|
|
log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
|
|
log->l_grant_reserve_cycle = 1;
|
|
log->l_grant_write_cycle = 1;
|
|
|
|
if (XFS_SB_VERSION_HASSECTOR(&mp->m_sb)) {
|
|
log->l_sectbb_log = mp->m_sb.sb_logsectlog - BBSHIFT;
|
|
ASSERT(log->l_sectbb_log <= mp->m_sectbb_log);
|
|
/* for larger sector sizes, must have v2 or external log */
|
|
ASSERT(log->l_sectbb_log == 0 ||
|
|
log->l_logBBstart == 0 ||
|
|
XFS_SB_VERSION_HASLOGV2(&mp->m_sb));
|
|
ASSERT(mp->m_sb.sb_logsectlog >= BBSHIFT);
|
|
}
|
|
log->l_sectbb_mask = (1 << log->l_sectbb_log) - 1;
|
|
|
|
xlog_get_iclog_buffer_size(mp, log);
|
|
|
|
bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
|
|
XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
|
|
XFS_BUF_SET_BDSTRAT_FUNC(bp, xlog_bdstrat_cb);
|
|
XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
|
|
ASSERT(XFS_BUF_ISBUSY(bp));
|
|
ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
|
|
log->l_xbuf = bp;
|
|
|
|
spinlock_init(&log->l_icloglock, "iclog");
|
|
spinlock_init(&log->l_grant_lock, "grhead_iclog");
|
|
initnsema(&log->l_flushsema, 0, "ic-flush");
|
|
xlog_state_ticket_alloc(log); /* wait until after icloglock inited */
|
|
|
|
/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
|
|
ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
|
|
|
|
iclogp = &log->l_iclog;
|
|
/*
|
|
* The amount of memory to allocate for the iclog structure is
|
|
* rather funky due to the way the structure is defined. It is
|
|
* done this way so that we can use different sizes for machines
|
|
* with different amounts of memory. See the definition of
|
|
* xlog_in_core_t in xfs_log_priv.h for details.
|
|
*/
|
|
iclogsize = log->l_iclog_size;
|
|
ASSERT(log->l_iclog_size >= 4096);
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
|
*iclogp = (xlog_in_core_t *)
|
|
kmem_zalloc(sizeof(xlog_in_core_t), KM_SLEEP);
|
|
iclog = *iclogp;
|
|
iclog->hic_data = (xlog_in_core_2_t *)
|
|
kmem_zalloc(iclogsize, KM_SLEEP);
|
|
|
|
iclog->ic_prev = prev_iclog;
|
|
prev_iclog = iclog;
|
|
log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
|
|
|
|
head = &iclog->ic_header;
|
|
memset(head, 0, sizeof(xlog_rec_header_t));
|
|
INT_SET(head->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
|
|
INT_SET(head->h_version, ARCH_CONVERT,
|
|
XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
|
|
INT_SET(head->h_size, ARCH_CONVERT, log->l_iclog_size);
|
|
/* new fields */
|
|
INT_SET(head->h_fmt, ARCH_CONVERT, XLOG_FMT);
|
|
memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
|
|
|
|
bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
|
|
XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
|
|
XFS_BUF_SET_BDSTRAT_FUNC(bp, xlog_bdstrat_cb);
|
|
XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
|
|
iclog->ic_bp = bp;
|
|
|
|
iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
iclog->ic_log = log;
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
|
iclog->ic_datap = (char *)iclog->hic_data + log->l_iclog_hsize;
|
|
|
|
ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
|
|
ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
|
|
sv_init(&iclog->ic_forcesema, SV_DEFAULT, "iclog-force");
|
|
sv_init(&iclog->ic_writesema, SV_DEFAULT, "iclog-write");
|
|
|
|
iclogp = &iclog->ic_next;
|
|
}
|
|
*iclogp = log->l_iclog; /* complete ring */
|
|
log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
|
|
|
|
return log;
|
|
} /* xlog_alloc_log */
|
|
|
|
|
|
/*
|
|
* Write out the commit record of a transaction associated with the given
|
|
* ticket. Return the lsn of the commit record.
|
|
*/
|
|
STATIC int
|
|
xlog_commit_record(xfs_mount_t *mp,
|
|
xlog_ticket_t *ticket,
|
|
xlog_in_core_t **iclog,
|
|
xfs_lsn_t *commitlsnp)
|
|
{
|
|
int error;
|
|
xfs_log_iovec_t reg[1];
|
|
|
|
reg[0].i_addr = NULL;
|
|
reg[0].i_len = 0;
|
|
XLOG_VEC_SET_TYPE(®[0], XLOG_REG_TYPE_COMMIT);
|
|
|
|
ASSERT_ALWAYS(iclog);
|
|
if ((error = xlog_write(mp, reg, 1, ticket, commitlsnp,
|
|
iclog, XLOG_COMMIT_TRANS))) {
|
|
xfs_force_shutdown(mp, XFS_LOG_IO_ERROR);
|
|
}
|
|
return error;
|
|
} /* xlog_commit_record */
|
|
|
|
|
|
/*
|
|
* Push on the buffer cache code if we ever use more than 75% of the on-disk
|
|
* log space. This code pushes on the lsn which would supposedly free up
|
|
* the 25% which we want to leave free. We may need to adopt a policy which
|
|
* pushes on an lsn which is further along in the log once we reach the high
|
|
* water mark. In this manner, we would be creating a low water mark.
|
|
*/
|
|
void
|
|
xlog_grant_push_ail(xfs_mount_t *mp,
|
|
int need_bytes)
|
|
{
|
|
xlog_t *log = mp->m_log; /* pointer to the log */
|
|
xfs_lsn_t tail_lsn; /* lsn of the log tail */
|
|
xfs_lsn_t threshold_lsn = 0; /* lsn we'd like to be at */
|
|
int free_blocks; /* free blocks left to write to */
|
|
int free_bytes; /* free bytes left to write to */
|
|
int threshold_block; /* block in lsn we'd like to be at */
|
|
int threshold_cycle; /* lsn cycle we'd like to be at */
|
|
int free_threshold;
|
|
SPLDECL(s);
|
|
|
|
ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
|
|
|
|
s = GRANT_LOCK(log);
|
|
free_bytes = xlog_space_left(log,
|
|
log->l_grant_reserve_cycle,
|
|
log->l_grant_reserve_bytes);
|
|
tail_lsn = log->l_tail_lsn;
|
|
free_blocks = BTOBBT(free_bytes);
|
|
|
|
/*
|
|
* Set the threshold for the minimum number of free blocks in the
|
|
* log to the maximum of what the caller needs, one quarter of the
|
|
* log, and 256 blocks.
|
|
*/
|
|
free_threshold = BTOBB(need_bytes);
|
|
free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
|
|
free_threshold = MAX(free_threshold, 256);
|
|
if (free_blocks < free_threshold) {
|
|
threshold_block = BLOCK_LSN(tail_lsn) + free_threshold;
|
|
threshold_cycle = CYCLE_LSN(tail_lsn);
|
|
if (threshold_block >= log->l_logBBsize) {
|
|
threshold_block -= log->l_logBBsize;
|
|
threshold_cycle += 1;
|
|
}
|
|
ASSIGN_ANY_LSN_HOST(threshold_lsn, threshold_cycle,
|
|
threshold_block);
|
|
|
|
/* Don't pass in an lsn greater than the lsn of the last
|
|
* log record known to be on disk.
|
|
*/
|
|
if (XFS_LSN_CMP(threshold_lsn, log->l_last_sync_lsn) > 0)
|
|
threshold_lsn = log->l_last_sync_lsn;
|
|
}
|
|
GRANT_UNLOCK(log, s);
|
|
|
|
/*
|
|
* Get the transaction layer to kick the dirty buffers out to
|
|
* disk asynchronously. No point in trying to do this if
|
|
* the filesystem is shutting down.
|
|
*/
|
|
if (threshold_lsn &&
|
|
!XLOG_FORCED_SHUTDOWN(log))
|
|
xfs_trans_push_ail(mp, threshold_lsn);
|
|
} /* xlog_grant_push_ail */
|
|
|
|
|
|
/*
|
|
* Flush out the in-core log (iclog) to the on-disk log in an asynchronous
|
|
* fashion. Previously, we should have moved the current iclog
|
|
* ptr in the log to point to the next available iclog. This allows further
|
|
* write to continue while this code syncs out an iclog ready to go.
|
|
* Before an in-core log can be written out, the data section must be scanned
|
|
* to save away the 1st word of each BBSIZE block into the header. We replace
|
|
* it with the current cycle count. Each BBSIZE block is tagged with the
|
|
* cycle count because there in an implicit assumption that drives will
|
|
* guarantee that entire 512 byte blocks get written at once. In other words,
|
|
* we can't have part of a 512 byte block written and part not written. By
|
|
* tagging each block, we will know which blocks are valid when recovering
|
|
* after an unclean shutdown.
|
|
*
|
|
* This routine is single threaded on the iclog. No other thread can be in
|
|
* this routine with the same iclog. Changing contents of iclog can there-
|
|
* fore be done without grabbing the state machine lock. Updating the global
|
|
* log will require grabbing the lock though.
|
|
*
|
|
* The entire log manager uses a logical block numbering scheme. Only
|
|
* log_sync (and then only bwrite()) know about the fact that the log may
|
|
* not start with block zero on a given device. The log block start offset
|
|
* is added immediately before calling bwrite().
|
|
*/
|
|
|
|
int
|
|
xlog_sync(xlog_t *log,
|
|
xlog_in_core_t *iclog)
|
|
{
|
|
xfs_caddr_t dptr; /* pointer to byte sized element */
|
|
xfs_buf_t *bp;
|
|
int i, ops;
|
|
uint count; /* byte count of bwrite */
|
|
uint count_init; /* initial count before roundup */
|
|
int roundoff; /* roundoff to BB or stripe */
|
|
int split = 0; /* split write into two regions */
|
|
int error;
|
|
SPLDECL(s);
|
|
int v2 = XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb);
|
|
|
|
XFS_STATS_INC(xs_log_writes);
|
|
ASSERT(iclog->ic_refcnt == 0);
|
|
|
|
/* Add for LR header */
|
|
count_init = log->l_iclog_hsize + iclog->ic_offset;
|
|
|
|
/* Round out the log write size */
|
|
if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
|
|
/* we have a v2 stripe unit to use */
|
|
count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
|
|
} else {
|
|
count = BBTOB(BTOBB(count_init));
|
|
}
|
|
roundoff = count - count_init;
|
|
ASSERT(roundoff >= 0);
|
|
ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
|
|
roundoff < log->l_mp->m_sb.sb_logsunit)
|
|
||
|
|
(log->l_mp->m_sb.sb_logsunit <= 1 &&
|
|
roundoff < BBTOB(1)));
|
|
|
|
/* move grant heads by roundoff in sync */
|
|
s = GRANT_LOCK(log);
|
|
xlog_grant_add_space(log, roundoff);
|
|
GRANT_UNLOCK(log, s);
|
|
|
|
/* put cycle number in every block */
|
|
xlog_pack_data(log, iclog, roundoff);
|
|
|
|
/* real byte length */
|
|
if (v2) {
|
|
INT_SET(iclog->ic_header.h_len,
|
|
ARCH_CONVERT,
|
|
iclog->ic_offset + roundoff);
|
|
} else {
|
|
INT_SET(iclog->ic_header.h_len, ARCH_CONVERT, iclog->ic_offset);
|
|
}
|
|
|
|
/* put ops count in correct order */
|
|
ops = iclog->ic_header.h_num_logops;
|
|
INT_SET(iclog->ic_header.h_num_logops, ARCH_CONVERT, ops);
|
|
|
|
bp = iclog->ic_bp;
|
|
ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
|
|
XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
|
|
XFS_BUF_SET_ADDR(bp, BLOCK_LSN(INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT)));
|
|
|
|
XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
|
|
|
|
/* Do we need to split this write into 2 parts? */
|
|
if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
|
|
split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
|
|
count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
|
|
iclog->ic_bwritecnt = 2; /* split into 2 writes */
|
|
} else {
|
|
iclog->ic_bwritecnt = 1;
|
|
}
|
|
XFS_BUF_SET_PTR(bp, (xfs_caddr_t) &(iclog->ic_header), count);
|
|
XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */
|
|
XFS_BUF_BUSY(bp);
|
|
XFS_BUF_ASYNC(bp);
|
|
/*
|
|
* Do an ordered write for the log block.
|
|
*
|
|
* It may not be needed to flush the first split block in the log wrap
|
|
* case, but do it anyways to be safe -AK
|
|
*/
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
|
|
XFS_BUF_ORDERED(bp);
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
xlog_verify_iclog(log, iclog, count, B_TRUE);
|
|
|
|
/* account for log which doesn't start at block #0 */
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
/*
|
|
* Don't call xfs_bwrite here. We do log-syncs even when the filesystem
|
|
* is shutting down.
|
|
*/
|
|
XFS_BUF_WRITE(bp);
|
|
|
|
if ((error = XFS_bwrite(bp))) {
|
|
xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
|
|
XFS_BUF_ADDR(bp));
|
|
return error;
|
|
}
|
|
if (split) {
|
|
bp = iclog->ic_log->l_xbuf;
|
|
ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
|
|
(unsigned long)1);
|
|
XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
|
|
XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
|
|
XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
|
|
(__psint_t)count), split);
|
|
XFS_BUF_SET_FSPRIVATE(bp, iclog);
|
|
XFS_BUF_BUSY(bp);
|
|
XFS_BUF_ASYNC(bp);
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
|
|
XFS_BUF_ORDERED(bp);
|
|
dptr = XFS_BUF_PTR(bp);
|
|
/*
|
|
* Bump the cycle numbers at the start of each block
|
|
* since this part of the buffer is at the start of
|
|
* a new cycle. Watch out for the header magic number
|
|
* case, though.
|
|
*/
|
|
for (i=0; i<split; i += BBSIZE) {
|
|
INT_MOD(*(uint *)dptr, ARCH_CONVERT, +1);
|
|
if (INT_GET(*(uint *)dptr, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM)
|
|
INT_MOD(*(uint *)dptr, ARCH_CONVERT, +1);
|
|
dptr += BBSIZE;
|
|
}
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
/* account for internal log which doesn't start at block #0 */
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
XFS_BUF_WRITE(bp);
|
|
if ((error = XFS_bwrite(bp))) {
|
|
xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
|
|
bp, XFS_BUF_ADDR(bp));
|
|
return error;
|
|
}
|
|
}
|
|
return 0;
|
|
} /* xlog_sync */
|
|
|
|
|
|
/*
|
|
* Deallocate a log structure
|
|
*/
|
|
void
|
|
xlog_dealloc_log(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog, *next_iclog;
|
|
xlog_ticket_t *tic, *next_tic;
|
|
int i;
|
|
|
|
|
|
iclog = log->l_iclog;
|
|
for (i=0; i<log->l_iclog_bufs; i++) {
|
|
sv_destroy(&iclog->ic_forcesema);
|
|
sv_destroy(&iclog->ic_writesema);
|
|
xfs_buf_free(iclog->ic_bp);
|
|
#ifdef XFS_LOG_TRACE
|
|
if (iclog->ic_trace != NULL) {
|
|
ktrace_free(iclog->ic_trace);
|
|
}
|
|
#endif
|
|
next_iclog = iclog->ic_next;
|
|
kmem_free(iclog->hic_data, log->l_iclog_size);
|
|
kmem_free(iclog, sizeof(xlog_in_core_t));
|
|
iclog = next_iclog;
|
|
}
|
|
freesema(&log->l_flushsema);
|
|
spinlock_destroy(&log->l_icloglock);
|
|
spinlock_destroy(&log->l_grant_lock);
|
|
|
|
/* XXXsup take a look at this again. */
|
|
if ((log->l_ticket_cnt != log->l_ticket_tcnt) &&
|
|
!XLOG_FORCED_SHUTDOWN(log)) {
|
|
xfs_fs_cmn_err(CE_WARN, log->l_mp,
|
|
"xlog_dealloc_log: (cnt: %d, total: %d)",
|
|
log->l_ticket_cnt, log->l_ticket_tcnt);
|
|
/* ASSERT(log->l_ticket_cnt == log->l_ticket_tcnt); */
|
|
|
|
} else {
|
|
tic = log->l_unmount_free;
|
|
while (tic) {
|
|
next_tic = tic->t_next;
|
|
kmem_free(tic, NBPP);
|
|
tic = next_tic;
|
|
}
|
|
}
|
|
xfs_buf_free(log->l_xbuf);
|
|
#ifdef XFS_LOG_TRACE
|
|
if (log->l_trace != NULL) {
|
|
ktrace_free(log->l_trace);
|
|
}
|
|
if (log->l_grant_trace != NULL) {
|
|
ktrace_free(log->l_grant_trace);
|
|
}
|
|
#endif
|
|
log->l_mp->m_log = NULL;
|
|
kmem_free(log, sizeof(xlog_t));
|
|
} /* xlog_dealloc_log */
|
|
|
|
/*
|
|
* Update counters atomically now that memcpy is done.
|
|
*/
|
|
/* ARGSUSED */
|
|
static inline void
|
|
xlog_state_finish_copy(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int record_cnt,
|
|
int copy_bytes)
|
|
{
|
|
SPLDECL(s);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
iclog->ic_header.h_num_logops += record_cnt;
|
|
iclog->ic_offset += copy_bytes;
|
|
|
|
LOG_UNLOCK(log, s);
|
|
} /* xlog_state_finish_copy */
|
|
|
|
|
|
|
|
|
|
/*
|
|
* print out info relating to regions written which consume
|
|
* the reservation
|
|
*/
|
|
STATIC void
|
|
xlog_print_tic_res(xfs_mount_t *mp, xlog_ticket_t *ticket)
|
|
{
|
|
uint i;
|
|
uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
|
|
|
|
/* match with XLOG_REG_TYPE_* in xfs_log.h */
|
|
static char *res_type_str[XLOG_REG_TYPE_MAX] = {
|
|
"bformat",
|
|
"bchunk",
|
|
"efi_format",
|
|
"efd_format",
|
|
"iformat",
|
|
"icore",
|
|
"iext",
|
|
"ibroot",
|
|
"ilocal",
|
|
"iattr_ext",
|
|
"iattr_broot",
|
|
"iattr_local",
|
|
"qformat",
|
|
"dquot",
|
|
"quotaoff",
|
|
"LR header",
|
|
"unmount",
|
|
"commit",
|
|
"trans header"
|
|
};
|
|
static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
|
|
"SETATTR_NOT_SIZE",
|
|
"SETATTR_SIZE",
|
|
"INACTIVE",
|
|
"CREATE",
|
|
"CREATE_TRUNC",
|
|
"TRUNCATE_FILE",
|
|
"REMOVE",
|
|
"LINK",
|
|
"RENAME",
|
|
"MKDIR",
|
|
"RMDIR",
|
|
"SYMLINK",
|
|
"SET_DMATTRS",
|
|
"GROWFS",
|
|
"STRAT_WRITE",
|
|
"DIOSTRAT",
|
|
"WRITE_SYNC",
|
|
"WRITEID",
|
|
"ADDAFORK",
|
|
"ATTRINVAL",
|
|
"ATRUNCATE",
|
|
"ATTR_SET",
|
|
"ATTR_RM",
|
|
"ATTR_FLAG",
|
|
"CLEAR_AGI_BUCKET",
|
|
"QM_SBCHANGE",
|
|
"DUMMY1",
|
|
"DUMMY2",
|
|
"QM_QUOTAOFF",
|
|
"QM_DQALLOC",
|
|
"QM_SETQLIM",
|
|
"QM_DQCLUSTER",
|
|
"QM_QINOCREATE",
|
|
"QM_QUOTAOFF_END",
|
|
"SB_UNIT",
|
|
"FSYNC_TS",
|
|
"GROWFSRT_ALLOC",
|
|
"GROWFSRT_ZERO",
|
|
"GROWFSRT_FREE",
|
|
"SWAPEXT"
|
|
};
|
|
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
|
"xfs_log_write: reservation summary:\n"
|
|
" trans type = %s (%u)\n"
|
|
" unit res = %d bytes\n"
|
|
" current res = %d bytes\n"
|
|
" total reg = %u bytes (o/flow = %u bytes)\n"
|
|
" ophdrs = %u (ophdr space = %u bytes)\n"
|
|
" ophdr + reg = %u bytes\n"
|
|
" num regions = %u\n",
|
|
((ticket->t_trans_type <= 0 ||
|
|
ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
|
|
"bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
|
|
ticket->t_trans_type,
|
|
ticket->t_unit_res,
|
|
ticket->t_curr_res,
|
|
ticket->t_res_arr_sum, ticket->t_res_o_flow,
|
|
ticket->t_res_num_ophdrs, ophdr_spc,
|
|
ticket->t_res_arr_sum +
|
|
ticket->t_res_o_flow + ophdr_spc,
|
|
ticket->t_res_num);
|
|
|
|
for (i = 0; i < ticket->t_res_num; i++) {
|
|
uint r_type = ticket->t_res_arr[i].r_type;
|
|
cmn_err(CE_WARN,
|
|
"region[%u]: %s - %u bytes\n",
|
|
i,
|
|
((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
|
|
"bad-rtype" : res_type_str[r_type-1]),
|
|
ticket->t_res_arr[i].r_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write some region out to in-core log
|
|
*
|
|
* This will be called when writing externally provided regions or when
|
|
* writing out a commit record for a given transaction.
|
|
*
|
|
* General algorithm:
|
|
* 1. Find total length of this write. This may include adding to the
|
|
* lengths passed in.
|
|
* 2. Check whether we violate the tickets reservation.
|
|
* 3. While writing to this iclog
|
|
* A. Reserve as much space in this iclog as can get
|
|
* B. If this is first write, save away start lsn
|
|
* C. While writing this region:
|
|
* 1. If first write of transaction, write start record
|
|
* 2. Write log operation header (header per region)
|
|
* 3. Find out if we can fit entire region into this iclog
|
|
* 4. Potentially, verify destination memcpy ptr
|
|
* 5. Memcpy (partial) region
|
|
* 6. If partial copy, release iclog; otherwise, continue
|
|
* copying more regions into current iclog
|
|
* 4. Mark want sync bit (in simulation mode)
|
|
* 5. Release iclog for potential flush to on-disk log.
|
|
*
|
|
* ERRORS:
|
|
* 1. Panic if reservation is overrun. This should never happen since
|
|
* reservation amounts are generated internal to the filesystem.
|
|
* NOTES:
|
|
* 1. Tickets are single threaded data structures.
|
|
* 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
|
|
* syncing routine. When a single log_write region needs to span
|
|
* multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
|
|
* on all log operation writes which don't contain the end of the
|
|
* region. The XLOG_END_TRANS bit is used for the in-core log
|
|
* operation which contains the end of the continued log_write region.
|
|
* 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
|
|
* we don't really know exactly how much space will be used. As a result,
|
|
* we don't update ic_offset until the end when we know exactly how many
|
|
* bytes have been written out.
|
|
*/
|
|
int
|
|
xlog_write(xfs_mount_t * mp,
|
|
xfs_log_iovec_t reg[],
|
|
int nentries,
|
|
xfs_log_ticket_t tic,
|
|
xfs_lsn_t *start_lsn,
|
|
xlog_in_core_t **commit_iclog,
|
|
uint flags)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_ticket_t *ticket = (xlog_ticket_t *)tic;
|
|
xlog_op_header_t *logop_head; /* ptr to log operation header */
|
|
xlog_in_core_t *iclog; /* ptr to current in-core log */
|
|
__psint_t ptr; /* copy address into data region */
|
|
int len; /* # xlog_write() bytes 2 still copy */
|
|
int index; /* region index currently copying */
|
|
int log_offset; /* offset (from 0) into data region */
|
|
int start_rec_copy; /* # bytes to copy for start record */
|
|
int partial_copy; /* did we split a region? */
|
|
int partial_copy_len;/* # bytes copied if split region */
|
|
int need_copy; /* # bytes need to memcpy this region */
|
|
int copy_len; /* # bytes actually memcpy'ing */
|
|
int copy_off; /* # bytes from entry start */
|
|
int contwr; /* continued write of in-core log? */
|
|
int error;
|
|
int record_cnt = 0, data_cnt = 0;
|
|
|
|
partial_copy_len = partial_copy = 0;
|
|
|
|
/* Calculate potential maximum space. Each region gets its own
|
|
* xlog_op_header_t and may need to be double word aligned.
|
|
*/
|
|
len = 0;
|
|
if (ticket->t_flags & XLOG_TIC_INITED) { /* acct for start rec of xact */
|
|
len += sizeof(xlog_op_header_t);
|
|
XLOG_TIC_ADD_OPHDR(ticket);
|
|
}
|
|
|
|
for (index = 0; index < nentries; index++) {
|
|
len += sizeof(xlog_op_header_t); /* each region gets >= 1 */
|
|
XLOG_TIC_ADD_OPHDR(ticket);
|
|
len += reg[index].i_len;
|
|
XLOG_TIC_ADD_REGION(ticket, reg[index].i_len, reg[index].i_type);
|
|
}
|
|
contwr = *start_lsn = 0;
|
|
|
|
if (ticket->t_curr_res < len) {
|
|
xlog_print_tic_res(mp, ticket);
|
|
#ifdef DEBUG
|
|
xlog_panic(
|
|
"xfs_log_write: reservation ran out. Need to up reservation");
|
|
#else
|
|
/* Customer configurable panic */
|
|
xfs_cmn_err(XFS_PTAG_LOGRES, CE_ALERT, mp,
|
|
"xfs_log_write: reservation ran out. Need to up reservation");
|
|
/* If we did not panic, shutdown the filesystem */
|
|
xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
|
|
#endif
|
|
} else
|
|
ticket->t_curr_res -= len;
|
|
|
|
for (index = 0; index < nentries; ) {
|
|
if ((error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
|
|
&contwr, &log_offset)))
|
|
return error;
|
|
|
|
ASSERT(log_offset <= iclog->ic_size - 1);
|
|
ptr = (__psint_t) ((char *)iclog->ic_datap+log_offset);
|
|
|
|
/* start_lsn is the first lsn written to. That's all we need. */
|
|
if (! *start_lsn)
|
|
*start_lsn = INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT);
|
|
|
|
/* This loop writes out as many regions as can fit in the amount
|
|
* of space which was allocated by xlog_state_get_iclog_space().
|
|
*/
|
|
while (index < nentries) {
|
|
ASSERT(reg[index].i_len % sizeof(__int32_t) == 0);
|
|
ASSERT((__psint_t)ptr % sizeof(__int32_t) == 0);
|
|
start_rec_copy = 0;
|
|
|
|
/* If first write for transaction, insert start record.
|
|
* We can't be trying to commit if we are inited. We can't
|
|
* have any "partial_copy" if we are inited.
|
|
*/
|
|
if (ticket->t_flags & XLOG_TIC_INITED) {
|
|
logop_head = (xlog_op_header_t *)ptr;
|
|
INT_SET(logop_head->oh_tid, ARCH_CONVERT, ticket->t_tid);
|
|
logop_head->oh_clientid = ticket->t_clientid;
|
|
logop_head->oh_len = 0;
|
|
logop_head->oh_flags = XLOG_START_TRANS;
|
|
logop_head->oh_res2 = 0;
|
|
ticket->t_flags &= ~XLOG_TIC_INITED; /* clear bit */
|
|
record_cnt++;
|
|
|
|
start_rec_copy = sizeof(xlog_op_header_t);
|
|
xlog_write_adv_cnt(ptr, len, log_offset, start_rec_copy);
|
|
}
|
|
|
|
/* Copy log operation header directly into data section */
|
|
logop_head = (xlog_op_header_t *)ptr;
|
|
INT_SET(logop_head->oh_tid, ARCH_CONVERT, ticket->t_tid);
|
|
logop_head->oh_clientid = ticket->t_clientid;
|
|
logop_head->oh_res2 = 0;
|
|
|
|
/* header copied directly */
|
|
xlog_write_adv_cnt(ptr, len, log_offset, sizeof(xlog_op_header_t));
|
|
|
|
/* are we copying a commit or unmount record? */
|
|
logop_head->oh_flags = flags;
|
|
|
|
/*
|
|
* We've seen logs corrupted with bad transaction client
|
|
* ids. This makes sure that XFS doesn't generate them on.
|
|
* Turn this into an EIO and shut down the filesystem.
|
|
*/
|
|
switch (logop_head->oh_clientid) {
|
|
case XFS_TRANSACTION:
|
|
case XFS_VOLUME:
|
|
case XFS_LOG:
|
|
break;
|
|
default:
|
|
xfs_fs_cmn_err(CE_WARN, mp,
|
|
"Bad XFS transaction clientid 0x%x in ticket 0x%p",
|
|
logop_head->oh_clientid, tic);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* Partial write last time? => (partial_copy != 0)
|
|
* need_copy is the amount we'd like to copy if everything could
|
|
* fit in the current memcpy.
|
|
*/
|
|
need_copy = reg[index].i_len - partial_copy_len;
|
|
|
|
copy_off = partial_copy_len;
|
|
if (need_copy <= iclog->ic_size - log_offset) { /*complete write */
|
|
INT_SET(logop_head->oh_len, ARCH_CONVERT, copy_len = need_copy);
|
|
if (partial_copy)
|
|
logop_head->oh_flags|= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
|
|
partial_copy_len = partial_copy = 0;
|
|
} else { /* partial write */
|
|
copy_len = iclog->ic_size - log_offset;
|
|
INT_SET(logop_head->oh_len, ARCH_CONVERT, copy_len);
|
|
logop_head->oh_flags |= XLOG_CONTINUE_TRANS;
|
|
if (partial_copy)
|
|
logop_head->oh_flags |= XLOG_WAS_CONT_TRANS;
|
|
partial_copy_len += copy_len;
|
|
partial_copy++;
|
|
len += sizeof(xlog_op_header_t); /* from splitting of region */
|
|
/* account for new log op header */
|
|
ticket->t_curr_res -= sizeof(xlog_op_header_t);
|
|
XLOG_TIC_ADD_OPHDR(ticket);
|
|
}
|
|
xlog_verify_dest_ptr(log, ptr);
|
|
|
|
/* copy region */
|
|
ASSERT(copy_len >= 0);
|
|
memcpy((xfs_caddr_t)ptr, reg[index].i_addr + copy_off, copy_len);
|
|
xlog_write_adv_cnt(ptr, len, log_offset, copy_len);
|
|
|
|
/* make copy_len total bytes copied, including headers */
|
|
copy_len += start_rec_copy + sizeof(xlog_op_header_t);
|
|
record_cnt++;
|
|
data_cnt += contwr ? copy_len : 0;
|
|
if (partial_copy) { /* copied partial region */
|
|
/* already marked WANT_SYNC by xlog_state_get_iclog_space */
|
|
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
|
|
record_cnt = data_cnt = 0;
|
|
if ((error = xlog_state_release_iclog(log, iclog)))
|
|
return error;
|
|
break; /* don't increment index */
|
|
} else { /* copied entire region */
|
|
index++;
|
|
partial_copy_len = partial_copy = 0;
|
|
|
|
if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
|
|
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
|
|
record_cnt = data_cnt = 0;
|
|
xlog_state_want_sync(log, iclog);
|
|
if (commit_iclog) {
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
*commit_iclog = iclog;
|
|
} else if ((error = xlog_state_release_iclog(log, iclog)))
|
|
return error;
|
|
if (index == nentries)
|
|
return 0; /* we are done */
|
|
else
|
|
break;
|
|
}
|
|
} /* if (partial_copy) */
|
|
} /* while (index < nentries) */
|
|
} /* for (index = 0; index < nentries; ) */
|
|
ASSERT(len == 0);
|
|
|
|
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
|
|
if (commit_iclog) {
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
*commit_iclog = iclog;
|
|
return 0;
|
|
}
|
|
return xlog_state_release_iclog(log, iclog);
|
|
} /* xlog_write */
|
|
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* State Machine functions
|
|
*
|
|
*****************************************************************************
|
|
*/
|
|
|
|
/* Clean iclogs starting from the head. This ordering must be
|
|
* maintained, so an iclog doesn't become ACTIVE beyond one that
|
|
* is SYNCING. This is also required to maintain the notion that we use
|
|
* a counting semaphore to hold off would be writers to the log when every
|
|
* iclog is trying to sync to disk.
|
|
*
|
|
* State Change: DIRTY -> ACTIVE
|
|
*/
|
|
STATIC void
|
|
xlog_state_clean_log(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
int changed = 0;
|
|
|
|
iclog = log->l_iclog;
|
|
do {
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
iclog->ic_offset = 0;
|
|
iclog->ic_callback = NULL; /* don't need to free */
|
|
/*
|
|
* If the number of ops in this iclog indicate it just
|
|
* contains the dummy transaction, we can
|
|
* change state into IDLE (the second time around).
|
|
* Otherwise we should change the state into
|
|
* NEED a dummy.
|
|
* We don't need to cover the dummy.
|
|
*/
|
|
if (!changed &&
|
|
(INT_GET(iclog->ic_header.h_num_logops, ARCH_CONVERT) == XLOG_COVER_OPS)) {
|
|
changed = 1;
|
|
} else {
|
|
/*
|
|
* We have two dirty iclogs so start over
|
|
* This could also be num of ops indicates
|
|
* this is not the dummy going out.
|
|
*/
|
|
changed = 2;
|
|
}
|
|
iclog->ic_header.h_num_logops = 0;
|
|
memset(iclog->ic_header.h_cycle_data, 0,
|
|
sizeof(iclog->ic_header.h_cycle_data));
|
|
iclog->ic_header.h_lsn = 0;
|
|
} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
|
|
/* do nothing */;
|
|
else
|
|
break; /* stop cleaning */
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
|
|
/* log is locked when we are called */
|
|
/*
|
|
* Change state for the dummy log recording.
|
|
* We usually go to NEED. But we go to NEED2 if the changed indicates
|
|
* we are done writing the dummy record.
|
|
* If we are done with the second dummy recored (DONE2), then
|
|
* we go to IDLE.
|
|
*/
|
|
if (changed) {
|
|
switch (log->l_covered_state) {
|
|
case XLOG_STATE_COVER_IDLE:
|
|
case XLOG_STATE_COVER_NEED:
|
|
case XLOG_STATE_COVER_NEED2:
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
case XLOG_STATE_COVER_DONE:
|
|
if (changed == 1)
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED2;
|
|
else
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
case XLOG_STATE_COVER_DONE2:
|
|
if (changed == 1)
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
else
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
} /* xlog_state_clean_log */
|
|
|
|
STATIC xfs_lsn_t
|
|
xlog_get_lowest_lsn(
|
|
xlog_t *log)
|
|
{
|
|
xlog_in_core_t *lsn_log;
|
|
xfs_lsn_t lowest_lsn, lsn;
|
|
|
|
lsn_log = log->l_iclog;
|
|
lowest_lsn = 0;
|
|
do {
|
|
if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
|
|
lsn = INT_GET(lsn_log->ic_header.h_lsn, ARCH_CONVERT);
|
|
if ((lsn && !lowest_lsn) ||
|
|
(XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
|
|
lowest_lsn = lsn;
|
|
}
|
|
}
|
|
lsn_log = lsn_log->ic_next;
|
|
} while (lsn_log != log->l_iclog);
|
|
return lowest_lsn;
|
|
}
|
|
|
|
|
|
STATIC void
|
|
xlog_state_do_callback(
|
|
xlog_t *log,
|
|
int aborted,
|
|
xlog_in_core_t *ciclog)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
xlog_in_core_t *first_iclog; /* used to know when we've
|
|
* processed all iclogs once */
|
|
xfs_log_callback_t *cb, *cb_next;
|
|
int flushcnt = 0;
|
|
xfs_lsn_t lowest_lsn;
|
|
int ioerrors; /* counter: iclogs with errors */
|
|
int loopdidcallbacks; /* flag: inner loop did callbacks*/
|
|
int funcdidcallbacks; /* flag: function did callbacks */
|
|
int repeats; /* for issuing console warnings if
|
|
* looping too many times */
|
|
SPLDECL(s);
|
|
|
|
s = LOG_LOCK(log);
|
|
first_iclog = iclog = log->l_iclog;
|
|
ioerrors = 0;
|
|
funcdidcallbacks = 0;
|
|
repeats = 0;
|
|
|
|
do {
|
|
/*
|
|
* Scan all iclogs starting with the one pointed to by the
|
|
* log. Reset this starting point each time the log is
|
|
* unlocked (during callbacks).
|
|
*
|
|
* Keep looping through iclogs until one full pass is made
|
|
* without running any callbacks.
|
|
*/
|
|
first_iclog = log->l_iclog;
|
|
iclog = log->l_iclog;
|
|
loopdidcallbacks = 0;
|
|
repeats++;
|
|
|
|
do {
|
|
|
|
/* skip all iclogs in the ACTIVE & DIRTY states */
|
|
if (iclog->ic_state &
|
|
(XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
|
|
iclog = iclog->ic_next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Between marking a filesystem SHUTDOWN and stopping
|
|
* the log, we do flush all iclogs to disk (if there
|
|
* wasn't a log I/O error). So, we do want things to
|
|
* go smoothly in case of just a SHUTDOWN w/o a
|
|
* LOG_IO_ERROR.
|
|
*/
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
/*
|
|
* Can only perform callbacks in order. Since
|
|
* this iclog is not in the DONE_SYNC/
|
|
* DO_CALLBACK state, we skip the rest and
|
|
* just try to clean up. If we set our iclog
|
|
* to DO_CALLBACK, we will not process it when
|
|
* we retry since a previous iclog is in the
|
|
* CALLBACK and the state cannot change since
|
|
* we are holding the LOG_LOCK.
|
|
*/
|
|
if (!(iclog->ic_state &
|
|
(XLOG_STATE_DONE_SYNC |
|
|
XLOG_STATE_DO_CALLBACK))) {
|
|
if (ciclog && (ciclog->ic_state ==
|
|
XLOG_STATE_DONE_SYNC)) {
|
|
ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* We now have an iclog that is in either the
|
|
* DO_CALLBACK or DONE_SYNC states. The other
|
|
* states (WANT_SYNC, SYNCING, or CALLBACK were
|
|
* caught by the above if and are going to
|
|
* clean (i.e. we aren't doing their callbacks)
|
|
* see the above if.
|
|
*/
|
|
|
|
/*
|
|
* We will do one more check here to see if we
|
|
* have chased our tail around.
|
|
*/
|
|
|
|
lowest_lsn = xlog_get_lowest_lsn(log);
|
|
if (lowest_lsn && (
|
|
XFS_LSN_CMP(
|
|
lowest_lsn,
|
|
INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT)
|
|
)<0)) {
|
|
iclog = iclog->ic_next;
|
|
continue; /* Leave this iclog for
|
|
* another thread */
|
|
}
|
|
|
|
iclog->ic_state = XLOG_STATE_CALLBACK;
|
|
|
|
LOG_UNLOCK(log, s);
|
|
|
|
/* l_last_sync_lsn field protected by
|
|
* GRANT_LOCK. Don't worry about iclog's lsn.
|
|
* No one else can be here except us.
|
|
*/
|
|
s = GRANT_LOCK(log);
|
|
ASSERT(XFS_LSN_CMP(
|
|
log->l_last_sync_lsn,
|
|
INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT)
|
|
)<=0);
|
|
log->l_last_sync_lsn = INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT);
|
|
GRANT_UNLOCK(log, s);
|
|
|
|
/*
|
|
* Keep processing entries in the callback list
|
|
* until we come around and it is empty. We
|
|
* need to atomically see that the list is
|
|
* empty and change the state to DIRTY so that
|
|
* we don't miss any more callbacks being added.
|
|
*/
|
|
s = LOG_LOCK(log);
|
|
} else {
|
|
ioerrors++;
|
|
}
|
|
cb = iclog->ic_callback;
|
|
|
|
while (cb != 0) {
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
|
iclog->ic_callback = NULL;
|
|
LOG_UNLOCK(log, s);
|
|
|
|
/* perform callbacks in the order given */
|
|
for (; cb != 0; cb = cb_next) {
|
|
cb_next = cb->cb_next;
|
|
cb->cb_func(cb->cb_arg, aborted);
|
|
}
|
|
s = LOG_LOCK(log);
|
|
cb = iclog->ic_callback;
|
|
}
|
|
|
|
loopdidcallbacks++;
|
|
funcdidcallbacks++;
|
|
|
|
ASSERT(iclog->ic_callback == 0);
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR))
|
|
iclog->ic_state = XLOG_STATE_DIRTY;
|
|
|
|
/*
|
|
* Transition from DIRTY to ACTIVE if applicable.
|
|
* NOP if STATE_IOERROR.
|
|
*/
|
|
xlog_state_clean_log(log);
|
|
|
|
/* wake up threads waiting in xfs_log_force() */
|
|
sv_broadcast(&iclog->ic_forcesema);
|
|
|
|
iclog = iclog->ic_next;
|
|
} while (first_iclog != iclog);
|
|
if (repeats && (repeats % 10) == 0) {
|
|
xfs_fs_cmn_err(CE_WARN, log->l_mp,
|
|
"xlog_state_do_callback: looping %d", repeats);
|
|
}
|
|
} while (!ioerrors && loopdidcallbacks);
|
|
|
|
/*
|
|
* make one last gasp attempt to see if iclogs are being left in
|
|
* limbo..
|
|
*/
|
|
#ifdef DEBUG
|
|
if (funcdidcallbacks) {
|
|
first_iclog = iclog = log->l_iclog;
|
|
do {
|
|
ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
|
|
/*
|
|
* Terminate the loop if iclogs are found in states
|
|
* which will cause other threads to clean up iclogs.
|
|
*
|
|
* SYNCING - i/o completion will go through logs
|
|
* DONE_SYNC - interrupt thread should be waiting for
|
|
* LOG_LOCK
|
|
* IOERROR - give up hope all ye who enter here
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
|
|
iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
iclog->ic_state == XLOG_STATE_DONE_SYNC ||
|
|
iclog->ic_state == XLOG_STATE_IOERROR )
|
|
break;
|
|
iclog = iclog->ic_next;
|
|
} while (first_iclog != iclog);
|
|
}
|
|
#endif
|
|
|
|
if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) {
|
|
flushcnt = log->l_flushcnt;
|
|
log->l_flushcnt = 0;
|
|
}
|
|
LOG_UNLOCK(log, s);
|
|
while (flushcnt--)
|
|
vsema(&log->l_flushsema);
|
|
} /* xlog_state_do_callback */
|
|
|
|
|
|
/*
|
|
* Finish transitioning this iclog to the dirty state.
|
|
*
|
|
* Make sure that we completely execute this routine only when this is
|
|
* the last call to the iclog. There is a good chance that iclog flushes,
|
|
* when we reach the end of the physical log, get turned into 2 separate
|
|
* calls to bwrite. Hence, one iclog flush could generate two calls to this
|
|
* routine. By using the reference count bwritecnt, we guarantee that only
|
|
* the second completion goes through.
|
|
*
|
|
* Callbacks could take time, so they are done outside the scope of the
|
|
* global state machine log lock. Assume that the calls to cvsema won't
|
|
* take a long time. At least we know it won't sleep.
|
|
*/
|
|
void
|
|
xlog_state_done_syncing(
|
|
xlog_in_core_t *iclog,
|
|
int aborted)
|
|
{
|
|
xlog_t *log = iclog->ic_log;
|
|
SPLDECL(s);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
iclog->ic_state == XLOG_STATE_IOERROR);
|
|
ASSERT(iclog->ic_refcnt == 0);
|
|
ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
|
|
|
|
|
|
/*
|
|
* If we got an error, either on the first buffer, or in the case of
|
|
* split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
|
|
* and none should ever be attempted to be written to disk
|
|
* again.
|
|
*/
|
|
if (iclog->ic_state != XLOG_STATE_IOERROR) {
|
|
if (--iclog->ic_bwritecnt == 1) {
|
|
LOG_UNLOCK(log, s);
|
|
return;
|
|
}
|
|
iclog->ic_state = XLOG_STATE_DONE_SYNC;
|
|
}
|
|
|
|
/*
|
|
* Someone could be sleeping prior to writing out the next
|
|
* iclog buffer, we wake them all, one will get to do the
|
|
* I/O, the others get to wait for the result.
|
|
*/
|
|
sv_broadcast(&iclog->ic_writesema);
|
|
LOG_UNLOCK(log, s);
|
|
xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
|
|
} /* xlog_state_done_syncing */
|
|
|
|
|
|
/*
|
|
* If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
|
|
* sleep. The flush semaphore is set to the number of in-core buffers and
|
|
* decremented around disk syncing. Therefore, if all buffers are syncing,
|
|
* this semaphore will cause new writes to sleep until a sync completes.
|
|
* Otherwise, this code just does p() followed by v(). This approximates
|
|
* a sleep/wakeup except we can't race.
|
|
*
|
|
* The in-core logs are used in a circular fashion. They are not used
|
|
* out-of-order even when an iclog past the head is free.
|
|
*
|
|
* return:
|
|
* * log_offset where xlog_write() can start writing into the in-core
|
|
* log's data space.
|
|
* * in-core log pointer to which xlog_write() should write.
|
|
* * boolean indicating this is a continued write to an in-core log.
|
|
* If this is the last write, then the in-core log's offset field
|
|
* needs to be incremented, depending on the amount of data which
|
|
* is copied.
|
|
*/
|
|
int
|
|
xlog_state_get_iclog_space(xlog_t *log,
|
|
int len,
|
|
xlog_in_core_t **iclogp,
|
|
xlog_ticket_t *ticket,
|
|
int *continued_write,
|
|
int *logoffsetp)
|
|
{
|
|
SPLDECL(s);
|
|
int log_offset;
|
|
xlog_rec_header_t *head;
|
|
xlog_in_core_t *iclog;
|
|
int error;
|
|
|
|
restart:
|
|
s = LOG_LOCK(log);
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
iclog = log->l_iclog;
|
|
if (! (iclog->ic_state == XLOG_STATE_ACTIVE)) {
|
|
log->l_flushcnt++;
|
|
LOG_UNLOCK(log, s);
|
|
xlog_trace_iclog(iclog, XLOG_TRACE_SLEEP_FLUSH);
|
|
XFS_STATS_INC(xs_log_noiclogs);
|
|
/* Ensure that log writes happen */
|
|
psema(&log->l_flushsema, PINOD);
|
|
goto restart;
|
|
}
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
|
|
head = &iclog->ic_header;
|
|
|
|
iclog->ic_refcnt++; /* prevents sync */
|
|
log_offset = iclog->ic_offset;
|
|
|
|
/* On the 1st write to an iclog, figure out lsn. This works
|
|
* if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
|
|
* committing to. If the offset is set, that's how many blocks
|
|
* must be written.
|
|
*/
|
|
if (log_offset == 0) {
|
|
ticket->t_curr_res -= log->l_iclog_hsize;
|
|
XLOG_TIC_ADD_REGION(ticket,
|
|
log->l_iclog_hsize,
|
|
XLOG_REG_TYPE_LRHEADER);
|
|
INT_SET(head->h_cycle, ARCH_CONVERT, log->l_curr_cycle);
|
|
ASSIGN_LSN(head->h_lsn, log);
|
|
ASSERT(log->l_curr_block >= 0);
|
|
}
|
|
|
|
/* If there is enough room to write everything, then do it. Otherwise,
|
|
* claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
|
|
* bit is on, so this will get flushed out. Don't update ic_offset
|
|
* until you know exactly how many bytes get copied. Therefore, wait
|
|
* until later to update ic_offset.
|
|
*
|
|
* xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
|
|
* can fit into remaining data section.
|
|
*/
|
|
if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
|
|
/* If I'm the only one writing to this iclog, sync it to disk */
|
|
if (iclog->ic_refcnt == 1) {
|
|
LOG_UNLOCK(log, s);
|
|
if ((error = xlog_state_release_iclog(log, iclog)))
|
|
return error;
|
|
} else {
|
|
iclog->ic_refcnt--;
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
goto restart;
|
|
}
|
|
|
|
/* Do we have enough room to write the full amount in the remainder
|
|
* of this iclog? Or must we continue a write on the next iclog and
|
|
* mark this iclog as completely taken? In the case where we switch
|
|
* iclogs (to mark it taken), this particular iclog will release/sync
|
|
* to disk in xlog_write().
|
|
*/
|
|
if (len <= iclog->ic_size - iclog->ic_offset) {
|
|
*continued_write = 0;
|
|
iclog->ic_offset += len;
|
|
} else {
|
|
*continued_write = 1;
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
}
|
|
*iclogp = iclog;
|
|
|
|
ASSERT(iclog->ic_offset <= iclog->ic_size);
|
|
LOG_UNLOCK(log, s);
|
|
|
|
*logoffsetp = log_offset;
|
|
return 0;
|
|
} /* xlog_state_get_iclog_space */
|
|
|
|
/*
|
|
* Atomically get the log space required for a log ticket.
|
|
*
|
|
* Once a ticket gets put onto the reserveq, it will only return after
|
|
* the needed reservation is satisfied.
|
|
*/
|
|
STATIC int
|
|
xlog_grant_log_space(xlog_t *log,
|
|
xlog_ticket_t *tic)
|
|
{
|
|
int free_bytes;
|
|
int need_bytes;
|
|
SPLDECL(s);
|
|
#ifdef DEBUG
|
|
xfs_lsn_t tail_lsn;
|
|
#endif
|
|
|
|
|
|
#ifdef DEBUG
|
|
if (log->l_flags & XLOG_ACTIVE_RECOVERY)
|
|
panic("grant Recovery problem");
|
|
#endif
|
|
|
|
/* Is there space or do we need to sleep? */
|
|
s = GRANT_LOCK(log);
|
|
xlog_trace_loggrant(log, tic, "xlog_grant_log_space: enter");
|
|
|
|
/* something is already sleeping; insert new transaction at end */
|
|
if (log->l_reserve_headq) {
|
|
xlog_ins_ticketq(&log->l_reserve_headq, tic);
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_grant_log_space: sleep 1");
|
|
/*
|
|
* Gotta check this before going to sleep, while we're
|
|
* holding the grant lock.
|
|
*/
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto error_return;
|
|
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
sv_wait(&tic->t_sema, PINOD|PLTWAIT, &log->l_grant_lock, s);
|
|
/*
|
|
* If we got an error, and the filesystem is shutting down,
|
|
* we'll catch it down below. So just continue...
|
|
*/
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_grant_log_space: wake 1");
|
|
s = GRANT_LOCK(log);
|
|
}
|
|
if (tic->t_flags & XFS_LOG_PERM_RESERV)
|
|
need_bytes = tic->t_unit_res*tic->t_ocnt;
|
|
else
|
|
need_bytes = tic->t_unit_res;
|
|
|
|
redo:
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto error_return;
|
|
|
|
free_bytes = xlog_space_left(log, log->l_grant_reserve_cycle,
|
|
log->l_grant_reserve_bytes);
|
|
if (free_bytes < need_bytes) {
|
|
if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
|
|
xlog_ins_ticketq(&log->l_reserve_headq, tic);
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_grant_log_space: sleep 2");
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
sv_wait(&tic->t_sema, PINOD|PLTWAIT, &log->l_grant_lock, s);
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
|
s = GRANT_LOCK(log);
|
|
goto error_return;
|
|
}
|
|
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_grant_log_space: wake 2");
|
|
xlog_grant_push_ail(log->l_mp, need_bytes);
|
|
s = GRANT_LOCK(log);
|
|
goto redo;
|
|
} else if (tic->t_flags & XLOG_TIC_IN_Q)
|
|
xlog_del_ticketq(&log->l_reserve_headq, tic);
|
|
|
|
/* we've got enough space */
|
|
xlog_grant_add_space(log, need_bytes);
|
|
#ifdef DEBUG
|
|
tail_lsn = log->l_tail_lsn;
|
|
/*
|
|
* Check to make sure the grant write head didn't just over lap the
|
|
* tail. If the cycles are the same, we can't be overlapping.
|
|
* Otherwise, make sure that the cycles differ by exactly one and
|
|
* check the byte count.
|
|
*/
|
|
if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
|
|
ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
|
|
ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
|
|
}
|
|
#endif
|
|
xlog_trace_loggrant(log, tic, "xlog_grant_log_space: exit");
|
|
xlog_verify_grant_head(log, 1);
|
|
GRANT_UNLOCK(log, s);
|
|
return 0;
|
|
|
|
error_return:
|
|
if (tic->t_flags & XLOG_TIC_IN_Q)
|
|
xlog_del_ticketq(&log->l_reserve_headq, tic);
|
|
xlog_trace_loggrant(log, tic, "xlog_grant_log_space: err_ret");
|
|
/*
|
|
* If we are failing, make sure the ticket doesn't have any
|
|
* current reservations. We don't want to add this back when
|
|
* the ticket/transaction gets cancelled.
|
|
*/
|
|
tic->t_curr_res = 0;
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
GRANT_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
} /* xlog_grant_log_space */
|
|
|
|
|
|
/*
|
|
* Replenish the byte reservation required by moving the grant write head.
|
|
*
|
|
*
|
|
*/
|
|
STATIC int
|
|
xlog_regrant_write_log_space(xlog_t *log,
|
|
xlog_ticket_t *tic)
|
|
{
|
|
SPLDECL(s);
|
|
int free_bytes, need_bytes;
|
|
xlog_ticket_t *ntic;
|
|
#ifdef DEBUG
|
|
xfs_lsn_t tail_lsn;
|
|
#endif
|
|
|
|
tic->t_curr_res = tic->t_unit_res;
|
|
XLOG_TIC_RESET_RES(tic);
|
|
|
|
if (tic->t_cnt > 0)
|
|
return 0;
|
|
|
|
#ifdef DEBUG
|
|
if (log->l_flags & XLOG_ACTIVE_RECOVERY)
|
|
panic("regrant Recovery problem");
|
|
#endif
|
|
|
|
s = GRANT_LOCK(log);
|
|
xlog_trace_loggrant(log, tic, "xlog_regrant_write_log_space: enter");
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto error_return;
|
|
|
|
/* If there are other waiters on the queue then give them a
|
|
* chance at logspace before us. Wake up the first waiters,
|
|
* if we do not wake up all the waiters then go to sleep waiting
|
|
* for more free space, otherwise try to get some space for
|
|
* this transaction.
|
|
*/
|
|
|
|
if ((ntic = log->l_write_headq)) {
|
|
free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
|
|
log->l_grant_write_bytes);
|
|
do {
|
|
ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
|
|
|
|
if (free_bytes < ntic->t_unit_res)
|
|
break;
|
|
free_bytes -= ntic->t_unit_res;
|
|
sv_signal(&ntic->t_sema);
|
|
ntic = ntic->t_next;
|
|
} while (ntic != log->l_write_headq);
|
|
|
|
if (ntic != log->l_write_headq) {
|
|
if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
|
|
xlog_ins_ticketq(&log->l_write_headq, tic);
|
|
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_regrant_write_log_space: sleep 1");
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
sv_wait(&tic->t_sema, PINOD|PLTWAIT,
|
|
&log->l_grant_lock, s);
|
|
|
|
/* If we're shutting down, this tic is already
|
|
* off the queue */
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
|
s = GRANT_LOCK(log);
|
|
goto error_return;
|
|
}
|
|
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_regrant_write_log_space: wake 1");
|
|
xlog_grant_push_ail(log->l_mp, tic->t_unit_res);
|
|
s = GRANT_LOCK(log);
|
|
}
|
|
}
|
|
|
|
need_bytes = tic->t_unit_res;
|
|
|
|
redo:
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto error_return;
|
|
|
|
free_bytes = xlog_space_left(log, log->l_grant_write_cycle,
|
|
log->l_grant_write_bytes);
|
|
if (free_bytes < need_bytes) {
|
|
if ((tic->t_flags & XLOG_TIC_IN_Q) == 0)
|
|
xlog_ins_ticketq(&log->l_write_headq, tic);
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
sv_wait(&tic->t_sema, PINOD|PLTWAIT, &log->l_grant_lock, s);
|
|
|
|
/* If we're shutting down, this tic is already off the queue */
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
|
s = GRANT_LOCK(log);
|
|
goto error_return;
|
|
}
|
|
|
|
xlog_trace_loggrant(log, tic,
|
|
"xlog_regrant_write_log_space: wake 2");
|
|
xlog_grant_push_ail(log->l_mp, need_bytes);
|
|
s = GRANT_LOCK(log);
|
|
goto redo;
|
|
} else if (tic->t_flags & XLOG_TIC_IN_Q)
|
|
xlog_del_ticketq(&log->l_write_headq, tic);
|
|
|
|
/* we've got enough space */
|
|
xlog_grant_add_space_write(log, need_bytes);
|
|
#ifdef DEBUG
|
|
tail_lsn = log->l_tail_lsn;
|
|
if (CYCLE_LSN(tail_lsn) != log->l_grant_write_cycle) {
|
|
ASSERT(log->l_grant_write_cycle-1 == CYCLE_LSN(tail_lsn));
|
|
ASSERT(log->l_grant_write_bytes <= BBTOB(BLOCK_LSN(tail_lsn)));
|
|
}
|
|
#endif
|
|
|
|
xlog_trace_loggrant(log, tic, "xlog_regrant_write_log_space: exit");
|
|
xlog_verify_grant_head(log, 1);
|
|
GRANT_UNLOCK(log, s);
|
|
return 0;
|
|
|
|
|
|
error_return:
|
|
if (tic->t_flags & XLOG_TIC_IN_Q)
|
|
xlog_del_ticketq(&log->l_reserve_headq, tic);
|
|
xlog_trace_loggrant(log, tic, "xlog_regrant_write_log_space: err_ret");
|
|
/*
|
|
* If we are failing, make sure the ticket doesn't have any
|
|
* current reservations. We don't want to add this back when
|
|
* the ticket/transaction gets cancelled.
|
|
*/
|
|
tic->t_curr_res = 0;
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
GRANT_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
} /* xlog_regrant_write_log_space */
|
|
|
|
|
|
/* The first cnt-1 times through here we don't need to
|
|
* move the grant write head because the permanent
|
|
* reservation has reserved cnt times the unit amount.
|
|
* Release part of current permanent unit reservation and
|
|
* reset current reservation to be one units worth. Also
|
|
* move grant reservation head forward.
|
|
*/
|
|
STATIC void
|
|
xlog_regrant_reserve_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
SPLDECL(s);
|
|
|
|
xlog_trace_loggrant(log, ticket,
|
|
"xlog_regrant_reserve_log_space: enter");
|
|
if (ticket->t_cnt > 0)
|
|
ticket->t_cnt--;
|
|
|
|
s = GRANT_LOCK(log);
|
|
xlog_grant_sub_space(log, ticket->t_curr_res);
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
|
XLOG_TIC_RESET_RES(ticket);
|
|
xlog_trace_loggrant(log, ticket,
|
|
"xlog_regrant_reserve_log_space: sub current res");
|
|
xlog_verify_grant_head(log, 1);
|
|
|
|
/* just return if we still have some of the pre-reserved space */
|
|
if (ticket->t_cnt > 0) {
|
|
GRANT_UNLOCK(log, s);
|
|
return;
|
|
}
|
|
|
|
xlog_grant_add_space_reserve(log, ticket->t_unit_res);
|
|
xlog_trace_loggrant(log, ticket,
|
|
"xlog_regrant_reserve_log_space: exit");
|
|
xlog_verify_grant_head(log, 0);
|
|
GRANT_UNLOCK(log, s);
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
|
XLOG_TIC_RESET_RES(ticket);
|
|
} /* xlog_regrant_reserve_log_space */
|
|
|
|
|
|
/*
|
|
* Give back the space left from a reservation.
|
|
*
|
|
* All the information we need to make a correct determination of space left
|
|
* is present. For non-permanent reservations, things are quite easy. The
|
|
* count should have been decremented to zero. We only need to deal with the
|
|
* space remaining in the current reservation part of the ticket. If the
|
|
* ticket contains a permanent reservation, there may be left over space which
|
|
* needs to be released. A count of N means that N-1 refills of the current
|
|
* reservation can be done before we need to ask for more space. The first
|
|
* one goes to fill up the first current reservation. Once we run out of
|
|
* space, the count will stay at zero and the only space remaining will be
|
|
* in the current reservation field.
|
|
*/
|
|
STATIC void
|
|
xlog_ungrant_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
SPLDECL(s);
|
|
|
|
if (ticket->t_cnt > 0)
|
|
ticket->t_cnt--;
|
|
|
|
s = GRANT_LOCK(log);
|
|
xlog_trace_loggrant(log, ticket, "xlog_ungrant_log_space: enter");
|
|
|
|
xlog_grant_sub_space(log, ticket->t_curr_res);
|
|
|
|
xlog_trace_loggrant(log, ticket, "xlog_ungrant_log_space: sub current");
|
|
|
|
/* If this is a permanent reservation ticket, we may be able to free
|
|
* up more space based on the remaining count.
|
|
*/
|
|
if (ticket->t_cnt > 0) {
|
|
ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
|
|
xlog_grant_sub_space(log, ticket->t_unit_res*ticket->t_cnt);
|
|
}
|
|
|
|
xlog_trace_loggrant(log, ticket, "xlog_ungrant_log_space: exit");
|
|
xlog_verify_grant_head(log, 1);
|
|
GRANT_UNLOCK(log, s);
|
|
xfs_log_move_tail(log->l_mp, 1);
|
|
} /* xlog_ungrant_log_space */
|
|
|
|
|
|
/*
|
|
* Atomically put back used ticket.
|
|
*/
|
|
void
|
|
xlog_state_put_ticket(xlog_t *log,
|
|
xlog_ticket_t *tic)
|
|
{
|
|
unsigned long s;
|
|
|
|
s = LOG_LOCK(log);
|
|
xlog_ticket_put(log, tic);
|
|
LOG_UNLOCK(log, s);
|
|
} /* xlog_state_put_ticket */
|
|
|
|
/*
|
|
* Flush iclog to disk if this is the last reference to the given iclog and
|
|
* the WANT_SYNC bit is set.
|
|
*
|
|
* When this function is entered, the iclog is not necessarily in the
|
|
* WANT_SYNC state. It may be sitting around waiting to get filled.
|
|
*
|
|
*
|
|
*/
|
|
int
|
|
xlog_state_release_iclog(xlog_t *log,
|
|
xlog_in_core_t *iclog)
|
|
{
|
|
SPLDECL(s);
|
|
int sync = 0; /* do we sync? */
|
|
|
|
xlog_assign_tail_lsn(log->l_mp);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
ASSERT(iclog->ic_refcnt > 0);
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_WANT_SYNC);
|
|
|
|
if (--iclog->ic_refcnt == 0 &&
|
|
iclog->ic_state == XLOG_STATE_WANT_SYNC) {
|
|
sync++;
|
|
iclog->ic_state = XLOG_STATE_SYNCING;
|
|
INT_SET(iclog->ic_header.h_tail_lsn, ARCH_CONVERT, log->l_tail_lsn);
|
|
xlog_verify_tail_lsn(log, iclog, log->l_tail_lsn);
|
|
/* cycle incremented when incrementing curr_block */
|
|
}
|
|
|
|
LOG_UNLOCK(log, s);
|
|
|
|
/*
|
|
* We let the log lock go, so it's possible that we hit a log I/O
|
|
* error or some other SHUTDOWN condition that marks the iclog
|
|
* as XLOG_STATE_IOERROR before the bwrite. However, we know that
|
|
* this iclog has consistent data, so we ignore IOERROR
|
|
* flags after this point.
|
|
*/
|
|
if (sync) {
|
|
return xlog_sync(log, iclog);
|
|
}
|
|
return 0;
|
|
|
|
} /* xlog_state_release_iclog */
|
|
|
|
|
|
/*
|
|
* This routine will mark the current iclog in the ring as WANT_SYNC
|
|
* and move the current iclog pointer to the next iclog in the ring.
|
|
* When this routine is called from xlog_state_get_iclog_space(), the
|
|
* exact size of the iclog has not yet been determined. All we know is
|
|
* that every data block. We have run out of space in this log record.
|
|
*/
|
|
STATIC void
|
|
xlog_state_switch_iclogs(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int eventual_size)
|
|
{
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
|
|
if (!eventual_size)
|
|
eventual_size = iclog->ic_offset;
|
|
iclog->ic_state = XLOG_STATE_WANT_SYNC;
|
|
INT_SET(iclog->ic_header.h_prev_block, ARCH_CONVERT, log->l_prev_block);
|
|
log->l_prev_block = log->l_curr_block;
|
|
log->l_prev_cycle = log->l_curr_cycle;
|
|
|
|
/* roll log?: ic_offset changed later */
|
|
log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
|
|
|
|
/* Round up to next log-sunit */
|
|
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) &&
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
|
__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
|
|
log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
|
|
}
|
|
|
|
if (log->l_curr_block >= log->l_logBBsize) {
|
|
log->l_curr_cycle++;
|
|
if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
|
|
log->l_curr_cycle++;
|
|
log->l_curr_block -= log->l_logBBsize;
|
|
ASSERT(log->l_curr_block >= 0);
|
|
}
|
|
ASSERT(iclog == log->l_iclog);
|
|
log->l_iclog = iclog->ic_next;
|
|
} /* xlog_state_switch_iclogs */
|
|
|
|
|
|
/*
|
|
* Write out all data in the in-core log as of this exact moment in time.
|
|
*
|
|
* Data may be written to the in-core log during this call. However,
|
|
* we don't guarantee this data will be written out. A change from past
|
|
* implementation means this routine will *not* write out zero length LRs.
|
|
*
|
|
* Basically, we try and perform an intelligent scan of the in-core logs.
|
|
* If we determine there is no flushable data, we just return. There is no
|
|
* flushable data if:
|
|
*
|
|
* 1. the current iclog is active and has no data; the previous iclog
|
|
* is in the active or dirty state.
|
|
* 2. the current iclog is drity, and the previous iclog is in the
|
|
* active or dirty state.
|
|
*
|
|
* We may sleep (call psema) if:
|
|
*
|
|
* 1. the current iclog is not in the active nor dirty state.
|
|
* 2. the current iclog dirty, and the previous iclog is not in the
|
|
* active nor dirty state.
|
|
* 3. the current iclog is active, and there is another thread writing
|
|
* to this particular iclog.
|
|
* 4. a) the current iclog is active and has no other writers
|
|
* b) when we return from flushing out this iclog, it is still
|
|
* not in the active nor dirty state.
|
|
*/
|
|
STATIC int
|
|
xlog_state_sync_all(xlog_t *log, uint flags, int *log_flushed)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
xfs_lsn_t lsn;
|
|
SPLDECL(s);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
iclog = log->l_iclog;
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* If the head iclog is not active nor dirty, we just attach
|
|
* ourselves to the head and go to sleep.
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
/*
|
|
* If the head is dirty or (active and empty), then
|
|
* we need to look at the previous iclog. If the previous
|
|
* iclog is active or dirty we are done. There is nothing
|
|
* to sync out. Otherwise, we attach ourselves to the
|
|
* previous iclog and go to sleep.
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY ||
|
|
(iclog->ic_refcnt == 0 && iclog->ic_offset == 0)) {
|
|
iclog = iclog->ic_prev;
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY)
|
|
goto no_sleep;
|
|
else
|
|
goto maybe_sleep;
|
|
} else {
|
|
if (iclog->ic_refcnt == 0) {
|
|
/* We are the only one with access to this
|
|
* iclog. Flush it out now. There should
|
|
* be a roundoff of zero to show that someone
|
|
* has already taken care of the roundoff from
|
|
* the previous sync.
|
|
*/
|
|
iclog->ic_refcnt++;
|
|
lsn = INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT);
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
LOG_UNLOCK(log, s);
|
|
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
return XFS_ERROR(EIO);
|
|
*log_flushed = 1;
|
|
s = LOG_LOCK(log);
|
|
if (INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT) == lsn &&
|
|
iclog->ic_state != XLOG_STATE_DIRTY)
|
|
goto maybe_sleep;
|
|
else
|
|
goto no_sleep;
|
|
} else {
|
|
/* Someone else is writing to this iclog.
|
|
* Use its call to flush out the data. However,
|
|
* the other thread may not force out this LR,
|
|
* so we mark it WANT_SYNC.
|
|
*/
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
goto maybe_sleep;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* By the time we come around again, the iclog could've been filled
|
|
* which would give it another lsn. If we have a new lsn, just
|
|
* return because the relevant data has been flushed.
|
|
*/
|
|
maybe_sleep:
|
|
if (flags & XFS_LOG_SYNC) {
|
|
/*
|
|
* We must check if we're shutting down here, before
|
|
* we wait, while we're holding the LOG_LOCK.
|
|
* Then we check again after waking up, in case our
|
|
* sleep was disturbed by a bad news.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
sv_wait(&iclog->ic_forcesema, PINOD, &log->l_icloglock, s);
|
|
/*
|
|
* No need to grab the log lock here since we're
|
|
* only deciding whether or not to return EIO
|
|
* and the memory read should be atomic.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
return XFS_ERROR(EIO);
|
|
*log_flushed = 1;
|
|
|
|
} else {
|
|
|
|
no_sleep:
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
return 0;
|
|
} /* xlog_state_sync_all */
|
|
|
|
|
|
/*
|
|
* Used by code which implements synchronous log forces.
|
|
*
|
|
* Find in-core log with lsn.
|
|
* If it is in the DIRTY state, just return.
|
|
* If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
|
|
* state and go to sleep or return.
|
|
* If it is in any other state, go to sleep or return.
|
|
*
|
|
* If filesystem activity goes to zero, the iclog will get flushed only by
|
|
* bdflush().
|
|
*/
|
|
int
|
|
xlog_state_sync(xlog_t *log,
|
|
xfs_lsn_t lsn,
|
|
uint flags,
|
|
int *log_flushed)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
int already_slept = 0;
|
|
SPLDECL(s);
|
|
|
|
|
|
try_again:
|
|
s = LOG_LOCK(log);
|
|
iclog = log->l_iclog;
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
do {
|
|
if (INT_GET(iclog->ic_header.h_lsn, ARCH_CONVERT) != lsn) {
|
|
iclog = iclog->ic_next;
|
|
continue;
|
|
}
|
|
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
LOG_UNLOCK(log, s);
|
|
return 0;
|
|
}
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
/*
|
|
* We sleep here if we haven't already slept (e.g.
|
|
* this is the first time we've looked at the correct
|
|
* iclog buf) and the buffer before us is going to
|
|
* be sync'ed. The reason for this is that if we
|
|
* are doing sync transactions here, by waiting for
|
|
* the previous I/O to complete, we can allow a few
|
|
* more transactions into this iclog before we close
|
|
* it down.
|
|
*
|
|
* Otherwise, we mark the buffer WANT_SYNC, and bump
|
|
* up the refcnt so we can release the log (which drops
|
|
* the ref count). The state switch keeps new transaction
|
|
* commits from using this buffer. When the current commits
|
|
* finish writing into the buffer, the refcount will drop to
|
|
* zero and the buffer will go out then.
|
|
*/
|
|
if (!already_slept &&
|
|
(iclog->ic_prev->ic_state & (XLOG_STATE_WANT_SYNC |
|
|
XLOG_STATE_SYNCING))) {
|
|
ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
sv_wait(&iclog->ic_prev->ic_writesema, PSWP,
|
|
&log->l_icloglock, s);
|
|
*log_flushed = 1;
|
|
already_slept = 1;
|
|
goto try_again;
|
|
} else {
|
|
iclog->ic_refcnt++;
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
LOG_UNLOCK(log, s);
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
return XFS_ERROR(EIO);
|
|
*log_flushed = 1;
|
|
s = LOG_LOCK(log);
|
|
}
|
|
}
|
|
|
|
if ((flags & XFS_LOG_SYNC) && /* sleep */
|
|
!(iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
|
|
|
|
/*
|
|
* Don't wait on the forcesema if we know that we've
|
|
* gotten a log write error.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
LOG_UNLOCK(log, s);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
sv_wait(&iclog->ic_forcesema, PSWP, &log->l_icloglock, s);
|
|
/*
|
|
* No need to grab the log lock here since we're
|
|
* only deciding whether or not to return EIO
|
|
* and the memory read should be atomic.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
return XFS_ERROR(EIO);
|
|
*log_flushed = 1;
|
|
} else { /* just return */
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
return 0;
|
|
|
|
} while (iclog != log->l_iclog);
|
|
|
|
LOG_UNLOCK(log, s);
|
|
return 0;
|
|
} /* xlog_state_sync */
|
|
|
|
|
|
/*
|
|
* Called when we want to mark the current iclog as being ready to sync to
|
|
* disk.
|
|
*/
|
|
void
|
|
xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
|
|
{
|
|
SPLDECL(s);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
} else {
|
|
ASSERT(iclog->ic_state &
|
|
(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
|
|
}
|
|
|
|
LOG_UNLOCK(log, s);
|
|
} /* xlog_state_want_sync */
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* TICKET functions
|
|
*
|
|
*****************************************************************************
|
|
*/
|
|
|
|
/*
|
|
* Algorithm doesn't take into account page size. ;-(
|
|
*/
|
|
STATIC void
|
|
xlog_state_ticket_alloc(xlog_t *log)
|
|
{
|
|
xlog_ticket_t *t_list;
|
|
xlog_ticket_t *next;
|
|
xfs_caddr_t buf;
|
|
uint i = (NBPP / sizeof(xlog_ticket_t)) - 2;
|
|
SPLDECL(s);
|
|
|
|
/*
|
|
* The kmem_zalloc may sleep, so we shouldn't be holding the
|
|
* global lock. XXXmiken: may want to use zone allocator.
|
|
*/
|
|
buf = (xfs_caddr_t) kmem_zalloc(NBPP, KM_SLEEP);
|
|
|
|
s = LOG_LOCK(log);
|
|
|
|
/* Attach 1st ticket to Q, so we can keep track of allocated memory */
|
|
t_list = (xlog_ticket_t *)buf;
|
|
t_list->t_next = log->l_unmount_free;
|
|
log->l_unmount_free = t_list++;
|
|
log->l_ticket_cnt++;
|
|
log->l_ticket_tcnt++;
|
|
|
|
/* Next ticket becomes first ticket attached to ticket free list */
|
|
if (log->l_freelist != NULL) {
|
|
ASSERT(log->l_tail != NULL);
|
|
log->l_tail->t_next = t_list;
|
|
} else {
|
|
log->l_freelist = t_list;
|
|
}
|
|
log->l_ticket_cnt++;
|
|
log->l_ticket_tcnt++;
|
|
|
|
/* Cycle through rest of alloc'ed memory, building up free Q */
|
|
for ( ; i > 0; i--) {
|
|
next = t_list + 1;
|
|
t_list->t_next = next;
|
|
t_list = next;
|
|
log->l_ticket_cnt++;
|
|
log->l_ticket_tcnt++;
|
|
}
|
|
t_list->t_next = NULL;
|
|
log->l_tail = t_list;
|
|
LOG_UNLOCK(log, s);
|
|
} /* xlog_state_ticket_alloc */
|
|
|
|
|
|
/*
|
|
* Put ticket into free list
|
|
*
|
|
* Assumption: log lock is held around this call.
|
|
*/
|
|
STATIC void
|
|
xlog_ticket_put(xlog_t *log,
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
sv_destroy(&ticket->t_sema);
|
|
|
|
/*
|
|
* Don't think caching will make that much difference. It's
|
|
* more important to make debug easier.
|
|
*/
|
|
#if 0
|
|
/* real code will want to use LIFO for caching */
|
|
ticket->t_next = log->l_freelist;
|
|
log->l_freelist = ticket;
|
|
/* no need to clear fields */
|
|
#else
|
|
/* When we debug, it is easier if tickets are cycled */
|
|
ticket->t_next = NULL;
|
|
if (log->l_tail != 0) {
|
|
log->l_tail->t_next = ticket;
|
|
} else {
|
|
ASSERT(log->l_freelist == 0);
|
|
log->l_freelist = ticket;
|
|
}
|
|
log->l_tail = ticket;
|
|
#endif /* DEBUG */
|
|
log->l_ticket_cnt++;
|
|
} /* xlog_ticket_put */
|
|
|
|
|
|
/*
|
|
* Grab ticket off freelist or allocation some more
|
|
*/
|
|
xlog_ticket_t *
|
|
xlog_ticket_get(xlog_t *log,
|
|
int unit_bytes,
|
|
int cnt,
|
|
char client,
|
|
uint xflags)
|
|
{
|
|
xlog_ticket_t *tic;
|
|
uint num_headers;
|
|
SPLDECL(s);
|
|
|
|
alloc:
|
|
if (log->l_freelist == NULL)
|
|
xlog_state_ticket_alloc(log); /* potentially sleep */
|
|
|
|
s = LOG_LOCK(log);
|
|
if (log->l_freelist == NULL) {
|
|
LOG_UNLOCK(log, s);
|
|
goto alloc;
|
|
}
|
|
tic = log->l_freelist;
|
|
log->l_freelist = tic->t_next;
|
|
if (log->l_freelist == NULL)
|
|
log->l_tail = NULL;
|
|
log->l_ticket_cnt--;
|
|
LOG_UNLOCK(log, s);
|
|
|
|
/*
|
|
* Permanent reservations have up to 'cnt'-1 active log operations
|
|
* in the log. A unit in this case is the amount of space for one
|
|
* of these log operations. Normal reservations have a cnt of 1
|
|
* and their unit amount is the total amount of space required.
|
|
*
|
|
* The following lines of code account for non-transaction data
|
|
* which occupy space in the on-disk log.
|
|
*
|
|
* Normal form of a transaction is:
|
|
* <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
|
|
* and then there are LR hdrs, split-recs and roundoff at end of syncs.
|
|
*
|
|
* We need to account for all the leadup data and trailer data
|
|
* around the transaction data.
|
|
* And then we need to account for the worst case in terms of using
|
|
* more space.
|
|
* The worst case will happen if:
|
|
* - the placement of the transaction happens to be such that the
|
|
* roundoff is at its maximum
|
|
* - the transaction data is synced before the commit record is synced
|
|
* i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
|
|
* Therefore the commit record is in its own Log Record.
|
|
* This can happen as the commit record is called with its
|
|
* own region to xlog_write().
|
|
* This then means that in the worst case, roundoff can happen for
|
|
* the commit-rec as well.
|
|
* The commit-rec is smaller than padding in this scenario and so it is
|
|
* not added separately.
|
|
*/
|
|
|
|
/* for trans header */
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
unit_bytes += sizeof(xfs_trans_header_t);
|
|
|
|
/* for start-rec */
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
|
|
/* for LR headers */
|
|
num_headers = ((unit_bytes + log->l_iclog_size-1) >> log->l_iclog_size_log);
|
|
unit_bytes += log->l_iclog_hsize * num_headers;
|
|
|
|
/* for commit-rec LR header - note: padding will subsume the ophdr */
|
|
unit_bytes += log->l_iclog_hsize;
|
|
|
|
/* for split-recs - ophdrs added when data split over LRs */
|
|
unit_bytes += sizeof(xlog_op_header_t) * num_headers;
|
|
|
|
/* for roundoff padding for transaction data and one for commit record */
|
|
if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) &&
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
|
/* log su roundoff */
|
|
unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
|
|
} else {
|
|
/* BB roundoff */
|
|
unit_bytes += 2*BBSIZE;
|
|
}
|
|
|
|
tic->t_unit_res = unit_bytes;
|
|
tic->t_curr_res = unit_bytes;
|
|
tic->t_cnt = cnt;
|
|
tic->t_ocnt = cnt;
|
|
tic->t_tid = (xlog_tid_t)((__psint_t)tic & 0xffffffff);
|
|
tic->t_clientid = client;
|
|
tic->t_flags = XLOG_TIC_INITED;
|
|
tic->t_trans_type = 0;
|
|
if (xflags & XFS_LOG_PERM_RESERV)
|
|
tic->t_flags |= XLOG_TIC_PERM_RESERV;
|
|
sv_init(&(tic->t_sema), SV_DEFAULT, "logtick");
|
|
|
|
XLOG_TIC_RESET_RES(tic);
|
|
|
|
return tic;
|
|
} /* xlog_ticket_get */
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* Log debug routines
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
#if defined(DEBUG)
|
|
/*
|
|
* Make sure that the destination ptr is within the valid data region of
|
|
* one of the iclogs. This uses backup pointers stored in a different
|
|
* part of the log in case we trash the log structure.
|
|
*/
|
|
void
|
|
xlog_verify_dest_ptr(xlog_t *log,
|
|
__psint_t ptr)
|
|
{
|
|
int i;
|
|
int good_ptr = 0;
|
|
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
|
if (ptr >= (__psint_t)log->l_iclog_bak[i] &&
|
|
ptr <= (__psint_t)log->l_iclog_bak[i]+log->l_iclog_size)
|
|
good_ptr++;
|
|
}
|
|
if (! good_ptr)
|
|
xlog_panic("xlog_verify_dest_ptr: invalid ptr");
|
|
} /* xlog_verify_dest_ptr */
|
|
|
|
STATIC void
|
|
xlog_verify_grant_head(xlog_t *log, int equals)
|
|
{
|
|
if (log->l_grant_reserve_cycle == log->l_grant_write_cycle) {
|
|
if (equals)
|
|
ASSERT(log->l_grant_reserve_bytes >= log->l_grant_write_bytes);
|
|
else
|
|
ASSERT(log->l_grant_reserve_bytes > log->l_grant_write_bytes);
|
|
} else {
|
|
ASSERT(log->l_grant_reserve_cycle-1 == log->l_grant_write_cycle);
|
|
ASSERT(log->l_grant_write_bytes >= log->l_grant_reserve_bytes);
|
|
}
|
|
} /* xlog_verify_grant_head */
|
|
|
|
/* check if it will fit */
|
|
STATIC void
|
|
xlog_verify_tail_lsn(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
xfs_lsn_t tail_lsn)
|
|
{
|
|
int blocks;
|
|
|
|
if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
|
|
blocks =
|
|
log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
|
|
if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
|
|
xlog_panic("xlog_verify_tail_lsn: ran out of log space");
|
|
} else {
|
|
ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
|
|
|
|
if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
|
|
xlog_panic("xlog_verify_tail_lsn: tail wrapped");
|
|
|
|
blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
|
|
if (blocks < BTOBB(iclog->ic_offset) + 1)
|
|
xlog_panic("xlog_verify_tail_lsn: ran out of log space");
|
|
}
|
|
} /* xlog_verify_tail_lsn */
|
|
|
|
/*
|
|
* Perform a number of checks on the iclog before writing to disk.
|
|
*
|
|
* 1. Make sure the iclogs are still circular
|
|
* 2. Make sure we have a good magic number
|
|
* 3. Make sure we don't have magic numbers in the data
|
|
* 4. Check fields of each log operation header for:
|
|
* A. Valid client identifier
|
|
* B. tid ptr value falls in valid ptr space (user space code)
|
|
* C. Length in log record header is correct according to the
|
|
* individual operation headers within record.
|
|
* 5. When a bwrite will occur within 5 blocks of the front of the physical
|
|
* log, check the preceding blocks of the physical log to make sure all
|
|
* the cycle numbers agree with the current cycle number.
|
|
*/
|
|
STATIC void
|
|
xlog_verify_iclog(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int count,
|
|
boolean_t syncing)
|
|
{
|
|
xlog_op_header_t *ophead;
|
|
xlog_in_core_t *icptr;
|
|
xlog_in_core_2_t *xhdr;
|
|
xfs_caddr_t ptr;
|
|
xfs_caddr_t base_ptr;
|
|
__psint_t field_offset;
|
|
__uint8_t clientid;
|
|
int len, i, j, k, op_len;
|
|
int idx;
|
|
SPLDECL(s);
|
|
|
|
/* check validity of iclog pointers */
|
|
s = LOG_LOCK(log);
|
|
icptr = log->l_iclog;
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
|
if (icptr == 0)
|
|
xlog_panic("xlog_verify_iclog: invalid ptr");
|
|
icptr = icptr->ic_next;
|
|
}
|
|
if (icptr != log->l_iclog)
|
|
xlog_panic("xlog_verify_iclog: corrupt iclog ring");
|
|
LOG_UNLOCK(log, s);
|
|
|
|
/* check log magic numbers */
|
|
ptr = (xfs_caddr_t) &(iclog->ic_header);
|
|
if (INT_GET(*(uint *)ptr, ARCH_CONVERT) != XLOG_HEADER_MAGIC_NUM)
|
|
xlog_panic("xlog_verify_iclog: invalid magic num");
|
|
|
|
for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&(iclog->ic_header))+count;
|
|
ptr += BBSIZE) {
|
|
if (INT_GET(*(uint *)ptr, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM)
|
|
xlog_panic("xlog_verify_iclog: unexpected magic num");
|
|
}
|
|
|
|
/* check fields */
|
|
len = INT_GET(iclog->ic_header.h_num_logops, ARCH_CONVERT);
|
|
ptr = iclog->ic_datap;
|
|
base_ptr = ptr;
|
|
ophead = (xlog_op_header_t *)ptr;
|
|
xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
|
|
for (i = 0; i < len; i++) {
|
|
ophead = (xlog_op_header_t *)ptr;
|
|
|
|
/* clientid is only 1 byte */
|
|
field_offset = (__psint_t)
|
|
((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
|
clientid = ophead->oh_clientid;
|
|
} else {
|
|
idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
clientid = GET_CLIENT_ID(xhdr[j].hic_xheader.xh_cycle_data[k], ARCH_CONVERT);
|
|
} else {
|
|
clientid = GET_CLIENT_ID(iclog->ic_header.h_cycle_data[idx], ARCH_CONVERT);
|
|
}
|
|
}
|
|
if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
|
|
cmn_err(CE_WARN, "xlog_verify_iclog: "
|
|
"invalid clientid %d op 0x%p offset 0x%lx",
|
|
clientid, ophead, (unsigned long)field_offset);
|
|
|
|
/* check length */
|
|
field_offset = (__psint_t)
|
|
((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
|
op_len = INT_GET(ophead->oh_len, ARCH_CONVERT);
|
|
} else {
|
|
idx = BTOBBT((__psint_t)&ophead->oh_len -
|
|
(__psint_t)iclog->ic_datap);
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
op_len = INT_GET(xhdr[j].hic_xheader.xh_cycle_data[k], ARCH_CONVERT);
|
|
} else {
|
|
op_len = INT_GET(iclog->ic_header.h_cycle_data[idx], ARCH_CONVERT);
|
|
}
|
|
}
|
|
ptr += sizeof(xlog_op_header_t) + op_len;
|
|
}
|
|
} /* xlog_verify_iclog */
|
|
#endif
|
|
|
|
/*
|
|
* Mark all iclogs IOERROR. LOG_LOCK is held by the caller.
|
|
*/
|
|
STATIC int
|
|
xlog_state_ioerror(
|
|
xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog, *ic;
|
|
|
|
iclog = log->l_iclog;
|
|
if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
/*
|
|
* Mark all the incore logs IOERROR.
|
|
* From now on, no log flushes will result.
|
|
*/
|
|
ic = iclog;
|
|
do {
|
|
ic->ic_state = XLOG_STATE_IOERROR;
|
|
ic = ic->ic_next;
|
|
} while (ic != iclog);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Return non-zero, if state transition has already happened.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is called from xfs_force_shutdown, when we're forcibly
|
|
* shutting down the filesystem, typically because of an IO error.
|
|
* Our main objectives here are to make sure that:
|
|
* a. the filesystem gets marked 'SHUTDOWN' for all interested
|
|
* parties to find out, 'atomically'.
|
|
* b. those who're sleeping on log reservations, pinned objects and
|
|
* other resources get woken up, and be told the bad news.
|
|
* c. nothing new gets queued up after (a) and (b) are done.
|
|
* d. if !logerror, flush the iclogs to disk, then seal them off
|
|
* for business.
|
|
*/
|
|
int
|
|
xfs_log_force_umount(
|
|
struct xfs_mount *mp,
|
|
int logerror)
|
|
{
|
|
xlog_ticket_t *tic;
|
|
xlog_t *log;
|
|
int retval;
|
|
int dummy;
|
|
SPLDECL(s);
|
|
SPLDECL(s2);
|
|
|
|
log = mp->m_log;
|
|
|
|
/*
|
|
* If this happens during log recovery, don't worry about
|
|
* locking; the log isn't open for business yet.
|
|
*/
|
|
if (!log ||
|
|
log->l_flags & XLOG_ACTIVE_RECOVERY) {
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Somebody could've already done the hard work for us.
|
|
* No need to get locks for this.
|
|
*/
|
|
if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
ASSERT(XLOG_FORCED_SHUTDOWN(log));
|
|
return 1;
|
|
}
|
|
retval = 0;
|
|
/*
|
|
* We must hold both the GRANT lock and the LOG lock,
|
|
* before we mark the filesystem SHUTDOWN and wake
|
|
* everybody up to tell the bad news.
|
|
*/
|
|
s = GRANT_LOCK(log);
|
|
s2 = LOG_LOCK(log);
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
|
/*
|
|
* This flag is sort of redundant because of the mount flag, but
|
|
* it's good to maintain the separation between the log and the rest
|
|
* of XFS.
|
|
*/
|
|
log->l_flags |= XLOG_IO_ERROR;
|
|
|
|
/*
|
|
* If we hit a log error, we want to mark all the iclogs IOERROR
|
|
* while we're still holding the loglock.
|
|
*/
|
|
if (logerror)
|
|
retval = xlog_state_ioerror(log);
|
|
LOG_UNLOCK(log, s2);
|
|
|
|
/*
|
|
* We don't want anybody waiting for log reservations
|
|
* after this. That means we have to wake up everybody
|
|
* queued up on reserve_headq as well as write_headq.
|
|
* In addition, we make sure in xlog_{re}grant_log_space
|
|
* that we don't enqueue anything once the SHUTDOWN flag
|
|
* is set, and this action is protected by the GRANTLOCK.
|
|
*/
|
|
if ((tic = log->l_reserve_headq)) {
|
|
do {
|
|
sv_signal(&tic->t_sema);
|
|
tic = tic->t_next;
|
|
} while (tic != log->l_reserve_headq);
|
|
}
|
|
|
|
if ((tic = log->l_write_headq)) {
|
|
do {
|
|
sv_signal(&tic->t_sema);
|
|
tic = tic->t_next;
|
|
} while (tic != log->l_write_headq);
|
|
}
|
|
GRANT_UNLOCK(log, s);
|
|
|
|
if (! (log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
ASSERT(!logerror);
|
|
/*
|
|
* Force the incore logs to disk before shutting the
|
|
* log down completely.
|
|
*/
|
|
xlog_state_sync_all(log, XFS_LOG_FORCE|XFS_LOG_SYNC, &dummy);
|
|
s2 = LOG_LOCK(log);
|
|
retval = xlog_state_ioerror(log);
|
|
LOG_UNLOCK(log, s2);
|
|
}
|
|
/*
|
|
* Wake up everybody waiting on xfs_log_force.
|
|
* Callback all log item committed functions as if the
|
|
* log writes were completed.
|
|
*/
|
|
xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
|
|
|
|
#ifdef XFSERRORDEBUG
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
|
|
s = LOG_LOCK(log);
|
|
iclog = log->l_iclog;
|
|
do {
|
|
ASSERT(iclog->ic_callback == 0);
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
LOG_UNLOCK(log, s);
|
|
}
|
|
#endif
|
|
/* return non-zero if log IOERROR transition had already happened */
|
|
return retval;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_iclogs_empty(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
|
|
iclog = log->l_iclog;
|
|
do {
|
|
/* endianness does not matter here, zero is zero in
|
|
* any language.
|
|
*/
|
|
if (iclog->ic_header.h_num_logops)
|
|
return 0;
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
return 1;
|
|
}
|