OpenCloudOS-Kernel/arch/x86/platform/efi/efi.c

925 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Common EFI (Extensible Firmware Interface) support functions
* Based on Extensible Firmware Interface Specification version 1.0
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2002 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 2005-2008 Intel Co.
* Fenghua Yu <fenghua.yu@intel.com>
* Bibo Mao <bibo.mao@intel.com>
* Chandramouli Narayanan <mouli@linux.intel.com>
* Huang Ying <ying.huang@intel.com>
* Copyright (C) 2013 SuSE Labs
* Borislav Petkov <bp@suse.de> - runtime services VA mapping
*
* Copied from efi_32.c to eliminate the duplicated code between EFI
* 32/64 support code. --ying 2007-10-26
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/efi.h>
#include <linux/efi-bgrt.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/time.h>
#include <linux/io.h>
#include <linux/reboot.h>
#include <linux/bcd.h>
#include <asm/setup.h>
#include <asm/efi.h>
#include <asm/e820/api.h>
#include <asm/time.h>
#include <asm/tlbflush.h>
#include <asm/x86_init.h>
#include <asm/uv/uv.h>
static unsigned long efi_systab_phys __initdata;
static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
static unsigned long efi_runtime, efi_nr_tables;
unsigned long efi_fw_vendor, efi_config_table;
static const efi_config_table_type_t arch_tables[] __initconst = {
{EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" },
{UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
#ifdef CONFIG_X86_UV
{UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
#endif
{},
};
static const unsigned long * const efi_tables[] = {
&efi.acpi,
&efi.acpi20,
&efi.smbios,
&efi.smbios3,
&uga_phys,
#ifdef CONFIG_X86_UV
&uv_systab_phys,
#endif
&efi_fw_vendor,
&efi_runtime,
&efi_config_table,
&efi.esrt,
&prop_phys,
&efi_mem_attr_table,
#ifdef CONFIG_EFI_RCI2_TABLE
&rci2_table_phys,
#endif
&efi.tpm_log,
&efi.tpm_final_log,
&efi_rng_seed,
#ifdef CONFIG_LOAD_UEFI_KEYS
&efi.mokvar_table,
#endif
#ifdef CONFIG_EFI_COCO_SECRET
&efi.coco_secret,
#endif
};
u64 efi_setup; /* efi setup_data physical address */
static int add_efi_memmap __initdata;
static int __init setup_add_efi_memmap(char *arg)
{
add_efi_memmap = 1;
return 0;
}
early_param("add_efi_memmap", setup_add_efi_memmap);
void __init efi_find_mirror(void)
{
efi_memory_desc_t *md;
u64 mirror_size = 0, total_size = 0;
if (!efi_enabled(EFI_MEMMAP))
return;
for_each_efi_memory_desc(md) {
unsigned long long start = md->phys_addr;
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
total_size += size;
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
memblock_mark_mirror(start, size);
mirror_size += size;
}
}
if (mirror_size)
pr_info("Memory: %lldM/%lldM mirrored memory\n",
mirror_size>>20, total_size>>20);
}
/*
* Tell the kernel about the EFI memory map. This might include
* more than the max 128 entries that can fit in the passed in e820
* legacy (zeropage) memory map, but the kernel's e820 table can hold
* E820_MAX_ENTRIES.
*/
static void __init do_add_efi_memmap(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_MEMMAP))
return;
for_each_efi_memory_desc(md) {
unsigned long long start = md->phys_addr;
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
int e820_type;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
if (efi_soft_reserve_enabled()
&& (md->attribute & EFI_MEMORY_SP))
e820_type = E820_TYPE_SOFT_RESERVED;
else if (md->attribute & EFI_MEMORY_WB)
e820_type = E820_TYPE_RAM;
else
e820_type = E820_TYPE_RESERVED;
break;
case EFI_ACPI_RECLAIM_MEMORY:
e820_type = E820_TYPE_ACPI;
break;
case EFI_ACPI_MEMORY_NVS:
e820_type = E820_TYPE_NVS;
break;
case EFI_UNUSABLE_MEMORY:
e820_type = E820_TYPE_UNUSABLE;
break;
case EFI_PERSISTENT_MEMORY:
e820_type = E820_TYPE_PMEM;
break;
default:
/*
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
*/
e820_type = E820_TYPE_RESERVED;
break;
}
e820__range_add(start, size, e820_type);
}
e820__update_table(e820_table);
}
/*
* Given add_efi_memmap defaults to 0 and there there is no alternative
* e820 mechanism for soft-reserved memory, import the full EFI memory
* map if soft reservations are present and enabled. Otherwise, the
* mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
* the efi=nosoftreserve option.
*/
static bool do_efi_soft_reserve(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_MEMMAP))
return false;
if (!efi_soft_reserve_enabled())
return false;
for_each_efi_memory_desc(md)
if (md->type == EFI_CONVENTIONAL_MEMORY &&
(md->attribute & EFI_MEMORY_SP))
return true;
return false;
}
int __init efi_memblock_x86_reserve_range(void)
{
struct efi_info *e = &boot_params.efi_info;
struct efi_memory_map_data data;
phys_addr_t pmap;
int rv;
if (efi_enabled(EFI_PARAVIRT))
return 0;
/* Can't handle firmware tables above 4GB on i386 */
if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
pr_err("Memory map is above 4GB, disabling EFI.\n");
return -EINVAL;
}
pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
data.phys_map = pmap;
data.size = e->efi_memmap_size;
data.desc_size = e->efi_memdesc_size;
data.desc_version = e->efi_memdesc_version;
rv = efi_memmap_init_early(&data);
if (rv)
return rv;
if (add_efi_memmap || do_efi_soft_reserve())
do_add_efi_memmap();
efi_fake_memmap_early();
WARN(efi.memmap.desc_version != 1,
"Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
efi.memmap.desc_version);
memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
return 0;
}
#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
#define U64_HIGH_BIT (~(U64_MAX >> 1))
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
{
u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
u64 end_hi = 0;
char buf[64];
if (md->num_pages == 0) {
end = 0;
} else if (md->num_pages > EFI_PAGES_MAX ||
EFI_PAGES_MAX - md->num_pages <
(md->phys_addr >> EFI_PAGE_SHIFT)) {
end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
>> OVERFLOW_ADDR_SHIFT;
if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
end_hi += 1;
} else {
return true;
}
pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
if (end_hi) {
pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr, end_hi, end);
} else {
pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr, end);
}
return false;
}
static void __init efi_clean_memmap(void)
{
efi_memory_desc_t *out = efi.memmap.map;
const efi_memory_desc_t *in = out;
const efi_memory_desc_t *end = efi.memmap.map_end;
int i, n_removal;
for (i = n_removal = 0; in < end; i++) {
if (efi_memmap_entry_valid(in, i)) {
if (out != in)
memcpy(out, in, efi.memmap.desc_size);
out = (void *)out + efi.memmap.desc_size;
} else {
n_removal++;
}
in = (void *)in + efi.memmap.desc_size;
}
if (n_removal > 0) {
struct efi_memory_map_data data = {
.phys_map = efi.memmap.phys_map,
.desc_version = efi.memmap.desc_version,
.desc_size = efi.memmap.desc_size,
.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
.flags = 0,
};
pr_warn("Removing %d invalid memory map entries.\n", n_removal);
efi_memmap_install(&data);
}
}
void __init efi_print_memmap(void)
{
efi_memory_desc_t *md;
int i = 0;
for_each_efi_memory_desc(md) {
char buf[64];
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
i++, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
}
}
static int __init efi_systab_init(unsigned long phys)
{
int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
: sizeof(efi_system_table_32_t);
const efi_table_hdr_t *hdr;
bool over4g = false;
void *p;
int ret;
hdr = p = early_memremap_ro(phys, size);
if (p == NULL) {
pr_err("Couldn't map the system table!\n");
return -ENOMEM;
}
ret = efi_systab_check_header(hdr, 1);
if (ret) {
early_memunmap(p, size);
return ret;
}
if (efi_enabled(EFI_64BIT)) {
const efi_system_table_64_t *systab64 = p;
efi_runtime = systab64->runtime;
over4g = systab64->runtime > U32_MAX;
if (efi_setup) {
struct efi_setup_data *data;
data = early_memremap_ro(efi_setup, sizeof(*data));
if (!data) {
early_memunmap(p, size);
return -ENOMEM;
}
efi_fw_vendor = (unsigned long)data->fw_vendor;
efi_config_table = (unsigned long)data->tables;
over4g |= data->fw_vendor > U32_MAX ||
data->tables > U32_MAX;
early_memunmap(data, sizeof(*data));
} else {
efi_fw_vendor = systab64->fw_vendor;
efi_config_table = systab64->tables;
over4g |= systab64->fw_vendor > U32_MAX ||
systab64->tables > U32_MAX;
}
efi_nr_tables = systab64->nr_tables;
} else {
const efi_system_table_32_t *systab32 = p;
efi_fw_vendor = systab32->fw_vendor;
efi_runtime = systab32->runtime;
efi_config_table = systab32->tables;
efi_nr_tables = systab32->nr_tables;
}
efi.runtime_version = hdr->revision;
efi_systab_report_header(hdr, efi_fw_vendor);
early_memunmap(p, size);
if (IS_ENABLED(CONFIG_X86_32) && over4g) {
pr_err("EFI data located above 4GB, disabling EFI.\n");
return -EINVAL;
}
return 0;
}
static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
{
void *config_tables;
int sz, ret;
if (efi_nr_tables == 0)
return 0;
if (efi_enabled(EFI_64BIT))
sz = sizeof(efi_config_table_64_t);
else
sz = sizeof(efi_config_table_32_t);
/*
* Let's see what config tables the firmware passed to us.
*/
config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
if (config_tables == NULL) {
pr_err("Could not map Configuration table!\n");
return -ENOMEM;
}
ret = efi_config_parse_tables(config_tables, efi_nr_tables,
arch_tables);
early_memunmap(config_tables, efi_nr_tables * sz);
return ret;
}
void __init efi_init(void)
{
if (IS_ENABLED(CONFIG_X86_32) &&
(boot_params.efi_info.efi_systab_hi ||
boot_params.efi_info.efi_memmap_hi)) {
pr_info("Table located above 4GB, disabling EFI.\n");
return;
}
efi_systab_phys = boot_params.efi_info.efi_systab |
((__u64)boot_params.efi_info.efi_systab_hi << 32);
if (efi_systab_init(efi_systab_phys))
return;
if (efi_reuse_config(efi_config_table, efi_nr_tables))
return;
if (efi_config_init(arch_tables))
return;
/*
* Note: We currently don't support runtime services on an EFI
* that doesn't match the kernel 32/64-bit mode.
*/
if (!efi_runtime_supported())
pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
if (!efi_runtime_supported() || efi_runtime_disabled()) {
efi_memmap_unmap();
return;
}
/* Parse the EFI Properties table if it exists */
if (prop_phys != EFI_INVALID_TABLE_ADDR) {
efi_properties_table_t *tbl;
tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
if (tbl == NULL) {
pr_err("Could not map Properties table!\n");
} else {
if (tbl->memory_protection_attribute &
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
set_bit(EFI_NX_PE_DATA, &efi.flags);
early_memunmap(tbl, sizeof(*tbl));
}
}
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
efi_clean_memmap();
if (efi_enabled(EFI_DBG))
efi_print_memmap();
}
/* Merge contiguous regions of the same type and attribute */
static void __init efi_merge_regions(void)
{
efi_memory_desc_t *md, *prev_md = NULL;
for_each_efi_memory_desc(md) {
u64 prev_size;
if (!prev_md) {
prev_md = md;
continue;
}
if (prev_md->type != md->type ||
prev_md->attribute != md->attribute) {
prev_md = md;
continue;
}
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
prev_md->num_pages += md->num_pages;
md->type = EFI_RESERVED_TYPE;
md->attribute = 0;
continue;
}
prev_md = md;
}
}
static void *realloc_pages(void *old_memmap, int old_shift)
{
void *ret;
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
if (!ret)
goto out;
/*
* A first-time allocation doesn't have anything to copy.
*/
if (!old_memmap)
return ret;
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
out:
free_pages((unsigned long)old_memmap, old_shift);
return ret;
}
/*
* Iterate the EFI memory map in reverse order because the regions
* will be mapped top-down. The end result is the same as if we had
* mapped things forward, but doesn't require us to change the
* existing implementation of efi_map_region().
*/
static inline void *efi_map_next_entry_reverse(void *entry)
{
/* Initial call */
if (!entry)
return efi.memmap.map_end - efi.memmap.desc_size;
entry -= efi.memmap.desc_size;
if (entry < efi.memmap.map)
return NULL;
return entry;
}
/*
* efi_map_next_entry - Return the next EFI memory map descriptor
* @entry: Previous EFI memory map descriptor
*
* This is a helper function to iterate over the EFI memory map, which
* we do in different orders depending on the current configuration.
*
* To begin traversing the memory map @entry must be %NULL.
*
* Returns %NULL when we reach the end of the memory map.
*/
static void *efi_map_next_entry(void *entry)
{
if (efi_enabled(EFI_64BIT)) {
/*
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
* config table feature requires us to map all entries
* in the same order as they appear in the EFI memory
* map. That is to say, entry N must have a lower
* virtual address than entry N+1. This is because the
* firmware toolchain leaves relative references in
* the code/data sections, which are split and become
* separate EFI memory regions. Mapping things
* out-of-order leads to the firmware accessing
* unmapped addresses.
*
* Since we need to map things this way whether or not
* the kernel actually makes use of
* EFI_PROPERTIES_TABLE, let's just switch to this
* scheme by default for 64-bit.
*/
return efi_map_next_entry_reverse(entry);
}
/* Initial call */
if (!entry)
return efi.memmap.map;
entry += efi.memmap.desc_size;
if (entry >= efi.memmap.map_end)
return NULL;
return entry;
}
static bool should_map_region(efi_memory_desc_t *md)
{
/*
* Runtime regions always require runtime mappings (obviously).
*/
if (md->attribute & EFI_MEMORY_RUNTIME)
return true;
/*
* 32-bit EFI doesn't suffer from the bug that requires us to
* reserve boot services regions, and mixed mode support
* doesn't exist for 32-bit kernels.
*/
if (IS_ENABLED(CONFIG_X86_32))
return false;
/*
* EFI specific purpose memory may be reserved by default
* depending on kernel config and boot options.
*/
if (md->type == EFI_CONVENTIONAL_MEMORY &&
efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
return false;
/*
* Map all of RAM so that we can access arguments in the 1:1
* mapping when making EFI runtime calls.
*/
if (efi_is_mixed()) {
if (md->type == EFI_CONVENTIONAL_MEMORY ||
md->type == EFI_LOADER_DATA ||
md->type == EFI_LOADER_CODE)
return true;
}
/*
* Map boot services regions as a workaround for buggy
* firmware that accesses them even when they shouldn't.
*
* See efi_{reserve,free}_boot_services().
*/
if (md->type == EFI_BOOT_SERVICES_CODE ||
md->type == EFI_BOOT_SERVICES_DATA)
return true;
return false;
}
/*
* Map the efi memory ranges of the runtime services and update new_mmap with
* virtual addresses.
*/
static void * __init efi_map_regions(int *count, int *pg_shift)
{
void *p, *new_memmap = NULL;
unsigned long left = 0;
unsigned long desc_size;
efi_memory_desc_t *md;
desc_size = efi.memmap.desc_size;
p = NULL;
while ((p = efi_map_next_entry(p))) {
md = p;
if (!should_map_region(md))
continue;
efi_map_region(md);
if (left < desc_size) {
new_memmap = realloc_pages(new_memmap, *pg_shift);
if (!new_memmap)
return NULL;
left += PAGE_SIZE << *pg_shift;
(*pg_shift)++;
}
memcpy(new_memmap + (*count * desc_size), md, desc_size);
left -= desc_size;
(*count)++;
}
return new_memmap;
}
static void __init kexec_enter_virtual_mode(void)
{
#ifdef CONFIG_KEXEC_CORE
efi_memory_desc_t *md;
unsigned int num_pages;
/*
* We don't do virtual mode, since we don't do runtime services, on
* non-native EFI.
*/
if (efi_is_mixed()) {
efi_memmap_unmap();
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
if (efi_alloc_page_tables()) {
pr_err("Failed to allocate EFI page tables\n");
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
/*
* Map efi regions which were passed via setup_data. The virt_addr is a
* fixed addr which was used in first kernel of a kexec boot.
*/
for_each_efi_memory_desc(md)
efi_map_region_fixed(md); /* FIXME: add error handling */
/*
* Unregister the early EFI memmap from efi_init() and install
* the new EFI memory map.
*/
efi_memmap_unmap();
if (efi_memmap_init_late(efi.memmap.phys_map,
efi.memmap.desc_size * efi.memmap.nr_map)) {
pr_err("Failed to remap late EFI memory map\n");
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
num_pages >>= PAGE_SHIFT;
if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
efi_sync_low_kernel_mappings();
efi_native_runtime_setup();
#endif
}
/*
* This function will switch the EFI runtime services to virtual mode.
* Essentially, we look through the EFI memmap and map every region that
* has the runtime attribute bit set in its memory descriptor into the
* efi_pgd page table.
*
* The new method does a pagetable switch in a preemption-safe manner
* so that we're in a different address space when calling a runtime
* function. For function arguments passing we do copy the PUDs of the
* kernel page table into efi_pgd prior to each call.
*
* Specially for kexec boot, efi runtime maps in previous kernel should
* be passed in via setup_data. In that case runtime ranges will be mapped
* to the same virtual addresses as the first kernel, see
* kexec_enter_virtual_mode().
*/
static void __init __efi_enter_virtual_mode(void)
{
int count = 0, pg_shift = 0;
void *new_memmap = NULL;
efi_status_t status;
unsigned long pa;
if (efi_alloc_page_tables()) {
pr_err("Failed to allocate EFI page tables\n");
goto err;
}
efi_merge_regions();
new_memmap = efi_map_regions(&count, &pg_shift);
if (!new_memmap) {
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
goto err;
}
pa = __pa(new_memmap);
/*
* Unregister the early EFI memmap from efi_init() and install
* the new EFI memory map that we are about to pass to the
* firmware via SetVirtualAddressMap().
*/
efi_memmap_unmap();
if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
pr_err("Failed to remap late EFI memory map\n");
goto err;
}
if (efi_enabled(EFI_DBG)) {
pr_info("EFI runtime memory map:\n");
efi_print_memmap();
}
if (efi_setup_page_tables(pa, 1 << pg_shift))
goto err;
efi_sync_low_kernel_mappings();
status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
efi.memmap.desc_size,
efi.memmap.desc_version,
(efi_memory_desc_t *)pa,
efi_systab_phys);
if (status != EFI_SUCCESS) {
pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
status);
goto err;
}
efi_check_for_embedded_firmwares();
efi_free_boot_services();
if (!efi_is_mixed())
efi_native_runtime_setup();
else
efi_thunk_runtime_setup();
/*
* Apply more restrictive page table mapping attributes now that
* SVAM() has been called and the firmware has performed all
* necessary relocation fixups for the new virtual addresses.
*/
efi_runtime_update_mappings();
/* clean DUMMY object */
efi_delete_dummy_variable();
return;
err:
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
}
void __init efi_enter_virtual_mode(void)
{
if (efi_enabled(EFI_PARAVIRT))
return;
efi.runtime = (efi_runtime_services_t *)efi_runtime;
if (efi_setup)
kexec_enter_virtual_mode();
else
__efi_enter_virtual_mode();
efi_dump_pagetable();
}
bool efi_is_table_address(unsigned long phys_addr)
{
unsigned int i;
if (phys_addr == EFI_INVALID_TABLE_ADDR)
return false;
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
if (*(efi_tables[i]) == phys_addr)
return true;
return false;
}
char *efi_systab_show_arch(char *str)
{
if (uga_phys != EFI_INVALID_TABLE_ADDR)
str += sprintf(str, "UGA=0x%lx\n", uga_phys);
return str;
}
#define EFI_FIELD(var) efi_ ## var
#define EFI_ATTR_SHOW(name) \
static ssize_t name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
}
EFI_ATTR_SHOW(fw_vendor);
EFI_ATTR_SHOW(runtime);
EFI_ATTR_SHOW(config_table);
struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
{
if (attr == &efi_attr_fw_vendor.attr) {
if (efi_enabled(EFI_PARAVIRT) ||
efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
return 0;
} else if (attr == &efi_attr_runtime.attr) {
if (efi_runtime == EFI_INVALID_TABLE_ADDR)
return 0;
} else if (attr == &efi_attr_config_table.attr) {
if (efi_config_table == EFI_INVALID_TABLE_ADDR)
return 0;
}
return attr->mode;
}