925 lines
22 KiB
C
925 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Common EFI (Extensible Firmware Interface) support functions
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2002 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2005-2008 Intel Co.
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Bibo Mao <bibo.mao@intel.com>
|
|
* Chandramouli Narayanan <mouli@linux.intel.com>
|
|
* Huang Ying <ying.huang@intel.com>
|
|
* Copyright (C) 2013 SuSE Labs
|
|
* Borislav Petkov <bp@suse.de> - runtime services VA mapping
|
|
*
|
|
* Copied from efi_32.c to eliminate the duplicated code between EFI
|
|
* 32/64 support code. --ying 2007-10-26
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/efi-bgrt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/time.h>
|
|
#include <linux/io.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bcd.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/time.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/uv/uv.h>
|
|
|
|
static unsigned long efi_systab_phys __initdata;
|
|
static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
|
|
static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
|
|
static unsigned long efi_runtime, efi_nr_tables;
|
|
|
|
unsigned long efi_fw_vendor, efi_config_table;
|
|
|
|
static const efi_config_table_type_t arch_tables[] __initconst = {
|
|
{EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" },
|
|
{UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
|
|
#ifdef CONFIG_X86_UV
|
|
{UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static const unsigned long * const efi_tables[] = {
|
|
&efi.acpi,
|
|
&efi.acpi20,
|
|
&efi.smbios,
|
|
&efi.smbios3,
|
|
&uga_phys,
|
|
#ifdef CONFIG_X86_UV
|
|
&uv_systab_phys,
|
|
#endif
|
|
&efi_fw_vendor,
|
|
&efi_runtime,
|
|
&efi_config_table,
|
|
&efi.esrt,
|
|
&prop_phys,
|
|
&efi_mem_attr_table,
|
|
#ifdef CONFIG_EFI_RCI2_TABLE
|
|
&rci2_table_phys,
|
|
#endif
|
|
&efi.tpm_log,
|
|
&efi.tpm_final_log,
|
|
&efi_rng_seed,
|
|
#ifdef CONFIG_LOAD_UEFI_KEYS
|
|
&efi.mokvar_table,
|
|
#endif
|
|
#ifdef CONFIG_EFI_COCO_SECRET
|
|
&efi.coco_secret,
|
|
#endif
|
|
};
|
|
|
|
u64 efi_setup; /* efi setup_data physical address */
|
|
|
|
static int add_efi_memmap __initdata;
|
|
static int __init setup_add_efi_memmap(char *arg)
|
|
{
|
|
add_efi_memmap = 1;
|
|
return 0;
|
|
}
|
|
early_param("add_efi_memmap", setup_add_efi_memmap);
|
|
|
|
void __init efi_find_mirror(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
u64 mirror_size = 0, total_size = 0;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
total_size += size;
|
|
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
|
|
memblock_mark_mirror(start, size);
|
|
mirror_size += size;
|
|
}
|
|
}
|
|
if (mirror_size)
|
|
pr_info("Memory: %lldM/%lldM mirrored memory\n",
|
|
mirror_size>>20, total_size>>20);
|
|
}
|
|
|
|
/*
|
|
* Tell the kernel about the EFI memory map. This might include
|
|
* more than the max 128 entries that can fit in the passed in e820
|
|
* legacy (zeropage) memory map, but the kernel's e820 table can hold
|
|
* E820_MAX_ENTRIES.
|
|
*/
|
|
|
|
static void __init do_add_efi_memmap(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
unsigned long long start = md->phys_addr;
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
int e820_type;
|
|
|
|
switch (md->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (efi_soft_reserve_enabled()
|
|
&& (md->attribute & EFI_MEMORY_SP))
|
|
e820_type = E820_TYPE_SOFT_RESERVED;
|
|
else if (md->attribute & EFI_MEMORY_WB)
|
|
e820_type = E820_TYPE_RAM;
|
|
else
|
|
e820_type = E820_TYPE_RESERVED;
|
|
break;
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_TYPE_ACPI;
|
|
break;
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_TYPE_NVS;
|
|
break;
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_TYPE_UNUSABLE;
|
|
break;
|
|
case EFI_PERSISTENT_MEMORY:
|
|
e820_type = E820_TYPE_PMEM;
|
|
break;
|
|
default:
|
|
/*
|
|
* EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
|
|
* EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
|
|
* EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
|
|
*/
|
|
e820_type = E820_TYPE_RESERVED;
|
|
break;
|
|
}
|
|
|
|
e820__range_add(start, size, e820_type);
|
|
}
|
|
e820__update_table(e820_table);
|
|
}
|
|
|
|
/*
|
|
* Given add_efi_memmap defaults to 0 and there there is no alternative
|
|
* e820 mechanism for soft-reserved memory, import the full EFI memory
|
|
* map if soft reservations are present and enabled. Otherwise, the
|
|
* mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
|
|
* the efi=nosoftreserve option.
|
|
*/
|
|
static bool do_efi_soft_reserve(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return false;
|
|
|
|
if (!efi_soft_reserve_enabled())
|
|
return false;
|
|
|
|
for_each_efi_memory_desc(md)
|
|
if (md->type == EFI_CONVENTIONAL_MEMORY &&
|
|
(md->attribute & EFI_MEMORY_SP))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int __init efi_memblock_x86_reserve_range(void)
|
|
{
|
|
struct efi_info *e = &boot_params.efi_info;
|
|
struct efi_memory_map_data data;
|
|
phys_addr_t pmap;
|
|
int rv;
|
|
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return 0;
|
|
|
|
/* Can't handle firmware tables above 4GB on i386 */
|
|
if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
|
|
pr_err("Memory map is above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
|
|
|
|
data.phys_map = pmap;
|
|
data.size = e->efi_memmap_size;
|
|
data.desc_size = e->efi_memdesc_size;
|
|
data.desc_version = e->efi_memdesc_version;
|
|
|
|
rv = efi_memmap_init_early(&data);
|
|
if (rv)
|
|
return rv;
|
|
|
|
if (add_efi_memmap || do_efi_soft_reserve())
|
|
do_add_efi_memmap();
|
|
|
|
efi_fake_memmap_early();
|
|
|
|
WARN(efi.memmap.desc_version != 1,
|
|
"Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
|
|
efi.memmap.desc_version);
|
|
|
|
memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
|
|
set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
|
|
#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
|
|
#define U64_HIGH_BIT (~(U64_MAX >> 1))
|
|
|
|
static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
|
|
{
|
|
u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
|
|
u64 end_hi = 0;
|
|
char buf[64];
|
|
|
|
if (md->num_pages == 0) {
|
|
end = 0;
|
|
} else if (md->num_pages > EFI_PAGES_MAX ||
|
|
EFI_PAGES_MAX - md->num_pages <
|
|
(md->phys_addr >> EFI_PAGE_SHIFT)) {
|
|
end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
|
|
>> OVERFLOW_ADDR_SHIFT;
|
|
|
|
if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
|
|
end_hi += 1;
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
|
|
|
|
if (end_hi) {
|
|
pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
|
|
i, efi_md_typeattr_format(buf, sizeof(buf), md),
|
|
md->phys_addr, end_hi, end);
|
|
} else {
|
|
pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
|
|
i, efi_md_typeattr_format(buf, sizeof(buf), md),
|
|
md->phys_addr, end);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void __init efi_clean_memmap(void)
|
|
{
|
|
efi_memory_desc_t *out = efi.memmap.map;
|
|
const efi_memory_desc_t *in = out;
|
|
const efi_memory_desc_t *end = efi.memmap.map_end;
|
|
int i, n_removal;
|
|
|
|
for (i = n_removal = 0; in < end; i++) {
|
|
if (efi_memmap_entry_valid(in, i)) {
|
|
if (out != in)
|
|
memcpy(out, in, efi.memmap.desc_size);
|
|
out = (void *)out + efi.memmap.desc_size;
|
|
} else {
|
|
n_removal++;
|
|
}
|
|
in = (void *)in + efi.memmap.desc_size;
|
|
}
|
|
|
|
if (n_removal > 0) {
|
|
struct efi_memory_map_data data = {
|
|
.phys_map = efi.memmap.phys_map,
|
|
.desc_version = efi.memmap.desc_version,
|
|
.desc_size = efi.memmap.desc_size,
|
|
.size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
|
|
.flags = 0,
|
|
};
|
|
|
|
pr_warn("Removing %d invalid memory map entries.\n", n_removal);
|
|
efi_memmap_install(&data);
|
|
}
|
|
}
|
|
|
|
void __init efi_print_memmap(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
int i = 0;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
char buf[64];
|
|
|
|
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
|
|
i++, efi_md_typeattr_format(buf, sizeof(buf), md),
|
|
md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
|
|
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
|
}
|
|
}
|
|
|
|
static int __init efi_systab_init(unsigned long phys)
|
|
{
|
|
int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
|
|
: sizeof(efi_system_table_32_t);
|
|
const efi_table_hdr_t *hdr;
|
|
bool over4g = false;
|
|
void *p;
|
|
int ret;
|
|
|
|
hdr = p = early_memremap_ro(phys, size);
|
|
if (p == NULL) {
|
|
pr_err("Couldn't map the system table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = efi_systab_check_header(hdr, 1);
|
|
if (ret) {
|
|
early_memunmap(p, size);
|
|
return ret;
|
|
}
|
|
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
const efi_system_table_64_t *systab64 = p;
|
|
|
|
efi_runtime = systab64->runtime;
|
|
over4g = systab64->runtime > U32_MAX;
|
|
|
|
if (efi_setup) {
|
|
struct efi_setup_data *data;
|
|
|
|
data = early_memremap_ro(efi_setup, sizeof(*data));
|
|
if (!data) {
|
|
early_memunmap(p, size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efi_fw_vendor = (unsigned long)data->fw_vendor;
|
|
efi_config_table = (unsigned long)data->tables;
|
|
|
|
over4g |= data->fw_vendor > U32_MAX ||
|
|
data->tables > U32_MAX;
|
|
|
|
early_memunmap(data, sizeof(*data));
|
|
} else {
|
|
efi_fw_vendor = systab64->fw_vendor;
|
|
efi_config_table = systab64->tables;
|
|
|
|
over4g |= systab64->fw_vendor > U32_MAX ||
|
|
systab64->tables > U32_MAX;
|
|
}
|
|
efi_nr_tables = systab64->nr_tables;
|
|
} else {
|
|
const efi_system_table_32_t *systab32 = p;
|
|
|
|
efi_fw_vendor = systab32->fw_vendor;
|
|
efi_runtime = systab32->runtime;
|
|
efi_config_table = systab32->tables;
|
|
efi_nr_tables = systab32->nr_tables;
|
|
}
|
|
|
|
efi.runtime_version = hdr->revision;
|
|
|
|
efi_systab_report_header(hdr, efi_fw_vendor);
|
|
early_memunmap(p, size);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32) && over4g) {
|
|
pr_err("EFI data located above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
|
|
{
|
|
void *config_tables;
|
|
int sz, ret;
|
|
|
|
if (efi_nr_tables == 0)
|
|
return 0;
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
sz = sizeof(efi_config_table_64_t);
|
|
else
|
|
sz = sizeof(efi_config_table_32_t);
|
|
|
|
/*
|
|
* Let's see what config tables the firmware passed to us.
|
|
*/
|
|
config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
|
|
if (config_tables == NULL) {
|
|
pr_err("Could not map Configuration table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = efi_config_parse_tables(config_tables, efi_nr_tables,
|
|
arch_tables);
|
|
|
|
early_memunmap(config_tables, efi_nr_tables * sz);
|
|
return ret;
|
|
}
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_X86_32) &&
|
|
(boot_params.efi_info.efi_systab_hi ||
|
|
boot_params.efi_info.efi_memmap_hi)) {
|
|
pr_info("Table located above 4GB, disabling EFI.\n");
|
|
return;
|
|
}
|
|
|
|
efi_systab_phys = boot_params.efi_info.efi_systab |
|
|
((__u64)boot_params.efi_info.efi_systab_hi << 32);
|
|
|
|
if (efi_systab_init(efi_systab_phys))
|
|
return;
|
|
|
|
if (efi_reuse_config(efi_config_table, efi_nr_tables))
|
|
return;
|
|
|
|
if (efi_config_init(arch_tables))
|
|
return;
|
|
|
|
/*
|
|
* Note: We currently don't support runtime services on an EFI
|
|
* that doesn't match the kernel 32/64-bit mode.
|
|
*/
|
|
|
|
if (!efi_runtime_supported())
|
|
pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
|
|
|
|
if (!efi_runtime_supported() || efi_runtime_disabled()) {
|
|
efi_memmap_unmap();
|
|
return;
|
|
}
|
|
|
|
/* Parse the EFI Properties table if it exists */
|
|
if (prop_phys != EFI_INVALID_TABLE_ADDR) {
|
|
efi_properties_table_t *tbl;
|
|
|
|
tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
|
|
if (tbl == NULL) {
|
|
pr_err("Could not map Properties table!\n");
|
|
} else {
|
|
if (tbl->memory_protection_attribute &
|
|
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
|
|
set_bit(EFI_NX_PE_DATA, &efi.flags);
|
|
|
|
early_memunmap(tbl, sizeof(*tbl));
|
|
}
|
|
}
|
|
|
|
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
efi_clean_memmap();
|
|
|
|
if (efi_enabled(EFI_DBG))
|
|
efi_print_memmap();
|
|
}
|
|
|
|
/* Merge contiguous regions of the same type and attribute */
|
|
static void __init efi_merge_regions(void)
|
|
{
|
|
efi_memory_desc_t *md, *prev_md = NULL;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
u64 prev_size;
|
|
|
|
if (!prev_md) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
if (prev_md->type != md->type ||
|
|
prev_md->attribute != md->attribute) {
|
|
prev_md = md;
|
|
continue;
|
|
}
|
|
|
|
prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
|
|
prev_md->num_pages += md->num_pages;
|
|
md->type = EFI_RESERVED_TYPE;
|
|
md->attribute = 0;
|
|
continue;
|
|
}
|
|
prev_md = md;
|
|
}
|
|
}
|
|
|
|
static void *realloc_pages(void *old_memmap, int old_shift)
|
|
{
|
|
void *ret;
|
|
|
|
ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/*
|
|
* A first-time allocation doesn't have anything to copy.
|
|
*/
|
|
if (!old_memmap)
|
|
return ret;
|
|
|
|
memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
|
|
|
|
out:
|
|
free_pages((unsigned long)old_memmap, old_shift);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Iterate the EFI memory map in reverse order because the regions
|
|
* will be mapped top-down. The end result is the same as if we had
|
|
* mapped things forward, but doesn't require us to change the
|
|
* existing implementation of efi_map_region().
|
|
*/
|
|
static inline void *efi_map_next_entry_reverse(void *entry)
|
|
{
|
|
/* Initial call */
|
|
if (!entry)
|
|
return efi.memmap.map_end - efi.memmap.desc_size;
|
|
|
|
entry -= efi.memmap.desc_size;
|
|
if (entry < efi.memmap.map)
|
|
return NULL;
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* efi_map_next_entry - Return the next EFI memory map descriptor
|
|
* @entry: Previous EFI memory map descriptor
|
|
*
|
|
* This is a helper function to iterate over the EFI memory map, which
|
|
* we do in different orders depending on the current configuration.
|
|
*
|
|
* To begin traversing the memory map @entry must be %NULL.
|
|
*
|
|
* Returns %NULL when we reach the end of the memory map.
|
|
*/
|
|
static void *efi_map_next_entry(void *entry)
|
|
{
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
/*
|
|
* Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
|
|
* config table feature requires us to map all entries
|
|
* in the same order as they appear in the EFI memory
|
|
* map. That is to say, entry N must have a lower
|
|
* virtual address than entry N+1. This is because the
|
|
* firmware toolchain leaves relative references in
|
|
* the code/data sections, which are split and become
|
|
* separate EFI memory regions. Mapping things
|
|
* out-of-order leads to the firmware accessing
|
|
* unmapped addresses.
|
|
*
|
|
* Since we need to map things this way whether or not
|
|
* the kernel actually makes use of
|
|
* EFI_PROPERTIES_TABLE, let's just switch to this
|
|
* scheme by default for 64-bit.
|
|
*/
|
|
return efi_map_next_entry_reverse(entry);
|
|
}
|
|
|
|
/* Initial call */
|
|
if (!entry)
|
|
return efi.memmap.map;
|
|
|
|
entry += efi.memmap.desc_size;
|
|
if (entry >= efi.memmap.map_end)
|
|
return NULL;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static bool should_map_region(efi_memory_desc_t *md)
|
|
{
|
|
/*
|
|
* Runtime regions always require runtime mappings (obviously).
|
|
*/
|
|
if (md->attribute & EFI_MEMORY_RUNTIME)
|
|
return true;
|
|
|
|
/*
|
|
* 32-bit EFI doesn't suffer from the bug that requires us to
|
|
* reserve boot services regions, and mixed mode support
|
|
* doesn't exist for 32-bit kernels.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
return false;
|
|
|
|
/*
|
|
* EFI specific purpose memory may be reserved by default
|
|
* depending on kernel config and boot options.
|
|
*/
|
|
if (md->type == EFI_CONVENTIONAL_MEMORY &&
|
|
efi_soft_reserve_enabled() &&
|
|
(md->attribute & EFI_MEMORY_SP))
|
|
return false;
|
|
|
|
/*
|
|
* Map all of RAM so that we can access arguments in the 1:1
|
|
* mapping when making EFI runtime calls.
|
|
*/
|
|
if (efi_is_mixed()) {
|
|
if (md->type == EFI_CONVENTIONAL_MEMORY ||
|
|
md->type == EFI_LOADER_DATA ||
|
|
md->type == EFI_LOADER_CODE)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Map boot services regions as a workaround for buggy
|
|
* firmware that accesses them even when they shouldn't.
|
|
*
|
|
* See efi_{reserve,free}_boot_services().
|
|
*/
|
|
if (md->type == EFI_BOOT_SERVICES_CODE ||
|
|
md->type == EFI_BOOT_SERVICES_DATA)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Map the efi memory ranges of the runtime services and update new_mmap with
|
|
* virtual addresses.
|
|
*/
|
|
static void * __init efi_map_regions(int *count, int *pg_shift)
|
|
{
|
|
void *p, *new_memmap = NULL;
|
|
unsigned long left = 0;
|
|
unsigned long desc_size;
|
|
efi_memory_desc_t *md;
|
|
|
|
desc_size = efi.memmap.desc_size;
|
|
|
|
p = NULL;
|
|
while ((p = efi_map_next_entry(p))) {
|
|
md = p;
|
|
|
|
if (!should_map_region(md))
|
|
continue;
|
|
|
|
efi_map_region(md);
|
|
|
|
if (left < desc_size) {
|
|
new_memmap = realloc_pages(new_memmap, *pg_shift);
|
|
if (!new_memmap)
|
|
return NULL;
|
|
|
|
left += PAGE_SIZE << *pg_shift;
|
|
(*pg_shift)++;
|
|
}
|
|
|
|
memcpy(new_memmap + (*count * desc_size), md, desc_size);
|
|
|
|
left -= desc_size;
|
|
(*count)++;
|
|
}
|
|
|
|
return new_memmap;
|
|
}
|
|
|
|
static void __init kexec_enter_virtual_mode(void)
|
|
{
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
efi_memory_desc_t *md;
|
|
unsigned int num_pages;
|
|
|
|
/*
|
|
* We don't do virtual mode, since we don't do runtime services, on
|
|
* non-native EFI.
|
|
*/
|
|
if (efi_is_mixed()) {
|
|
efi_memmap_unmap();
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
if (efi_alloc_page_tables()) {
|
|
pr_err("Failed to allocate EFI page tables\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map efi regions which were passed via setup_data. The virt_addr is a
|
|
* fixed addr which was used in first kernel of a kexec boot.
|
|
*/
|
|
for_each_efi_memory_desc(md)
|
|
efi_map_region_fixed(md); /* FIXME: add error handling */
|
|
|
|
/*
|
|
* Unregister the early EFI memmap from efi_init() and install
|
|
* the new EFI memory map.
|
|
*/
|
|
efi_memmap_unmap();
|
|
|
|
if (efi_memmap_init_late(efi.memmap.phys_map,
|
|
efi.memmap.desc_size * efi.memmap.nr_map)) {
|
|
pr_err("Failed to remap late EFI memory map\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
|
|
num_pages >>= PAGE_SHIFT;
|
|
|
|
if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return;
|
|
}
|
|
|
|
efi_sync_low_kernel_mappings();
|
|
efi_native_runtime_setup();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This function will switch the EFI runtime services to virtual mode.
|
|
* Essentially, we look through the EFI memmap and map every region that
|
|
* has the runtime attribute bit set in its memory descriptor into the
|
|
* efi_pgd page table.
|
|
*
|
|
* The new method does a pagetable switch in a preemption-safe manner
|
|
* so that we're in a different address space when calling a runtime
|
|
* function. For function arguments passing we do copy the PUDs of the
|
|
* kernel page table into efi_pgd prior to each call.
|
|
*
|
|
* Specially for kexec boot, efi runtime maps in previous kernel should
|
|
* be passed in via setup_data. In that case runtime ranges will be mapped
|
|
* to the same virtual addresses as the first kernel, see
|
|
* kexec_enter_virtual_mode().
|
|
*/
|
|
static void __init __efi_enter_virtual_mode(void)
|
|
{
|
|
int count = 0, pg_shift = 0;
|
|
void *new_memmap = NULL;
|
|
efi_status_t status;
|
|
unsigned long pa;
|
|
|
|
if (efi_alloc_page_tables()) {
|
|
pr_err("Failed to allocate EFI page tables\n");
|
|
goto err;
|
|
}
|
|
|
|
efi_merge_regions();
|
|
new_memmap = efi_map_regions(&count, &pg_shift);
|
|
if (!new_memmap) {
|
|
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
|
|
goto err;
|
|
}
|
|
|
|
pa = __pa(new_memmap);
|
|
|
|
/*
|
|
* Unregister the early EFI memmap from efi_init() and install
|
|
* the new EFI memory map that we are about to pass to the
|
|
* firmware via SetVirtualAddressMap().
|
|
*/
|
|
efi_memmap_unmap();
|
|
|
|
if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
|
|
pr_err("Failed to remap late EFI memory map\n");
|
|
goto err;
|
|
}
|
|
|
|
if (efi_enabled(EFI_DBG)) {
|
|
pr_info("EFI runtime memory map:\n");
|
|
efi_print_memmap();
|
|
}
|
|
|
|
if (efi_setup_page_tables(pa, 1 << pg_shift))
|
|
goto err;
|
|
|
|
efi_sync_low_kernel_mappings();
|
|
|
|
status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
|
|
efi.memmap.desc_size,
|
|
efi.memmap.desc_version,
|
|
(efi_memory_desc_t *)pa,
|
|
efi_systab_phys);
|
|
if (status != EFI_SUCCESS) {
|
|
pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
|
|
status);
|
|
goto err;
|
|
}
|
|
|
|
efi_check_for_embedded_firmwares();
|
|
efi_free_boot_services();
|
|
|
|
if (!efi_is_mixed())
|
|
efi_native_runtime_setup();
|
|
else
|
|
efi_thunk_runtime_setup();
|
|
|
|
/*
|
|
* Apply more restrictive page table mapping attributes now that
|
|
* SVAM() has been called and the firmware has performed all
|
|
* necessary relocation fixups for the new virtual addresses.
|
|
*/
|
|
efi_runtime_update_mappings();
|
|
|
|
/* clean DUMMY object */
|
|
efi_delete_dummy_variable();
|
|
return;
|
|
|
|
err:
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
}
|
|
|
|
void __init efi_enter_virtual_mode(void)
|
|
{
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return;
|
|
|
|
efi.runtime = (efi_runtime_services_t *)efi_runtime;
|
|
|
|
if (efi_setup)
|
|
kexec_enter_virtual_mode();
|
|
else
|
|
__efi_enter_virtual_mode();
|
|
|
|
efi_dump_pagetable();
|
|
}
|
|
|
|
bool efi_is_table_address(unsigned long phys_addr)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (phys_addr == EFI_INVALID_TABLE_ADDR)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
|
|
if (*(efi_tables[i]) == phys_addr)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
char *efi_systab_show_arch(char *str)
|
|
{
|
|
if (uga_phys != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "UGA=0x%lx\n", uga_phys);
|
|
return str;
|
|
}
|
|
|
|
#define EFI_FIELD(var) efi_ ## var
|
|
|
|
#define EFI_ATTR_SHOW(name) \
|
|
static ssize_t name##_show(struct kobject *kobj, \
|
|
struct kobj_attribute *attr, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
|
|
}
|
|
|
|
EFI_ATTR_SHOW(fw_vendor);
|
|
EFI_ATTR_SHOW(runtime);
|
|
EFI_ATTR_SHOW(config_table);
|
|
|
|
struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
|
|
struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
|
|
struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
|
|
|
|
umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
|
|
{
|
|
if (attr == &efi_attr_fw_vendor.attr) {
|
|
if (efi_enabled(EFI_PARAVIRT) ||
|
|
efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
} else if (attr == &efi_attr_runtime.attr) {
|
|
if (efi_runtime == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
} else if (attr == &efi_attr_config_table.attr) {
|
|
if (efi_config_table == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
}
|
|
return attr->mode;
|
|
}
|