1497 lines
39 KiB
C
1497 lines
39 KiB
C
/*
|
|
* Intel MIC Platform Software Stack (MPSS)
|
|
*
|
|
* Copyright(c) 2014 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* Intel SCIF driver.
|
|
*
|
|
*/
|
|
#include <linux/scif.h>
|
|
#include "scif_main.h"
|
|
#include "scif_map.h"
|
|
|
|
static const char * const scif_ep_states[] = {
|
|
"Unbound",
|
|
"Bound",
|
|
"Listening",
|
|
"Connected",
|
|
"Connecting",
|
|
"Mapping",
|
|
"Closing",
|
|
"Close Listening",
|
|
"Disconnected",
|
|
"Zombie"};
|
|
|
|
enum conn_async_state {
|
|
ASYNC_CONN_IDLE = 1, /* ep setup for async connect */
|
|
ASYNC_CONN_INPROGRESS, /* async connect in progress */
|
|
ASYNC_CONN_FLUSH_WORK /* async work flush in progress */
|
|
};
|
|
|
|
/*
|
|
* File operations for anonymous inode file associated with a SCIF endpoint,
|
|
* used in kernel mode SCIF poll. Kernel mode SCIF poll calls portions of the
|
|
* poll API in the kernel and these take in a struct file *. Since a struct
|
|
* file is not available to kernel mode SCIF, it uses an anonymous file for
|
|
* this purpose.
|
|
*/
|
|
const struct file_operations scif_anon_fops = {
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
scif_epd_t scif_open(void)
|
|
{
|
|
struct scif_endpt *ep;
|
|
int err;
|
|
|
|
might_sleep();
|
|
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
|
|
if (!ep)
|
|
goto err_ep_alloc;
|
|
|
|
ep->qp_info.qp = kzalloc(sizeof(*ep->qp_info.qp), GFP_KERNEL);
|
|
if (!ep->qp_info.qp)
|
|
goto err_qp_alloc;
|
|
|
|
err = scif_anon_inode_getfile(ep);
|
|
if (err)
|
|
goto err_anon_inode;
|
|
|
|
spin_lock_init(&ep->lock);
|
|
mutex_init(&ep->sendlock);
|
|
mutex_init(&ep->recvlock);
|
|
|
|
scif_rma_ep_init(ep);
|
|
ep->state = SCIFEP_UNBOUND;
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI open: ep %p success\n", ep);
|
|
return ep;
|
|
|
|
err_anon_inode:
|
|
kfree(ep->qp_info.qp);
|
|
err_qp_alloc:
|
|
kfree(ep);
|
|
err_ep_alloc:
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_open);
|
|
|
|
/*
|
|
* scif_disconnect_ep - Disconnects the endpoint if found
|
|
* @epd: The end point returned from scif_open()
|
|
*/
|
|
static struct scif_endpt *scif_disconnect_ep(struct scif_endpt *ep)
|
|
{
|
|
struct scifmsg msg;
|
|
struct scif_endpt *fep = NULL;
|
|
struct scif_endpt *tmpep;
|
|
struct list_head *pos, *tmpq;
|
|
int err;
|
|
|
|
/*
|
|
* Wake up any threads blocked in send()/recv() before closing
|
|
* out the connection. Grabbing and releasing the send/recv lock
|
|
* will ensure that any blocked senders/receivers have exited for
|
|
* Ring 0 endpoints. It is a Ring 0 bug to call send/recv after
|
|
* close. Ring 3 endpoints are not affected since close will not
|
|
* be called while there are IOCTLs executing.
|
|
*/
|
|
wake_up_interruptible(&ep->sendwq);
|
|
wake_up_interruptible(&ep->recvwq);
|
|
mutex_lock(&ep->sendlock);
|
|
mutex_unlock(&ep->sendlock);
|
|
mutex_lock(&ep->recvlock);
|
|
mutex_unlock(&ep->recvlock);
|
|
|
|
/* Remove from the connected list */
|
|
mutex_lock(&scif_info.connlock);
|
|
list_for_each_safe(pos, tmpq, &scif_info.connected) {
|
|
tmpep = list_entry(pos, struct scif_endpt, list);
|
|
if (tmpep == ep) {
|
|
list_del(pos);
|
|
fep = tmpep;
|
|
spin_lock(&ep->lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fep) {
|
|
/*
|
|
* The other side has completed the disconnect before
|
|
* the end point can be removed from the list. Therefore
|
|
* the ep lock is not locked, traverse the disconnected
|
|
* list to find the endpoint and release the conn lock.
|
|
*/
|
|
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
|
|
tmpep = list_entry(pos, struct scif_endpt, list);
|
|
if (tmpep == ep) {
|
|
list_del(pos);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&scif_info.connlock);
|
|
return NULL;
|
|
}
|
|
|
|
init_completion(&ep->discon);
|
|
msg.uop = SCIF_DISCNCT;
|
|
msg.src = ep->port;
|
|
msg.dst = ep->peer;
|
|
msg.payload[0] = (u64)ep;
|
|
msg.payload[1] = ep->remote_ep;
|
|
|
|
err = scif_nodeqp_send(ep->remote_dev, &msg);
|
|
spin_unlock(&ep->lock);
|
|
mutex_unlock(&scif_info.connlock);
|
|
|
|
if (!err)
|
|
/* Wait for the remote node to respond with SCIF_DISCNT_ACK */
|
|
wait_for_completion_timeout(&ep->discon,
|
|
SCIF_NODE_ALIVE_TIMEOUT);
|
|
return ep;
|
|
}
|
|
|
|
int scif_close(scif_epd_t epd)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
struct scif_endpt *tmpep;
|
|
struct list_head *pos, *tmpq;
|
|
enum scif_epd_state oldstate;
|
|
bool flush_conn;
|
|
|
|
dev_dbg(scif_info.mdev.this_device, "SCIFAPI close: ep %p %s\n",
|
|
ep, scif_ep_states[ep->state]);
|
|
might_sleep();
|
|
spin_lock(&ep->lock);
|
|
flush_conn = (ep->conn_async_state == ASYNC_CONN_INPROGRESS);
|
|
spin_unlock(&ep->lock);
|
|
|
|
if (flush_conn)
|
|
flush_work(&scif_info.conn_work);
|
|
|
|
spin_lock(&ep->lock);
|
|
oldstate = ep->state;
|
|
|
|
ep->state = SCIFEP_CLOSING;
|
|
|
|
switch (oldstate) {
|
|
case SCIFEP_ZOMBIE:
|
|
dev_err(scif_info.mdev.this_device,
|
|
"SCIFAPI close: zombie state unexpected\n");
|
|
case SCIFEP_DISCONNECTED:
|
|
spin_unlock(&ep->lock);
|
|
scif_unregister_all_windows(epd);
|
|
/* Remove from the disconnected list */
|
|
mutex_lock(&scif_info.connlock);
|
|
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
|
|
tmpep = list_entry(pos, struct scif_endpt, list);
|
|
if (tmpep == ep) {
|
|
list_del(pos);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&scif_info.connlock);
|
|
break;
|
|
case SCIFEP_UNBOUND:
|
|
case SCIFEP_BOUND:
|
|
case SCIFEP_CONNECTING:
|
|
spin_unlock(&ep->lock);
|
|
break;
|
|
case SCIFEP_MAPPING:
|
|
case SCIFEP_CONNECTED:
|
|
case SCIFEP_CLOSING:
|
|
{
|
|
spin_unlock(&ep->lock);
|
|
scif_unregister_all_windows(epd);
|
|
scif_disconnect_ep(ep);
|
|
break;
|
|
}
|
|
case SCIFEP_LISTENING:
|
|
case SCIFEP_CLLISTEN:
|
|
{
|
|
struct scif_conreq *conreq;
|
|
struct scifmsg msg;
|
|
struct scif_endpt *aep;
|
|
|
|
spin_unlock(&ep->lock);
|
|
mutex_lock(&scif_info.eplock);
|
|
|
|
/* remove from listen list */
|
|
list_for_each_safe(pos, tmpq, &scif_info.listen) {
|
|
tmpep = list_entry(pos, struct scif_endpt, list);
|
|
if (tmpep == ep)
|
|
list_del(pos);
|
|
}
|
|
/* Remove any dangling accepts */
|
|
while (ep->acceptcnt) {
|
|
aep = list_first_entry(&ep->li_accept,
|
|
struct scif_endpt, liacceptlist);
|
|
list_del(&aep->liacceptlist);
|
|
scif_put_port(aep->port.port);
|
|
list_for_each_safe(pos, tmpq, &scif_info.uaccept) {
|
|
tmpep = list_entry(pos, struct scif_endpt,
|
|
miacceptlist);
|
|
if (tmpep == aep) {
|
|
list_del(pos);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&scif_info.eplock);
|
|
mutex_lock(&scif_info.connlock);
|
|
list_for_each_safe(pos, tmpq, &scif_info.connected) {
|
|
tmpep = list_entry(pos,
|
|
struct scif_endpt, list);
|
|
if (tmpep == aep) {
|
|
list_del(pos);
|
|
break;
|
|
}
|
|
}
|
|
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
|
|
tmpep = list_entry(pos,
|
|
struct scif_endpt, list);
|
|
if (tmpep == aep) {
|
|
list_del(pos);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&scif_info.connlock);
|
|
scif_teardown_ep(aep);
|
|
mutex_lock(&scif_info.eplock);
|
|
scif_add_epd_to_zombie_list(aep, SCIF_EPLOCK_HELD);
|
|
ep->acceptcnt--;
|
|
}
|
|
|
|
spin_lock(&ep->lock);
|
|
mutex_unlock(&scif_info.eplock);
|
|
|
|
/* Remove and reject any pending connection requests. */
|
|
while (ep->conreqcnt) {
|
|
conreq = list_first_entry(&ep->conlist,
|
|
struct scif_conreq, list);
|
|
list_del(&conreq->list);
|
|
|
|
msg.uop = SCIF_CNCT_REJ;
|
|
msg.dst.node = conreq->msg.src.node;
|
|
msg.dst.port = conreq->msg.src.port;
|
|
msg.payload[0] = conreq->msg.payload[0];
|
|
msg.payload[1] = conreq->msg.payload[1];
|
|
/*
|
|
* No Error Handling on purpose for scif_nodeqp_send().
|
|
* If the remote node is lost we still want free the
|
|
* connection requests on the self node.
|
|
*/
|
|
scif_nodeqp_send(&scif_dev[conreq->msg.src.node],
|
|
&msg);
|
|
ep->conreqcnt--;
|
|
kfree(conreq);
|
|
}
|
|
|
|
spin_unlock(&ep->lock);
|
|
/* If a kSCIF accept is waiting wake it up */
|
|
wake_up_interruptible(&ep->conwq);
|
|
break;
|
|
}
|
|
}
|
|
scif_put_port(ep->port.port);
|
|
scif_anon_inode_fput(ep);
|
|
scif_teardown_ep(ep);
|
|
scif_add_epd_to_zombie_list(ep, !SCIF_EPLOCK_HELD);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_close);
|
|
|
|
/**
|
|
* scif_flush() - Wakes up any blocking accepts. The endpoint will no longer
|
|
* accept new connections.
|
|
* @epd: The end point returned from scif_open()
|
|
*/
|
|
int __scif_flush(scif_epd_t epd)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
|
|
switch (ep->state) {
|
|
case SCIFEP_LISTENING:
|
|
{
|
|
ep->state = SCIFEP_CLLISTEN;
|
|
|
|
/* If an accept is waiting wake it up */
|
|
wake_up_interruptible(&ep->conwq);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int scif_bind(scif_epd_t epd, u16 pn)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int ret = 0;
|
|
int tmp;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI bind: ep %p %s requested port number %d\n",
|
|
ep, scif_ep_states[ep->state], pn);
|
|
if (pn) {
|
|
/*
|
|
* Similar to IETF RFC 1700, SCIF ports below
|
|
* SCIF_ADMIN_PORT_END can only be bound by system (or root)
|
|
* processes or by processes executed by privileged users.
|
|
*/
|
|
if (pn < SCIF_ADMIN_PORT_END && !capable(CAP_SYS_ADMIN)) {
|
|
ret = -EACCES;
|
|
goto scif_bind_admin_exit;
|
|
}
|
|
}
|
|
|
|
spin_lock(&ep->lock);
|
|
if (ep->state == SCIFEP_BOUND) {
|
|
ret = -EINVAL;
|
|
goto scif_bind_exit;
|
|
} else if (ep->state != SCIFEP_UNBOUND) {
|
|
ret = -EISCONN;
|
|
goto scif_bind_exit;
|
|
}
|
|
|
|
if (pn) {
|
|
tmp = scif_rsrv_port(pn);
|
|
if (tmp != pn) {
|
|
ret = -EINVAL;
|
|
goto scif_bind_exit;
|
|
}
|
|
} else {
|
|
pn = scif_get_new_port();
|
|
if (!pn) {
|
|
ret = -ENOSPC;
|
|
goto scif_bind_exit;
|
|
}
|
|
}
|
|
|
|
ep->state = SCIFEP_BOUND;
|
|
ep->port.node = scif_info.nodeid;
|
|
ep->port.port = pn;
|
|
ep->conn_async_state = ASYNC_CONN_IDLE;
|
|
ret = pn;
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI bind: bound to port number %d\n", pn);
|
|
scif_bind_exit:
|
|
spin_unlock(&ep->lock);
|
|
scif_bind_admin_exit:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_bind);
|
|
|
|
int scif_listen(scif_epd_t epd, int backlog)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI listen: ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
spin_lock(&ep->lock);
|
|
switch (ep->state) {
|
|
case SCIFEP_ZOMBIE:
|
|
case SCIFEP_CLOSING:
|
|
case SCIFEP_CLLISTEN:
|
|
case SCIFEP_UNBOUND:
|
|
case SCIFEP_DISCONNECTED:
|
|
spin_unlock(&ep->lock);
|
|
return -EINVAL;
|
|
case SCIFEP_LISTENING:
|
|
case SCIFEP_CONNECTED:
|
|
case SCIFEP_CONNECTING:
|
|
case SCIFEP_MAPPING:
|
|
spin_unlock(&ep->lock);
|
|
return -EISCONN;
|
|
case SCIFEP_BOUND:
|
|
break;
|
|
}
|
|
|
|
ep->state = SCIFEP_LISTENING;
|
|
ep->backlog = backlog;
|
|
|
|
ep->conreqcnt = 0;
|
|
ep->acceptcnt = 0;
|
|
INIT_LIST_HEAD(&ep->conlist);
|
|
init_waitqueue_head(&ep->conwq);
|
|
INIT_LIST_HEAD(&ep->li_accept);
|
|
spin_unlock(&ep->lock);
|
|
|
|
/*
|
|
* Listen status is complete so delete the qp information not needed
|
|
* on a listen before placing on the list of listening ep's
|
|
*/
|
|
scif_teardown_ep(ep);
|
|
ep->qp_info.qp = NULL;
|
|
|
|
mutex_lock(&scif_info.eplock);
|
|
list_add_tail(&ep->list, &scif_info.listen);
|
|
mutex_unlock(&scif_info.eplock);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_listen);
|
|
|
|
/*
|
|
************************************************************************
|
|
* SCIF connection flow:
|
|
*
|
|
* 1) A SCIF listening endpoint can call scif_accept(..) to wait for SCIF
|
|
* connections via a SCIF_CNCT_REQ message
|
|
* 2) A SCIF endpoint can initiate a SCIF connection by calling
|
|
* scif_connect(..) which calls scif_setup_qp_connect(..) which
|
|
* allocates the local qp for the endpoint ring buffer and then sends
|
|
* a SCIF_CNCT_REQ to the remote node and waits for a SCIF_CNCT_GNT or
|
|
* a SCIF_CNCT_REJ message
|
|
* 3) The peer node handles a SCIF_CNCT_REQ via scif_cnctreq_resp(..) which
|
|
* wakes up any threads blocked in step 1 or sends a SCIF_CNCT_REJ
|
|
* message otherwise
|
|
* 4) A thread blocked waiting for incoming connections allocates its local
|
|
* endpoint QP and ring buffer following which it sends a SCIF_CNCT_GNT
|
|
* and waits for a SCIF_CNCT_GNT(N)ACK. If the allocation fails then
|
|
* the node sends a SCIF_CNCT_REJ message
|
|
* 5) Upon receipt of a SCIF_CNCT_GNT or a SCIF_CNCT_REJ message the
|
|
* connecting endpoint is woken up as part of handling
|
|
* scif_cnctgnt_resp(..) following which it maps the remote endpoints'
|
|
* QP, updates its outbound QP and sends a SCIF_CNCT_GNTACK message on
|
|
* success or a SCIF_CNCT_GNTNACK message on failure and completes
|
|
* the scif_connect(..) API
|
|
* 6) Upon receipt of a SCIF_CNCT_GNT(N)ACK the accepting endpoint blocked
|
|
* in step 4 is woken up and completes the scif_accept(..) API
|
|
* 7) The SCIF connection is now established between the two SCIF endpoints.
|
|
*/
|
|
static int scif_conn_func(struct scif_endpt *ep)
|
|
{
|
|
int err = 0;
|
|
struct scifmsg msg;
|
|
struct device *spdev;
|
|
|
|
err = scif_reserve_dma_chan(ep);
|
|
if (err) {
|
|
dev_err(&ep->remote_dev->sdev->dev,
|
|
"%s %d err %d\n", __func__, __LINE__, err);
|
|
ep->state = SCIFEP_BOUND;
|
|
goto connect_error_simple;
|
|
}
|
|
/* Initiate the first part of the endpoint QP setup */
|
|
err = scif_setup_qp_connect(ep->qp_info.qp, &ep->qp_info.qp_offset,
|
|
SCIF_ENDPT_QP_SIZE, ep->remote_dev);
|
|
if (err) {
|
|
dev_err(&ep->remote_dev->sdev->dev,
|
|
"%s err %d qp_offset 0x%llx\n",
|
|
__func__, err, ep->qp_info.qp_offset);
|
|
ep->state = SCIFEP_BOUND;
|
|
goto connect_error_simple;
|
|
}
|
|
|
|
spdev = scif_get_peer_dev(ep->remote_dev);
|
|
if (IS_ERR(spdev)) {
|
|
err = PTR_ERR(spdev);
|
|
goto cleanup_qp;
|
|
}
|
|
/* Format connect message and send it */
|
|
msg.src = ep->port;
|
|
msg.dst = ep->conn_port;
|
|
msg.uop = SCIF_CNCT_REQ;
|
|
msg.payload[0] = (u64)ep;
|
|
msg.payload[1] = ep->qp_info.qp_offset;
|
|
err = _scif_nodeqp_send(ep->remote_dev, &msg);
|
|
if (err)
|
|
goto connect_error_dec;
|
|
scif_put_peer_dev(spdev);
|
|
/*
|
|
* Wait for the remote node to respond with SCIF_CNCT_GNT or
|
|
* SCIF_CNCT_REJ message.
|
|
*/
|
|
err = wait_event_timeout(ep->conwq, ep->state != SCIFEP_CONNECTING,
|
|
SCIF_NODE_ALIVE_TIMEOUT);
|
|
if (!err) {
|
|
dev_err(&ep->remote_dev->sdev->dev,
|
|
"%s %d timeout\n", __func__, __LINE__);
|
|
ep->state = SCIFEP_BOUND;
|
|
}
|
|
spdev = scif_get_peer_dev(ep->remote_dev);
|
|
if (IS_ERR(spdev)) {
|
|
err = PTR_ERR(spdev);
|
|
goto cleanup_qp;
|
|
}
|
|
if (ep->state == SCIFEP_MAPPING) {
|
|
err = scif_setup_qp_connect_response(ep->remote_dev,
|
|
ep->qp_info.qp,
|
|
ep->qp_info.gnt_pld);
|
|
/*
|
|
* If the resource to map the queue are not available then
|
|
* we need to tell the other side to terminate the accept
|
|
*/
|
|
if (err) {
|
|
dev_err(&ep->remote_dev->sdev->dev,
|
|
"%s %d err %d\n", __func__, __LINE__, err);
|
|
msg.uop = SCIF_CNCT_GNTNACK;
|
|
msg.payload[0] = ep->remote_ep;
|
|
_scif_nodeqp_send(ep->remote_dev, &msg);
|
|
ep->state = SCIFEP_BOUND;
|
|
goto connect_error_dec;
|
|
}
|
|
|
|
msg.uop = SCIF_CNCT_GNTACK;
|
|
msg.payload[0] = ep->remote_ep;
|
|
err = _scif_nodeqp_send(ep->remote_dev, &msg);
|
|
if (err) {
|
|
ep->state = SCIFEP_BOUND;
|
|
goto connect_error_dec;
|
|
}
|
|
ep->state = SCIFEP_CONNECTED;
|
|
mutex_lock(&scif_info.connlock);
|
|
list_add_tail(&ep->list, &scif_info.connected);
|
|
mutex_unlock(&scif_info.connlock);
|
|
dev_dbg(&ep->remote_dev->sdev->dev,
|
|
"SCIFAPI connect: ep %p connected\n", ep);
|
|
} else if (ep->state == SCIFEP_BOUND) {
|
|
dev_dbg(&ep->remote_dev->sdev->dev,
|
|
"SCIFAPI connect: ep %p connection refused\n", ep);
|
|
err = -ECONNREFUSED;
|
|
goto connect_error_dec;
|
|
}
|
|
scif_put_peer_dev(spdev);
|
|
return err;
|
|
connect_error_dec:
|
|
scif_put_peer_dev(spdev);
|
|
cleanup_qp:
|
|
scif_cleanup_ep_qp(ep);
|
|
connect_error_simple:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* scif_conn_handler:
|
|
*
|
|
* Workqueue handler for servicing non-blocking SCIF connect
|
|
*
|
|
*/
|
|
void scif_conn_handler(struct work_struct *work)
|
|
{
|
|
struct scif_endpt *ep;
|
|
|
|
do {
|
|
ep = NULL;
|
|
spin_lock(&scif_info.nb_connect_lock);
|
|
if (!list_empty(&scif_info.nb_connect_list)) {
|
|
ep = list_first_entry(&scif_info.nb_connect_list,
|
|
struct scif_endpt, conn_list);
|
|
list_del(&ep->conn_list);
|
|
}
|
|
spin_unlock(&scif_info.nb_connect_lock);
|
|
if (ep) {
|
|
ep->conn_err = scif_conn_func(ep);
|
|
wake_up_interruptible(&ep->conn_pend_wq);
|
|
}
|
|
} while (ep);
|
|
}
|
|
|
|
int __scif_connect(scif_epd_t epd, struct scif_port_id *dst, bool non_block)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int err = 0;
|
|
struct scif_dev *remote_dev;
|
|
struct device *spdev;
|
|
|
|
dev_dbg(scif_info.mdev.this_device, "SCIFAPI connect: ep %p %s\n", ep,
|
|
scif_ep_states[ep->state]);
|
|
|
|
if (!scif_dev || dst->node > scif_info.maxid)
|
|
return -ENODEV;
|
|
|
|
might_sleep();
|
|
|
|
remote_dev = &scif_dev[dst->node];
|
|
spdev = scif_get_peer_dev(remote_dev);
|
|
if (IS_ERR(spdev)) {
|
|
err = PTR_ERR(spdev);
|
|
return err;
|
|
}
|
|
|
|
spin_lock(&ep->lock);
|
|
switch (ep->state) {
|
|
case SCIFEP_ZOMBIE:
|
|
case SCIFEP_CLOSING:
|
|
err = -EINVAL;
|
|
break;
|
|
case SCIFEP_DISCONNECTED:
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
|
|
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
|
|
else
|
|
err = -EINVAL;
|
|
break;
|
|
case SCIFEP_LISTENING:
|
|
case SCIFEP_CLLISTEN:
|
|
err = -EOPNOTSUPP;
|
|
break;
|
|
case SCIFEP_CONNECTING:
|
|
case SCIFEP_MAPPING:
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
|
|
err = -EINPROGRESS;
|
|
else
|
|
err = -EISCONN;
|
|
break;
|
|
case SCIFEP_CONNECTED:
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
|
|
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
|
|
else
|
|
err = -EISCONN;
|
|
break;
|
|
case SCIFEP_UNBOUND:
|
|
ep->port.port = scif_get_new_port();
|
|
if (!ep->port.port) {
|
|
err = -ENOSPC;
|
|
} else {
|
|
ep->port.node = scif_info.nodeid;
|
|
ep->conn_async_state = ASYNC_CONN_IDLE;
|
|
}
|
|
/* Fall through */
|
|
case SCIFEP_BOUND:
|
|
/*
|
|
* If a non-blocking connect has been already initiated
|
|
* (conn_async_state is either ASYNC_CONN_INPROGRESS or
|
|
* ASYNC_CONN_FLUSH_WORK), the end point could end up in
|
|
* SCIF_BOUND due an error in the connection process
|
|
* (e.g., connection refused) If conn_async_state is
|
|
* ASYNC_CONN_INPROGRESS - transition to ASYNC_CONN_FLUSH_WORK
|
|
* so that the error status can be collected. If the state is
|
|
* already ASYNC_CONN_FLUSH_WORK - then set the error to
|
|
* EINPROGRESS since some other thread is waiting to collect
|
|
* error status.
|
|
*/
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
|
|
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
|
|
} else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
|
|
err = -EINPROGRESS;
|
|
} else {
|
|
ep->conn_port = *dst;
|
|
init_waitqueue_head(&ep->sendwq);
|
|
init_waitqueue_head(&ep->recvwq);
|
|
init_waitqueue_head(&ep->conwq);
|
|
ep->conn_async_state = 0;
|
|
|
|
if (unlikely(non_block))
|
|
ep->conn_async_state = ASYNC_CONN_INPROGRESS;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (err || ep->conn_async_state == ASYNC_CONN_FLUSH_WORK)
|
|
goto connect_simple_unlock1;
|
|
|
|
ep->state = SCIFEP_CONNECTING;
|
|
ep->remote_dev = &scif_dev[dst->node];
|
|
ep->qp_info.qp->magic = SCIFEP_MAGIC;
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
|
|
init_waitqueue_head(&ep->conn_pend_wq);
|
|
spin_lock(&scif_info.nb_connect_lock);
|
|
list_add_tail(&ep->conn_list, &scif_info.nb_connect_list);
|
|
spin_unlock(&scif_info.nb_connect_lock);
|
|
err = -EINPROGRESS;
|
|
schedule_work(&scif_info.conn_work);
|
|
}
|
|
connect_simple_unlock1:
|
|
spin_unlock(&ep->lock);
|
|
scif_put_peer_dev(spdev);
|
|
if (err) {
|
|
return err;
|
|
} else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
|
|
flush_work(&scif_info.conn_work);
|
|
err = ep->conn_err;
|
|
spin_lock(&ep->lock);
|
|
ep->conn_async_state = ASYNC_CONN_IDLE;
|
|
spin_unlock(&ep->lock);
|
|
} else {
|
|
err = scif_conn_func(ep);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int scif_connect(scif_epd_t epd, struct scif_port_id *dst)
|
|
{
|
|
return __scif_connect(epd, dst, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_connect);
|
|
|
|
/**
|
|
* scif_accept() - Accept a connection request from the remote node
|
|
*
|
|
* The function accepts a connection request from the remote node. Successful
|
|
* complete is indicate by a new end point being created and passed back
|
|
* to the caller for future reference.
|
|
*
|
|
* Upon successful complete a zero will be returned and the peer information
|
|
* will be filled in.
|
|
*
|
|
* If the end point is not in the listening state -EINVAL will be returned.
|
|
*
|
|
* If during the connection sequence resource allocation fails the -ENOMEM
|
|
* will be returned.
|
|
*
|
|
* If the function is called with the ASYNC flag set and no connection requests
|
|
* are pending it will return -EAGAIN.
|
|
*
|
|
* If the remote side is not sending any connection requests the caller may
|
|
* terminate this function with a signal. If so a -EINTR will be returned.
|
|
*/
|
|
int scif_accept(scif_epd_t epd, struct scif_port_id *peer,
|
|
scif_epd_t *newepd, int flags)
|
|
{
|
|
struct scif_endpt *lep = (struct scif_endpt *)epd;
|
|
struct scif_endpt *cep;
|
|
struct scif_conreq *conreq;
|
|
struct scifmsg msg;
|
|
int err;
|
|
struct device *spdev;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI accept: ep %p %s\n", lep, scif_ep_states[lep->state]);
|
|
|
|
if (flags & ~SCIF_ACCEPT_SYNC)
|
|
return -EINVAL;
|
|
|
|
if (!peer || !newepd)
|
|
return -EINVAL;
|
|
|
|
might_sleep();
|
|
spin_lock(&lep->lock);
|
|
if (lep->state != SCIFEP_LISTENING) {
|
|
spin_unlock(&lep->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!lep->conreqcnt && !(flags & SCIF_ACCEPT_SYNC)) {
|
|
/* No connection request present and we do not want to wait */
|
|
spin_unlock(&lep->lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
lep->files = current->files;
|
|
retry_connection:
|
|
spin_unlock(&lep->lock);
|
|
/* Wait for the remote node to send us a SCIF_CNCT_REQ */
|
|
err = wait_event_interruptible(lep->conwq,
|
|
(lep->conreqcnt ||
|
|
(lep->state != SCIFEP_LISTENING)));
|
|
if (err)
|
|
return err;
|
|
|
|
if (lep->state != SCIFEP_LISTENING)
|
|
return -EINTR;
|
|
|
|
spin_lock(&lep->lock);
|
|
|
|
if (!lep->conreqcnt)
|
|
goto retry_connection;
|
|
|
|
/* Get the first connect request off the list */
|
|
conreq = list_first_entry(&lep->conlist, struct scif_conreq, list);
|
|
list_del(&conreq->list);
|
|
lep->conreqcnt--;
|
|
spin_unlock(&lep->lock);
|
|
|
|
/* Fill in the peer information */
|
|
peer->node = conreq->msg.src.node;
|
|
peer->port = conreq->msg.src.port;
|
|
|
|
cep = kzalloc(sizeof(*cep), GFP_KERNEL);
|
|
if (!cep) {
|
|
err = -ENOMEM;
|
|
goto scif_accept_error_epalloc;
|
|
}
|
|
spin_lock_init(&cep->lock);
|
|
mutex_init(&cep->sendlock);
|
|
mutex_init(&cep->recvlock);
|
|
cep->state = SCIFEP_CONNECTING;
|
|
cep->remote_dev = &scif_dev[peer->node];
|
|
cep->remote_ep = conreq->msg.payload[0];
|
|
|
|
scif_rma_ep_init(cep);
|
|
|
|
err = scif_reserve_dma_chan(cep);
|
|
if (err) {
|
|
dev_err(scif_info.mdev.this_device,
|
|
"%s %d err %d\n", __func__, __LINE__, err);
|
|
goto scif_accept_error_qpalloc;
|
|
}
|
|
|
|
cep->qp_info.qp = kzalloc(sizeof(*cep->qp_info.qp), GFP_KERNEL);
|
|
if (!cep->qp_info.qp) {
|
|
err = -ENOMEM;
|
|
goto scif_accept_error_qpalloc;
|
|
}
|
|
|
|
err = scif_anon_inode_getfile(cep);
|
|
if (err)
|
|
goto scif_accept_error_anon_inode;
|
|
|
|
cep->qp_info.qp->magic = SCIFEP_MAGIC;
|
|
spdev = scif_get_peer_dev(cep->remote_dev);
|
|
if (IS_ERR(spdev)) {
|
|
err = PTR_ERR(spdev);
|
|
goto scif_accept_error_map;
|
|
}
|
|
err = scif_setup_qp_accept(cep->qp_info.qp, &cep->qp_info.qp_offset,
|
|
conreq->msg.payload[1], SCIF_ENDPT_QP_SIZE,
|
|
cep->remote_dev);
|
|
if (err) {
|
|
dev_dbg(&cep->remote_dev->sdev->dev,
|
|
"SCIFAPI accept: ep %p new %p scif_setup_qp_accept %d qp_offset 0x%llx\n",
|
|
lep, cep, err, cep->qp_info.qp_offset);
|
|
scif_put_peer_dev(spdev);
|
|
goto scif_accept_error_map;
|
|
}
|
|
|
|
cep->port.node = lep->port.node;
|
|
cep->port.port = lep->port.port;
|
|
cep->peer.node = peer->node;
|
|
cep->peer.port = peer->port;
|
|
init_waitqueue_head(&cep->sendwq);
|
|
init_waitqueue_head(&cep->recvwq);
|
|
init_waitqueue_head(&cep->conwq);
|
|
|
|
msg.uop = SCIF_CNCT_GNT;
|
|
msg.src = cep->port;
|
|
msg.payload[0] = cep->remote_ep;
|
|
msg.payload[1] = cep->qp_info.qp_offset;
|
|
msg.payload[2] = (u64)cep;
|
|
|
|
err = _scif_nodeqp_send(cep->remote_dev, &msg);
|
|
scif_put_peer_dev(spdev);
|
|
if (err)
|
|
goto scif_accept_error_map;
|
|
retry:
|
|
/* Wait for the remote node to respond with SCIF_CNCT_GNT(N)ACK */
|
|
err = wait_event_timeout(cep->conwq, cep->state != SCIFEP_CONNECTING,
|
|
SCIF_NODE_ACCEPT_TIMEOUT);
|
|
if (!err && scifdev_alive(cep))
|
|
goto retry;
|
|
err = !err ? -ENODEV : 0;
|
|
if (err)
|
|
goto scif_accept_error_map;
|
|
kfree(conreq);
|
|
|
|
spin_lock(&cep->lock);
|
|
|
|
if (cep->state == SCIFEP_CLOSING) {
|
|
/*
|
|
* Remote failed to allocate resources and NAKed the grant.
|
|
* There is at this point nothing referencing the new end point.
|
|
*/
|
|
spin_unlock(&cep->lock);
|
|
scif_teardown_ep(cep);
|
|
kfree(cep);
|
|
|
|
/* If call with sync flag then go back and wait. */
|
|
if (flags & SCIF_ACCEPT_SYNC) {
|
|
spin_lock(&lep->lock);
|
|
goto retry_connection;
|
|
}
|
|
return -EAGAIN;
|
|
}
|
|
|
|
scif_get_port(cep->port.port);
|
|
*newepd = (scif_epd_t)cep;
|
|
spin_unlock(&cep->lock);
|
|
return 0;
|
|
scif_accept_error_map:
|
|
scif_anon_inode_fput(cep);
|
|
scif_accept_error_anon_inode:
|
|
scif_teardown_ep(cep);
|
|
scif_accept_error_qpalloc:
|
|
kfree(cep);
|
|
scif_accept_error_epalloc:
|
|
msg.uop = SCIF_CNCT_REJ;
|
|
msg.dst.node = conreq->msg.src.node;
|
|
msg.dst.port = conreq->msg.src.port;
|
|
msg.payload[0] = conreq->msg.payload[0];
|
|
msg.payload[1] = conreq->msg.payload[1];
|
|
scif_nodeqp_send(&scif_dev[conreq->msg.src.node], &msg);
|
|
kfree(conreq);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_accept);
|
|
|
|
/*
|
|
* scif_msg_param_check:
|
|
* @epd: The end point returned from scif_open()
|
|
* @len: Length to receive
|
|
* @flags: blocking or non blocking
|
|
*
|
|
* Validate parameters for messaging APIs scif_send(..)/scif_recv(..).
|
|
*/
|
|
static inline int scif_msg_param_check(scif_epd_t epd, int len, int flags)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
if (len < 0)
|
|
goto err_ret;
|
|
if (flags && (!(flags & SCIF_RECV_BLOCK)))
|
|
goto err_ret;
|
|
ret = 0;
|
|
err_ret:
|
|
return ret;
|
|
}
|
|
|
|
static int _scif_send(scif_epd_t epd, void *msg, int len, int flags)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
struct scifmsg notif_msg;
|
|
int curr_xfer_len = 0, sent_len = 0, write_count;
|
|
int ret = 0;
|
|
struct scif_qp *qp = ep->qp_info.qp;
|
|
|
|
if (flags & SCIF_SEND_BLOCK)
|
|
might_sleep();
|
|
|
|
spin_lock(&ep->lock);
|
|
while (sent_len != len && SCIFEP_CONNECTED == ep->state) {
|
|
write_count = scif_rb_space(&qp->outbound_q);
|
|
if (write_count) {
|
|
/* Best effort to send as much data as possible */
|
|
curr_xfer_len = min(len - sent_len, write_count);
|
|
ret = scif_rb_write(&qp->outbound_q, msg,
|
|
curr_xfer_len);
|
|
if (ret < 0)
|
|
break;
|
|
/* Success. Update write pointer */
|
|
scif_rb_commit(&qp->outbound_q);
|
|
/*
|
|
* Send a notification to the peer about the
|
|
* produced data message.
|
|
*/
|
|
notif_msg.src = ep->port;
|
|
notif_msg.uop = SCIF_CLIENT_SENT;
|
|
notif_msg.payload[0] = ep->remote_ep;
|
|
ret = _scif_nodeqp_send(ep->remote_dev, ¬if_msg);
|
|
if (ret)
|
|
break;
|
|
sent_len += curr_xfer_len;
|
|
msg = msg + curr_xfer_len;
|
|
continue;
|
|
}
|
|
curr_xfer_len = min(len - sent_len, SCIF_ENDPT_QP_SIZE - 1);
|
|
/* Not enough RB space. return for the Non Blocking case */
|
|
if (!(flags & SCIF_SEND_BLOCK))
|
|
break;
|
|
|
|
spin_unlock(&ep->lock);
|
|
/* Wait for a SCIF_CLIENT_RCVD message in the Blocking case */
|
|
ret =
|
|
wait_event_interruptible(ep->sendwq,
|
|
(SCIFEP_CONNECTED != ep->state) ||
|
|
(scif_rb_space(&qp->outbound_q) >=
|
|
curr_xfer_len));
|
|
spin_lock(&ep->lock);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (sent_len)
|
|
ret = sent_len;
|
|
else if (!ret && SCIFEP_CONNECTED != ep->state)
|
|
ret = SCIFEP_DISCONNECTED == ep->state ?
|
|
-ECONNRESET : -ENOTCONN;
|
|
spin_unlock(&ep->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int _scif_recv(scif_epd_t epd, void *msg, int len, int flags)
|
|
{
|
|
int read_size;
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
struct scifmsg notif_msg;
|
|
int curr_recv_len = 0, remaining_len = len, read_count;
|
|
int ret = 0;
|
|
struct scif_qp *qp = ep->qp_info.qp;
|
|
|
|
if (flags & SCIF_RECV_BLOCK)
|
|
might_sleep();
|
|
spin_lock(&ep->lock);
|
|
while (remaining_len && (SCIFEP_CONNECTED == ep->state ||
|
|
SCIFEP_DISCONNECTED == ep->state)) {
|
|
read_count = scif_rb_count(&qp->inbound_q, remaining_len);
|
|
if (read_count) {
|
|
/*
|
|
* Best effort to recv as much data as there
|
|
* are bytes to read in the RB particularly
|
|
* important for the Non Blocking case.
|
|
*/
|
|
curr_recv_len = min(remaining_len, read_count);
|
|
read_size = scif_rb_get_next(&qp->inbound_q,
|
|
msg, curr_recv_len);
|
|
if (ep->state == SCIFEP_CONNECTED) {
|
|
/*
|
|
* Update the read pointer only if the endpoint
|
|
* is still connected else the read pointer
|
|
* might no longer exist since the peer has
|
|
* freed resources!
|
|
*/
|
|
scif_rb_update_read_ptr(&qp->inbound_q);
|
|
/*
|
|
* Send a notification to the peer about the
|
|
* consumed data message only if the EP is in
|
|
* SCIFEP_CONNECTED state.
|
|
*/
|
|
notif_msg.src = ep->port;
|
|
notif_msg.uop = SCIF_CLIENT_RCVD;
|
|
notif_msg.payload[0] = ep->remote_ep;
|
|
ret = _scif_nodeqp_send(ep->remote_dev,
|
|
¬if_msg);
|
|
if (ret)
|
|
break;
|
|
}
|
|
remaining_len -= curr_recv_len;
|
|
msg = msg + curr_recv_len;
|
|
continue;
|
|
}
|
|
/*
|
|
* Bail out now if the EP is in SCIFEP_DISCONNECTED state else
|
|
* we will keep looping forever.
|
|
*/
|
|
if (ep->state == SCIFEP_DISCONNECTED)
|
|
break;
|
|
/*
|
|
* Return in the Non Blocking case if there is no data
|
|
* to read in this iteration.
|
|
*/
|
|
if (!(flags & SCIF_RECV_BLOCK))
|
|
break;
|
|
curr_recv_len = min(remaining_len, SCIF_ENDPT_QP_SIZE - 1);
|
|
spin_unlock(&ep->lock);
|
|
/*
|
|
* Wait for a SCIF_CLIENT_SEND message in the blocking case
|
|
* or until other side disconnects.
|
|
*/
|
|
ret =
|
|
wait_event_interruptible(ep->recvwq,
|
|
SCIFEP_CONNECTED != ep->state ||
|
|
scif_rb_count(&qp->inbound_q,
|
|
curr_recv_len)
|
|
>= curr_recv_len);
|
|
spin_lock(&ep->lock);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (len - remaining_len)
|
|
ret = len - remaining_len;
|
|
else if (!ret && ep->state != SCIFEP_CONNECTED)
|
|
ret = ep->state == SCIFEP_DISCONNECTED ?
|
|
-ECONNRESET : -ENOTCONN;
|
|
spin_unlock(&ep->lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* scif_user_send() - Send data to connection queue
|
|
* @epd: The end point returned from scif_open()
|
|
* @msg: Address to place data
|
|
* @len: Length to receive
|
|
* @flags: blocking or non blocking
|
|
*
|
|
* This function is called from the driver IOCTL entry point
|
|
* only and is a wrapper for _scif_send().
|
|
*/
|
|
int scif_user_send(scif_epd_t epd, void __user *msg, int len, int flags)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int err = 0;
|
|
int sent_len = 0;
|
|
char *tmp;
|
|
int loop_len;
|
|
int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI send (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
if (!len)
|
|
return 0;
|
|
|
|
err = scif_msg_param_check(epd, len, flags);
|
|
if (err)
|
|
goto send_err;
|
|
|
|
tmp = kmalloc(chunk_len, GFP_KERNEL);
|
|
if (!tmp) {
|
|
err = -ENOMEM;
|
|
goto send_err;
|
|
}
|
|
/*
|
|
* Grabbing the lock before breaking up the transfer in
|
|
* multiple chunks is required to ensure that messages do
|
|
* not get fragmented and reordered.
|
|
*/
|
|
mutex_lock(&ep->sendlock);
|
|
while (sent_len != len) {
|
|
loop_len = len - sent_len;
|
|
loop_len = min(chunk_len, loop_len);
|
|
if (copy_from_user(tmp, msg, loop_len)) {
|
|
err = -EFAULT;
|
|
goto send_free_err;
|
|
}
|
|
err = _scif_send(epd, tmp, loop_len, flags);
|
|
if (err < 0)
|
|
goto send_free_err;
|
|
sent_len += err;
|
|
msg += err;
|
|
if (err != loop_len)
|
|
goto send_free_err;
|
|
}
|
|
send_free_err:
|
|
mutex_unlock(&ep->sendlock);
|
|
kfree(tmp);
|
|
send_err:
|
|
return err < 0 ? err : sent_len;
|
|
}
|
|
|
|
/**
|
|
* scif_user_recv() - Receive data from connection queue
|
|
* @epd: The end point returned from scif_open()
|
|
* @msg: Address to place data
|
|
* @len: Length to receive
|
|
* @flags: blocking or non blocking
|
|
*
|
|
* This function is called from the driver IOCTL entry point
|
|
* only and is a wrapper for _scif_recv().
|
|
*/
|
|
int scif_user_recv(scif_epd_t epd, void __user *msg, int len, int flags)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int err = 0;
|
|
int recv_len = 0;
|
|
char *tmp;
|
|
int loop_len;
|
|
int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI recv (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
if (!len)
|
|
return 0;
|
|
|
|
err = scif_msg_param_check(epd, len, flags);
|
|
if (err)
|
|
goto recv_err;
|
|
|
|
tmp = kmalloc(chunk_len, GFP_KERNEL);
|
|
if (!tmp) {
|
|
err = -ENOMEM;
|
|
goto recv_err;
|
|
}
|
|
/*
|
|
* Grabbing the lock before breaking up the transfer in
|
|
* multiple chunks is required to ensure that messages do
|
|
* not get fragmented and reordered.
|
|
*/
|
|
mutex_lock(&ep->recvlock);
|
|
while (recv_len != len) {
|
|
loop_len = len - recv_len;
|
|
loop_len = min(chunk_len, loop_len);
|
|
err = _scif_recv(epd, tmp, loop_len, flags);
|
|
if (err < 0)
|
|
goto recv_free_err;
|
|
if (copy_to_user(msg, tmp, err)) {
|
|
err = -EFAULT;
|
|
goto recv_free_err;
|
|
}
|
|
recv_len += err;
|
|
msg += err;
|
|
if (err != loop_len)
|
|
goto recv_free_err;
|
|
}
|
|
recv_free_err:
|
|
mutex_unlock(&ep->recvlock);
|
|
kfree(tmp);
|
|
recv_err:
|
|
return err < 0 ? err : recv_len;
|
|
}
|
|
|
|
/**
|
|
* scif_send() - Send data to connection queue
|
|
* @epd: The end point returned from scif_open()
|
|
* @msg: Address to place data
|
|
* @len: Length to receive
|
|
* @flags: blocking or non blocking
|
|
*
|
|
* This function is called from the kernel mode only and is
|
|
* a wrapper for _scif_send().
|
|
*/
|
|
int scif_send(scif_epd_t epd, void *msg, int len, int flags)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int ret;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI send (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
if (!len)
|
|
return 0;
|
|
|
|
ret = scif_msg_param_check(epd, len, flags);
|
|
if (ret)
|
|
return ret;
|
|
if (!ep->remote_dev)
|
|
return -ENOTCONN;
|
|
/*
|
|
* Grab the mutex lock in the blocking case only
|
|
* to ensure messages do not get fragmented/reordered.
|
|
* The non blocking mode is protected using spin locks
|
|
* in _scif_send().
|
|
*/
|
|
if (flags & SCIF_SEND_BLOCK)
|
|
mutex_lock(&ep->sendlock);
|
|
|
|
ret = _scif_send(epd, msg, len, flags);
|
|
|
|
if (flags & SCIF_SEND_BLOCK)
|
|
mutex_unlock(&ep->sendlock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_send);
|
|
|
|
/**
|
|
* scif_recv() - Receive data from connection queue
|
|
* @epd: The end point returned from scif_open()
|
|
* @msg: Address to place data
|
|
* @len: Length to receive
|
|
* @flags: blocking or non blocking
|
|
*
|
|
* This function is called from the kernel mode only and is
|
|
* a wrapper for _scif_recv().
|
|
*/
|
|
int scif_recv(scif_epd_t epd, void *msg, int len, int flags)
|
|
{
|
|
struct scif_endpt *ep = (struct scif_endpt *)epd;
|
|
int ret;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI recv (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
if (!len)
|
|
return 0;
|
|
|
|
ret = scif_msg_param_check(epd, len, flags);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* Grab the mutex lock in the blocking case only
|
|
* to ensure messages do not get fragmented/reordered.
|
|
* The non blocking mode is protected using spin locks
|
|
* in _scif_send().
|
|
*/
|
|
if (flags & SCIF_RECV_BLOCK)
|
|
mutex_lock(&ep->recvlock);
|
|
|
|
ret = _scif_recv(epd, msg, len, flags);
|
|
|
|
if (flags & SCIF_RECV_BLOCK)
|
|
mutex_unlock(&ep->recvlock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_recv);
|
|
|
|
static inline void _scif_poll_wait(struct file *f, wait_queue_head_t *wq,
|
|
poll_table *p, struct scif_endpt *ep)
|
|
{
|
|
/*
|
|
* Because poll_wait makes a GFP_KERNEL allocation, give up the lock
|
|
* and regrab it afterwards. Because the endpoint state might have
|
|
* changed while the lock was given up, the state must be checked
|
|
* again after re-acquiring the lock. The code in __scif_pollfd(..)
|
|
* does this.
|
|
*/
|
|
spin_unlock(&ep->lock);
|
|
poll_wait(f, wq, p);
|
|
spin_lock(&ep->lock);
|
|
}
|
|
|
|
unsigned int
|
|
__scif_pollfd(struct file *f, poll_table *wait, struct scif_endpt *ep)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI pollfd: ep %p %s\n", ep, scif_ep_states[ep->state]);
|
|
|
|
spin_lock(&ep->lock);
|
|
|
|
/* Endpoint is waiting for a non-blocking connect to complete */
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
|
|
_scif_poll_wait(f, &ep->conn_pend_wq, wait, ep);
|
|
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
|
|
if (ep->state == SCIFEP_CONNECTED ||
|
|
ep->state == SCIFEP_DISCONNECTED ||
|
|
ep->conn_err)
|
|
mask |= POLLOUT;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/* Endpoint is listening for incoming connection requests */
|
|
if (ep->state == SCIFEP_LISTENING) {
|
|
_scif_poll_wait(f, &ep->conwq, wait, ep);
|
|
if (ep->state == SCIFEP_LISTENING) {
|
|
if (ep->conreqcnt)
|
|
mask |= POLLIN;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/* Endpoint is connected or disconnected */
|
|
if (ep->state == SCIFEP_CONNECTED || ep->state == SCIFEP_DISCONNECTED) {
|
|
if (poll_requested_events(wait) & POLLIN)
|
|
_scif_poll_wait(f, &ep->recvwq, wait, ep);
|
|
if (poll_requested_events(wait) & POLLOUT)
|
|
_scif_poll_wait(f, &ep->sendwq, wait, ep);
|
|
if (ep->state == SCIFEP_CONNECTED ||
|
|
ep->state == SCIFEP_DISCONNECTED) {
|
|
/* Data can be read without blocking */
|
|
if (scif_rb_count(&ep->qp_info.qp->inbound_q, 1))
|
|
mask |= POLLIN;
|
|
/* Data can be written without blocking */
|
|
if (scif_rb_space(&ep->qp_info.qp->outbound_q))
|
|
mask |= POLLOUT;
|
|
/* Return POLLHUP if endpoint is disconnected */
|
|
if (ep->state == SCIFEP_DISCONNECTED)
|
|
mask |= POLLHUP;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
/* Return POLLERR if the endpoint is in none of the above states */
|
|
mask |= POLLERR;
|
|
exit:
|
|
spin_unlock(&ep->lock);
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* scif_poll() - Kernel mode SCIF poll
|
|
* @ufds: Array of scif_pollepd structures containing the end points
|
|
* and events to poll on
|
|
* @nfds: Size of the ufds array
|
|
* @timeout_msecs: Timeout in msecs, -ve implies infinite timeout
|
|
*
|
|
* The code flow in this function is based on do_poll(..) in select.c
|
|
*
|
|
* Returns the number of endpoints which have pending events or 0 in
|
|
* the event of a timeout. If a signal is used for wake up, -EINTR is
|
|
* returned.
|
|
*/
|
|
int
|
|
scif_poll(struct scif_pollepd *ufds, unsigned int nfds, long timeout_msecs)
|
|
{
|
|
struct poll_wqueues table;
|
|
poll_table *pt;
|
|
int i, mask, count = 0, timed_out = timeout_msecs == 0;
|
|
u64 timeout = timeout_msecs < 0 ? MAX_SCHEDULE_TIMEOUT
|
|
: msecs_to_jiffies(timeout_msecs);
|
|
|
|
poll_initwait(&table);
|
|
pt = &table.pt;
|
|
while (1) {
|
|
for (i = 0; i < nfds; i++) {
|
|
pt->_key = ufds[i].events | POLLERR | POLLHUP;
|
|
mask = __scif_pollfd(ufds[i].epd->anon,
|
|
pt, ufds[i].epd);
|
|
mask &= ufds[i].events | POLLERR | POLLHUP;
|
|
if (mask) {
|
|
count++;
|
|
pt->_qproc = NULL;
|
|
}
|
|
ufds[i].revents = mask;
|
|
}
|
|
pt->_qproc = NULL;
|
|
if (!count) {
|
|
count = table.error;
|
|
if (signal_pending(current))
|
|
count = -EINTR;
|
|
}
|
|
if (count || timed_out)
|
|
break;
|
|
|
|
if (!schedule_timeout_interruptible(timeout))
|
|
timed_out = 1;
|
|
}
|
|
poll_freewait(&table);
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_poll);
|
|
|
|
int scif_get_node_ids(u16 *nodes, int len, u16 *self)
|
|
{
|
|
int online = 0;
|
|
int offset = 0;
|
|
int node;
|
|
|
|
if (!scif_is_mgmt_node())
|
|
scif_get_node_info();
|
|
|
|
*self = scif_info.nodeid;
|
|
mutex_lock(&scif_info.conflock);
|
|
len = min_t(int, len, scif_info.total);
|
|
for (node = 0; node <= scif_info.maxid; node++) {
|
|
if (_scifdev_alive(&scif_dev[node])) {
|
|
online++;
|
|
if (offset < len)
|
|
nodes[offset++] = node;
|
|
}
|
|
}
|
|
dev_dbg(scif_info.mdev.this_device,
|
|
"SCIFAPI get_node_ids total %d online %d filled in %d nodes\n",
|
|
scif_info.total, online, offset);
|
|
mutex_unlock(&scif_info.conflock);
|
|
|
|
return online;
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_get_node_ids);
|
|
|
|
static int scif_add_client_dev(struct device *dev, struct subsys_interface *si)
|
|
{
|
|
struct scif_client *client =
|
|
container_of(si, struct scif_client, si);
|
|
struct scif_peer_dev *spdev =
|
|
container_of(dev, struct scif_peer_dev, dev);
|
|
|
|
if (client->probe)
|
|
client->probe(spdev);
|
|
return 0;
|
|
}
|
|
|
|
static void scif_remove_client_dev(struct device *dev,
|
|
struct subsys_interface *si)
|
|
{
|
|
struct scif_client *client =
|
|
container_of(si, struct scif_client, si);
|
|
struct scif_peer_dev *spdev =
|
|
container_of(dev, struct scif_peer_dev, dev);
|
|
|
|
if (client->remove)
|
|
client->remove(spdev);
|
|
}
|
|
|
|
void scif_client_unregister(struct scif_client *client)
|
|
{
|
|
subsys_interface_unregister(&client->si);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_client_unregister);
|
|
|
|
int scif_client_register(struct scif_client *client)
|
|
{
|
|
struct subsys_interface *si = &client->si;
|
|
|
|
si->name = client->name;
|
|
si->subsys = &scif_peer_bus;
|
|
si->add_dev = scif_add_client_dev;
|
|
si->remove_dev = scif_remove_client_dev;
|
|
|
|
return subsys_interface_register(&client->si);
|
|
}
|
|
EXPORT_SYMBOL_GPL(scif_client_register);
|