OpenCloudOS-Kernel/net/ipv4/tcp_metrics.c

1092 lines
27 KiB
C

#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/tcp.h>
#include <linux/hash.h>
#include <linux/tcp_metrics.h>
#include <linux/vmalloc.h>
#include <net/inet_connection_sock.h>
#include <net/net_namespace.h>
#include <net/request_sock.h>
#include <net/inetpeer.h>
#include <net/sock.h>
#include <net/ipv6.h>
#include <net/dst.h>
#include <net/tcp.h>
#include <net/genetlink.h>
int sysctl_tcp_nometrics_save __read_mostly;
struct tcp_fastopen_metrics {
u16 mss;
u16 syn_loss:10; /* Recurring Fast Open SYN losses */
unsigned long last_syn_loss; /* Last Fast Open SYN loss */
struct tcp_fastopen_cookie cookie;
};
struct tcp_metrics_block {
struct tcp_metrics_block __rcu *tcpm_next;
struct inetpeer_addr tcpm_addr;
unsigned long tcpm_stamp;
u32 tcpm_ts;
u32 tcpm_ts_stamp;
u32 tcpm_lock;
u32 tcpm_vals[TCP_METRIC_MAX + 1];
struct tcp_fastopen_metrics tcpm_fastopen;
struct rcu_head rcu_head;
};
static bool tcp_metric_locked(struct tcp_metrics_block *tm,
enum tcp_metric_index idx)
{
return tm->tcpm_lock & (1 << idx);
}
static u32 tcp_metric_get(struct tcp_metrics_block *tm,
enum tcp_metric_index idx)
{
return tm->tcpm_vals[idx];
}
static u32 tcp_metric_get_jiffies(struct tcp_metrics_block *tm,
enum tcp_metric_index idx)
{
return msecs_to_jiffies(tm->tcpm_vals[idx]);
}
static void tcp_metric_set(struct tcp_metrics_block *tm,
enum tcp_metric_index idx,
u32 val)
{
tm->tcpm_vals[idx] = val;
}
static void tcp_metric_set_msecs(struct tcp_metrics_block *tm,
enum tcp_metric_index idx,
u32 val)
{
tm->tcpm_vals[idx] = jiffies_to_msecs(val);
}
static bool addr_same(const struct inetpeer_addr *a,
const struct inetpeer_addr *b)
{
const struct in6_addr *a6, *b6;
if (a->family != b->family)
return false;
if (a->family == AF_INET)
return a->addr.a4 == b->addr.a4;
a6 = (const struct in6_addr *) &a->addr.a6[0];
b6 = (const struct in6_addr *) &b->addr.a6[0];
return ipv6_addr_equal(a6, b6);
}
struct tcpm_hash_bucket {
struct tcp_metrics_block __rcu *chain;
};
static DEFINE_SPINLOCK(tcp_metrics_lock);
static void tcpm_suck_dst(struct tcp_metrics_block *tm, struct dst_entry *dst)
{
u32 val;
tm->tcpm_stamp = jiffies;
val = 0;
if (dst_metric_locked(dst, RTAX_RTT))
val |= 1 << TCP_METRIC_RTT;
if (dst_metric_locked(dst, RTAX_RTTVAR))
val |= 1 << TCP_METRIC_RTTVAR;
if (dst_metric_locked(dst, RTAX_SSTHRESH))
val |= 1 << TCP_METRIC_SSTHRESH;
if (dst_metric_locked(dst, RTAX_CWND))
val |= 1 << TCP_METRIC_CWND;
if (dst_metric_locked(dst, RTAX_REORDERING))
val |= 1 << TCP_METRIC_REORDERING;
tm->tcpm_lock = val;
tm->tcpm_vals[TCP_METRIC_RTT] = dst_metric_raw(dst, RTAX_RTT);
tm->tcpm_vals[TCP_METRIC_RTTVAR] = dst_metric_raw(dst, RTAX_RTTVAR);
tm->tcpm_vals[TCP_METRIC_SSTHRESH] = dst_metric_raw(dst, RTAX_SSTHRESH);
tm->tcpm_vals[TCP_METRIC_CWND] = dst_metric_raw(dst, RTAX_CWND);
tm->tcpm_vals[TCP_METRIC_REORDERING] = dst_metric_raw(dst, RTAX_REORDERING);
tm->tcpm_ts = 0;
tm->tcpm_ts_stamp = 0;
tm->tcpm_fastopen.mss = 0;
tm->tcpm_fastopen.syn_loss = 0;
tm->tcpm_fastopen.cookie.len = 0;
}
static struct tcp_metrics_block *tcpm_new(struct dst_entry *dst,
struct inetpeer_addr *addr,
unsigned int hash,
bool reclaim)
{
struct tcp_metrics_block *tm;
struct net *net;
spin_lock_bh(&tcp_metrics_lock);
net = dev_net(dst->dev);
if (unlikely(reclaim)) {
struct tcp_metrics_block *oldest;
oldest = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain);
for (tm = rcu_dereference(oldest->tcpm_next); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (time_before(tm->tcpm_stamp, oldest->tcpm_stamp))
oldest = tm;
}
tm = oldest;
} else {
tm = kmalloc(sizeof(*tm), GFP_ATOMIC);
if (!tm)
goto out_unlock;
}
tm->tcpm_addr = *addr;
tcpm_suck_dst(tm, dst);
if (likely(!reclaim)) {
tm->tcpm_next = net->ipv4.tcp_metrics_hash[hash].chain;
rcu_assign_pointer(net->ipv4.tcp_metrics_hash[hash].chain, tm);
}
out_unlock:
spin_unlock_bh(&tcp_metrics_lock);
return tm;
}
#define TCP_METRICS_TIMEOUT (60 * 60 * HZ)
static void tcpm_check_stamp(struct tcp_metrics_block *tm, struct dst_entry *dst)
{
if (tm && unlikely(time_after(jiffies, tm->tcpm_stamp + TCP_METRICS_TIMEOUT)))
tcpm_suck_dst(tm, dst);
}
#define TCP_METRICS_RECLAIM_DEPTH 5
#define TCP_METRICS_RECLAIM_PTR (struct tcp_metrics_block *) 0x1UL
static struct tcp_metrics_block *tcp_get_encode(struct tcp_metrics_block *tm, int depth)
{
if (tm)
return tm;
if (depth > TCP_METRICS_RECLAIM_DEPTH)
return TCP_METRICS_RECLAIM_PTR;
return NULL;
}
static struct tcp_metrics_block *__tcp_get_metrics(const struct inetpeer_addr *addr,
struct net *net, unsigned int hash)
{
struct tcp_metrics_block *tm;
int depth = 0;
for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_addr, addr))
break;
depth++;
}
return tcp_get_encode(tm, depth);
}
static struct tcp_metrics_block *__tcp_get_metrics_req(struct request_sock *req,
struct dst_entry *dst)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr addr;
unsigned int hash;
struct net *net;
addr.family = req->rsk_ops->family;
switch (addr.family) {
case AF_INET:
addr.addr.a4 = inet_rsk(req)->rmt_addr;
hash = (__force unsigned int) addr.addr.a4;
break;
case AF_INET6:
*(struct in6_addr *)addr.addr.a6 = inet6_rsk(req)->rmt_addr;
hash = ipv6_addr_hash(&inet6_rsk(req)->rmt_addr);
break;
default:
return NULL;
}
net = dev_net(dst->dev);
hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_addr, &addr))
break;
}
tcpm_check_stamp(tm, dst);
return tm;
}
static struct tcp_metrics_block *__tcp_get_metrics_tw(struct inet_timewait_sock *tw)
{
struct inet6_timewait_sock *tw6;
struct tcp_metrics_block *tm;
struct inetpeer_addr addr;
unsigned int hash;
struct net *net;
addr.family = tw->tw_family;
switch (addr.family) {
case AF_INET:
addr.addr.a4 = tw->tw_daddr;
hash = (__force unsigned int) addr.addr.a4;
break;
case AF_INET6:
tw6 = inet6_twsk((struct sock *)tw);
*(struct in6_addr *)addr.addr.a6 = tw6->tw_v6_daddr;
hash = ipv6_addr_hash(&tw6->tw_v6_daddr);
break;
default:
return NULL;
}
net = twsk_net(tw);
hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_addr, &addr))
break;
}
return tm;
}
static struct tcp_metrics_block *tcp_get_metrics(struct sock *sk,
struct dst_entry *dst,
bool create)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr addr;
unsigned int hash;
struct net *net;
bool reclaim;
addr.family = sk->sk_family;
switch (addr.family) {
case AF_INET:
addr.addr.a4 = inet_sk(sk)->inet_daddr;
hash = (__force unsigned int) addr.addr.a4;
break;
case AF_INET6:
*(struct in6_addr *)addr.addr.a6 = inet6_sk(sk)->daddr;
hash = ipv6_addr_hash(&inet6_sk(sk)->daddr);
break;
default:
return NULL;
}
net = dev_net(dst->dev);
hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
tm = __tcp_get_metrics(&addr, net, hash);
reclaim = false;
if (tm == TCP_METRICS_RECLAIM_PTR) {
reclaim = true;
tm = NULL;
}
if (!tm && create)
tm = tcpm_new(dst, &addr, hash, reclaim);
else
tcpm_check_stamp(tm, dst);
return tm;
}
/* Save metrics learned by this TCP session. This function is called
* only, when TCP finishes successfully i.e. when it enters TIME-WAIT
* or goes from LAST-ACK to CLOSE.
*/
void tcp_update_metrics(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_metrics_block *tm;
unsigned long rtt;
u32 val;
int m;
if (sysctl_tcp_nometrics_save || !dst)
return;
if (dst->flags & DST_HOST)
dst_confirm(dst);
rcu_read_lock();
if (icsk->icsk_backoff || !tp->srtt) {
/* This session failed to estimate rtt. Why?
* Probably, no packets returned in time. Reset our
* results.
*/
tm = tcp_get_metrics(sk, dst, false);
if (tm && !tcp_metric_locked(tm, TCP_METRIC_RTT))
tcp_metric_set(tm, TCP_METRIC_RTT, 0);
goto out_unlock;
} else
tm = tcp_get_metrics(sk, dst, true);
if (!tm)
goto out_unlock;
rtt = tcp_metric_get_jiffies(tm, TCP_METRIC_RTT);
m = rtt - tp->srtt;
/* If newly calculated rtt larger than stored one, store new
* one. Otherwise, use EWMA. Remember, rtt overestimation is
* always better than underestimation.
*/
if (!tcp_metric_locked(tm, TCP_METRIC_RTT)) {
if (m <= 0)
rtt = tp->srtt;
else
rtt -= (m >> 3);
tcp_metric_set_msecs(tm, TCP_METRIC_RTT, rtt);
}
if (!tcp_metric_locked(tm, TCP_METRIC_RTTVAR)) {
unsigned long var;
if (m < 0)
m = -m;
/* Scale deviation to rttvar fixed point */
m >>= 1;
if (m < tp->mdev)
m = tp->mdev;
var = tcp_metric_get_jiffies(tm, TCP_METRIC_RTTVAR);
if (m >= var)
var = m;
else
var -= (var - m) >> 2;
tcp_metric_set_msecs(tm, TCP_METRIC_RTTVAR, var);
}
if (tcp_in_initial_slowstart(tp)) {
/* Slow start still did not finish. */
if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val && (tp->snd_cwnd >> 1) > val)
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
tp->snd_cwnd >> 1);
}
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
if (tp->snd_cwnd > val)
tcp_metric_set(tm, TCP_METRIC_CWND,
tp->snd_cwnd);
}
} else if (tp->snd_cwnd > tp->snd_ssthresh &&
icsk->icsk_ca_state == TCP_CA_Open) {
/* Cong. avoidance phase, cwnd is reliable. */
if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH))
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
tcp_metric_set(tm, TCP_METRIC_CWND, (val + tp->snd_cwnd) >> 1);
}
} else {
/* Else slow start did not finish, cwnd is non-sense,
* ssthresh may be also invalid.
*/
if (!tcp_metric_locked(tm, TCP_METRIC_CWND)) {
val = tcp_metric_get(tm, TCP_METRIC_CWND);
tcp_metric_set(tm, TCP_METRIC_CWND,
(val + tp->snd_ssthresh) >> 1);
}
if (!tcp_metric_locked(tm, TCP_METRIC_SSTHRESH)) {
val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val && tp->snd_ssthresh > val)
tcp_metric_set(tm, TCP_METRIC_SSTHRESH,
tp->snd_ssthresh);
}
if (!tcp_metric_locked(tm, TCP_METRIC_REORDERING)) {
val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
if (val < tp->reordering &&
tp->reordering != sysctl_tcp_reordering)
tcp_metric_set(tm, TCP_METRIC_REORDERING,
tp->reordering);
}
}
tm->tcpm_stamp = jiffies;
out_unlock:
rcu_read_unlock();
}
/* Initialize metrics on socket. */
void tcp_init_metrics(struct sock *sk)
{
struct dst_entry *dst = __sk_dst_get(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_metrics_block *tm;
u32 val;
if (dst == NULL)
goto reset;
dst_confirm(dst);
rcu_read_lock();
tm = tcp_get_metrics(sk, dst, true);
if (!tm) {
rcu_read_unlock();
goto reset;
}
if (tcp_metric_locked(tm, TCP_METRIC_CWND))
tp->snd_cwnd_clamp = tcp_metric_get(tm, TCP_METRIC_CWND);
val = tcp_metric_get(tm, TCP_METRIC_SSTHRESH);
if (val) {
tp->snd_ssthresh = val;
if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
tp->snd_ssthresh = tp->snd_cwnd_clamp;
} else {
/* ssthresh may have been reduced unnecessarily during.
* 3WHS. Restore it back to its initial default.
*/
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
}
val = tcp_metric_get(tm, TCP_METRIC_REORDERING);
if (val && tp->reordering != val) {
tcp_disable_fack(tp);
tcp_disable_early_retrans(tp);
tp->reordering = val;
}
val = tcp_metric_get(tm, TCP_METRIC_RTT);
if (val == 0 || tp->srtt == 0) {
rcu_read_unlock();
goto reset;
}
/* Initial rtt is determined from SYN,SYN-ACK.
* The segment is small and rtt may appear much
* less than real one. Use per-dst memory
* to make it more realistic.
*
* A bit of theory. RTT is time passed after "normal" sized packet
* is sent until it is ACKed. In normal circumstances sending small
* packets force peer to delay ACKs and calculation is correct too.
* The algorithm is adaptive and, provided we follow specs, it
* NEVER underestimate RTT. BUT! If peer tries to make some clever
* tricks sort of "quick acks" for time long enough to decrease RTT
* to low value, and then abruptly stops to do it and starts to delay
* ACKs, wait for troubles.
*/
val = msecs_to_jiffies(val);
if (val > tp->srtt) {
tp->srtt = val;
tp->rtt_seq = tp->snd_nxt;
}
val = tcp_metric_get_jiffies(tm, TCP_METRIC_RTTVAR);
if (val > tp->mdev) {
tp->mdev = val;
tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
}
rcu_read_unlock();
tcp_set_rto(sk);
reset:
if (tp->srtt == 0) {
/* RFC6298: 5.7 We've failed to get a valid RTT sample from
* 3WHS. This is most likely due to retransmission,
* including spurious one. Reset the RTO back to 3secs
* from the more aggressive 1sec to avoid more spurious
* retransmission.
*/
tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
}
/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
* retransmitted. In light of RFC6298 more aggressive 1sec
* initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
* retransmission has occurred.
*/
if (tp->total_retrans > 1)
tp->snd_cwnd = 1;
else
tp->snd_cwnd = tcp_init_cwnd(tp, dst);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check)
{
struct tcp_metrics_block *tm;
bool ret;
if (!dst)
return false;
rcu_read_lock();
tm = __tcp_get_metrics_req(req, dst);
if (paws_check) {
if (tm &&
(u32)get_seconds() - tm->tcpm_ts_stamp < TCP_PAWS_MSL &&
(s32)(tm->tcpm_ts - req->ts_recent) > TCP_PAWS_WINDOW)
ret = false;
else
ret = true;
} else {
if (tm && tcp_metric_get(tm, TCP_METRIC_RTT) && tm->tcpm_ts_stamp)
ret = true;
else
ret = false;
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(tcp_peer_is_proven);
void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst)
{
struct tcp_metrics_block *tm;
rcu_read_lock();
tm = tcp_get_metrics(sk, dst, true);
if (tm) {
struct tcp_sock *tp = tcp_sk(sk);
if ((u32)get_seconds() - tm->tcpm_ts_stamp <= TCP_PAWS_MSL) {
tp->rx_opt.ts_recent_stamp = tm->tcpm_ts_stamp;
tp->rx_opt.ts_recent = tm->tcpm_ts;
}
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(tcp_fetch_timewait_stamp);
/* VJ's idea. Save last timestamp seen from this destination and hold
* it at least for normal timewait interval to use for duplicate
* segment detection in subsequent connections, before they enter
* synchronized state.
*/
bool tcp_remember_stamp(struct sock *sk)
{
struct dst_entry *dst = __sk_dst_get(sk);
bool ret = false;
if (dst) {
struct tcp_metrics_block *tm;
rcu_read_lock();
tm = tcp_get_metrics(sk, dst, true);
if (tm) {
struct tcp_sock *tp = tcp_sk(sk);
if ((s32)(tm->tcpm_ts - tp->rx_opt.ts_recent) <= 0 ||
((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
tm->tcpm_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
tm->tcpm_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
tm->tcpm_ts = tp->rx_opt.ts_recent;
}
ret = true;
}
rcu_read_unlock();
}
return ret;
}
bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
{
struct tcp_metrics_block *tm;
bool ret = false;
rcu_read_lock();
tm = __tcp_get_metrics_tw(tw);
if (tm) {
const struct tcp_timewait_sock *tcptw;
struct sock *sk = (struct sock *) tw;
tcptw = tcp_twsk(sk);
if ((s32)(tm->tcpm_ts - tcptw->tw_ts_recent) <= 0 ||
((u32)get_seconds() - tm->tcpm_ts_stamp > TCP_PAWS_MSL &&
tm->tcpm_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
tm->tcpm_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
tm->tcpm_ts = tcptw->tw_ts_recent;
}
ret = true;
}
rcu_read_unlock();
return ret;
}
static DEFINE_SEQLOCK(fastopen_seqlock);
void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
struct tcp_fastopen_cookie *cookie,
int *syn_loss, unsigned long *last_syn_loss)
{
struct tcp_metrics_block *tm;
rcu_read_lock();
tm = tcp_get_metrics(sk, __sk_dst_get(sk), false);
if (tm) {
struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
unsigned int seq;
do {
seq = read_seqbegin(&fastopen_seqlock);
if (tfom->mss)
*mss = tfom->mss;
*cookie = tfom->cookie;
*syn_loss = tfom->syn_loss;
*last_syn_loss = *syn_loss ? tfom->last_syn_loss : 0;
} while (read_seqretry(&fastopen_seqlock, seq));
}
rcu_read_unlock();
}
void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
struct tcp_fastopen_cookie *cookie, bool syn_lost)
{
struct tcp_metrics_block *tm;
rcu_read_lock();
tm = tcp_get_metrics(sk, __sk_dst_get(sk), true);
if (tm) {
struct tcp_fastopen_metrics *tfom = &tm->tcpm_fastopen;
write_seqlock_bh(&fastopen_seqlock);
tfom->mss = mss;
if (cookie->len > 0)
tfom->cookie = *cookie;
if (syn_lost) {
++tfom->syn_loss;
tfom->last_syn_loss = jiffies;
} else
tfom->syn_loss = 0;
write_sequnlock_bh(&fastopen_seqlock);
}
rcu_read_unlock();
}
static struct genl_family tcp_metrics_nl_family = {
.id = GENL_ID_GENERATE,
.hdrsize = 0,
.name = TCP_METRICS_GENL_NAME,
.version = TCP_METRICS_GENL_VERSION,
.maxattr = TCP_METRICS_ATTR_MAX,
.netnsok = true,
};
static struct nla_policy tcp_metrics_nl_policy[TCP_METRICS_ATTR_MAX + 1] = {
[TCP_METRICS_ATTR_ADDR_IPV4] = { .type = NLA_U32, },
[TCP_METRICS_ATTR_ADDR_IPV6] = { .type = NLA_BINARY,
.len = sizeof(struct in6_addr), },
/* Following attributes are not received for GET/DEL,
* we keep them for reference
*/
#if 0
[TCP_METRICS_ATTR_AGE] = { .type = NLA_MSECS, },
[TCP_METRICS_ATTR_TW_TSVAL] = { .type = NLA_U32, },
[TCP_METRICS_ATTR_TW_TS_STAMP] = { .type = NLA_S32, },
[TCP_METRICS_ATTR_VALS] = { .type = NLA_NESTED, },
[TCP_METRICS_ATTR_FOPEN_MSS] = { .type = NLA_U16, },
[TCP_METRICS_ATTR_FOPEN_SYN_DROPS] = { .type = NLA_U16, },
[TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS] = { .type = NLA_MSECS, },
[TCP_METRICS_ATTR_FOPEN_COOKIE] = { .type = NLA_BINARY,
.len = TCP_FASTOPEN_COOKIE_MAX, },
#endif
};
/* Add attributes, caller cancels its header on failure */
static int tcp_metrics_fill_info(struct sk_buff *msg,
struct tcp_metrics_block *tm)
{
struct nlattr *nest;
int i;
switch (tm->tcpm_addr.family) {
case AF_INET:
if (nla_put_be32(msg, TCP_METRICS_ATTR_ADDR_IPV4,
tm->tcpm_addr.addr.a4) < 0)
goto nla_put_failure;
break;
case AF_INET6:
if (nla_put(msg, TCP_METRICS_ATTR_ADDR_IPV6, 16,
tm->tcpm_addr.addr.a6) < 0)
goto nla_put_failure;
break;
default:
return -EAFNOSUPPORT;
}
if (nla_put_msecs(msg, TCP_METRICS_ATTR_AGE,
jiffies - tm->tcpm_stamp) < 0)
goto nla_put_failure;
if (tm->tcpm_ts_stamp) {
if (nla_put_s32(msg, TCP_METRICS_ATTR_TW_TS_STAMP,
(s32) (get_seconds() - tm->tcpm_ts_stamp)) < 0)
goto nla_put_failure;
if (nla_put_u32(msg, TCP_METRICS_ATTR_TW_TSVAL,
tm->tcpm_ts) < 0)
goto nla_put_failure;
}
{
int n = 0;
nest = nla_nest_start(msg, TCP_METRICS_ATTR_VALS);
if (!nest)
goto nla_put_failure;
for (i = 0; i < TCP_METRIC_MAX + 1; i++) {
if (!tm->tcpm_vals[i])
continue;
if (nla_put_u32(msg, i + 1, tm->tcpm_vals[i]) < 0)
goto nla_put_failure;
n++;
}
if (n)
nla_nest_end(msg, nest);
else
nla_nest_cancel(msg, nest);
}
{
struct tcp_fastopen_metrics tfom_copy[1], *tfom;
unsigned int seq;
do {
seq = read_seqbegin(&fastopen_seqlock);
tfom_copy[0] = tm->tcpm_fastopen;
} while (read_seqretry(&fastopen_seqlock, seq));
tfom = tfom_copy;
if (tfom->mss &&
nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_MSS,
tfom->mss) < 0)
goto nla_put_failure;
if (tfom->syn_loss &&
(nla_put_u16(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROPS,
tfom->syn_loss) < 0 ||
nla_put_msecs(msg, TCP_METRICS_ATTR_FOPEN_SYN_DROP_TS,
jiffies - tfom->last_syn_loss) < 0))
goto nla_put_failure;
if (tfom->cookie.len > 0 &&
nla_put(msg, TCP_METRICS_ATTR_FOPEN_COOKIE,
tfom->cookie.len, tfom->cookie.val) < 0)
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int tcp_metrics_dump_info(struct sk_buff *skb,
struct netlink_callback *cb,
struct tcp_metrics_block *tm)
{
void *hdr;
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
&tcp_metrics_nl_family, NLM_F_MULTI,
TCP_METRICS_CMD_GET);
if (!hdr)
return -EMSGSIZE;
if (tcp_metrics_fill_info(skb, tm) < 0)
goto nla_put_failure;
return genlmsg_end(skb, hdr);
nla_put_failure:
genlmsg_cancel(skb, hdr);
return -EMSGSIZE;
}
static int tcp_metrics_nl_dump(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
unsigned int max_rows = 1U << net->ipv4.tcp_metrics_hash_log;
unsigned int row, s_row = cb->args[0];
int s_col = cb->args[1], col = s_col;
for (row = s_row; row < max_rows; row++, s_col = 0) {
struct tcp_metrics_block *tm;
struct tcpm_hash_bucket *hb = net->ipv4.tcp_metrics_hash + row;
rcu_read_lock();
for (col = 0, tm = rcu_dereference(hb->chain); tm;
tm = rcu_dereference(tm->tcpm_next), col++) {
if (col < s_col)
continue;
if (tcp_metrics_dump_info(skb, cb, tm) < 0) {
rcu_read_unlock();
goto done;
}
}
rcu_read_unlock();
}
done:
cb->args[0] = row;
cb->args[1] = col;
return skb->len;
}
static int parse_nl_addr(struct genl_info *info, struct inetpeer_addr *addr,
unsigned int *hash, int optional)
{
struct nlattr *a;
a = info->attrs[TCP_METRICS_ATTR_ADDR_IPV4];
if (a) {
addr->family = AF_INET;
addr->addr.a4 = nla_get_be32(a);
*hash = (__force unsigned int) addr->addr.a4;
return 0;
}
a = info->attrs[TCP_METRICS_ATTR_ADDR_IPV6];
if (a) {
if (nla_len(a) != sizeof(struct in6_addr))
return -EINVAL;
addr->family = AF_INET6;
memcpy(addr->addr.a6, nla_data(a), sizeof(addr->addr.a6));
*hash = ipv6_addr_hash((struct in6_addr *) addr->addr.a6);
return 0;
}
return optional ? 1 : -EAFNOSUPPORT;
}
static int tcp_metrics_nl_cmd_get(struct sk_buff *skb, struct genl_info *info)
{
struct tcp_metrics_block *tm;
struct inetpeer_addr addr;
unsigned int hash;
struct sk_buff *msg;
struct net *net = genl_info_net(info);
void *reply;
int ret;
ret = parse_nl_addr(info, &addr, &hash, 0);
if (ret < 0)
return ret;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &tcp_metrics_nl_family, 0,
info->genlhdr->cmd);
if (!reply)
goto nla_put_failure;
hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
ret = -ESRCH;
rcu_read_lock();
for (tm = rcu_dereference(net->ipv4.tcp_metrics_hash[hash].chain); tm;
tm = rcu_dereference(tm->tcpm_next)) {
if (addr_same(&tm->tcpm_addr, &addr)) {
ret = tcp_metrics_fill_info(msg, tm);
break;
}
}
rcu_read_unlock();
if (ret < 0)
goto out_free;
genlmsg_end(msg, reply);
return genlmsg_reply(msg, info);
nla_put_failure:
ret = -EMSGSIZE;
out_free:
nlmsg_free(msg);
return ret;
}
#define deref_locked_genl(p) \
rcu_dereference_protected(p, lockdep_genl_is_held() && \
lockdep_is_held(&tcp_metrics_lock))
#define deref_genl(p) rcu_dereference_protected(p, lockdep_genl_is_held())
static int tcp_metrics_flush_all(struct net *net)
{
unsigned int max_rows = 1U << net->ipv4.tcp_metrics_hash_log;
struct tcpm_hash_bucket *hb = net->ipv4.tcp_metrics_hash;
struct tcp_metrics_block *tm;
unsigned int row;
for (row = 0; row < max_rows; row++, hb++) {
spin_lock_bh(&tcp_metrics_lock);
tm = deref_locked_genl(hb->chain);
if (tm)
hb->chain = NULL;
spin_unlock_bh(&tcp_metrics_lock);
while (tm) {
struct tcp_metrics_block *next;
next = deref_genl(tm->tcpm_next);
kfree_rcu(tm, rcu_head);
tm = next;
}
}
return 0;
}
static int tcp_metrics_nl_cmd_del(struct sk_buff *skb, struct genl_info *info)
{
struct tcpm_hash_bucket *hb;
struct tcp_metrics_block *tm;
struct tcp_metrics_block __rcu **pp;
struct inetpeer_addr addr;
unsigned int hash;
struct net *net = genl_info_net(info);
int ret;
ret = parse_nl_addr(info, &addr, &hash, 1);
if (ret < 0)
return ret;
if (ret > 0)
return tcp_metrics_flush_all(net);
hash = hash_32(hash, net->ipv4.tcp_metrics_hash_log);
hb = net->ipv4.tcp_metrics_hash + hash;
pp = &hb->chain;
spin_lock_bh(&tcp_metrics_lock);
for (tm = deref_locked_genl(*pp); tm;
pp = &tm->tcpm_next, tm = deref_locked_genl(*pp)) {
if (addr_same(&tm->tcpm_addr, &addr)) {
*pp = tm->tcpm_next;
break;
}
}
spin_unlock_bh(&tcp_metrics_lock);
if (!tm)
return -ESRCH;
kfree_rcu(tm, rcu_head);
return 0;
}
static struct genl_ops tcp_metrics_nl_ops[] = {
{
.cmd = TCP_METRICS_CMD_GET,
.doit = tcp_metrics_nl_cmd_get,
.dumpit = tcp_metrics_nl_dump,
.policy = tcp_metrics_nl_policy,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = TCP_METRICS_CMD_DEL,
.doit = tcp_metrics_nl_cmd_del,
.policy = tcp_metrics_nl_policy,
.flags = GENL_ADMIN_PERM,
},
};
static unsigned int tcpmhash_entries;
static int __init set_tcpmhash_entries(char *str)
{
ssize_t ret;
if (!str)
return 0;
ret = kstrtouint(str, 0, &tcpmhash_entries);
if (ret)
return 0;
return 1;
}
__setup("tcpmhash_entries=", set_tcpmhash_entries);
static int __net_init tcp_net_metrics_init(struct net *net)
{
size_t size;
unsigned int slots;
slots = tcpmhash_entries;
if (!slots) {
if (totalram_pages >= 128 * 1024)
slots = 16 * 1024;
else
slots = 8 * 1024;
}
net->ipv4.tcp_metrics_hash_log = order_base_2(slots);
size = sizeof(struct tcpm_hash_bucket) << net->ipv4.tcp_metrics_hash_log;
net->ipv4.tcp_metrics_hash = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (!net->ipv4.tcp_metrics_hash)
net->ipv4.tcp_metrics_hash = vzalloc(size);
if (!net->ipv4.tcp_metrics_hash)
return -ENOMEM;
return 0;
}
static void __net_exit tcp_net_metrics_exit(struct net *net)
{
unsigned int i;
for (i = 0; i < (1U << net->ipv4.tcp_metrics_hash_log) ; i++) {
struct tcp_metrics_block *tm, *next;
tm = rcu_dereference_protected(net->ipv4.tcp_metrics_hash[i].chain, 1);
while (tm) {
next = rcu_dereference_protected(tm->tcpm_next, 1);
kfree(tm);
tm = next;
}
}
if (is_vmalloc_addr(net->ipv4.tcp_metrics_hash))
vfree(net->ipv4.tcp_metrics_hash);
else
kfree(net->ipv4.tcp_metrics_hash);
}
static __net_initdata struct pernet_operations tcp_net_metrics_ops = {
.init = tcp_net_metrics_init,
.exit = tcp_net_metrics_exit,
};
void __init tcp_metrics_init(void)
{
int ret;
ret = register_pernet_subsys(&tcp_net_metrics_ops);
if (ret < 0)
goto cleanup;
ret = genl_register_family_with_ops(&tcp_metrics_nl_family,
tcp_metrics_nl_ops,
ARRAY_SIZE(tcp_metrics_nl_ops));
if (ret < 0)
goto cleanup_subsys;
return;
cleanup_subsys:
unregister_pernet_subsys(&tcp_net_metrics_ops);
cleanup:
return;
}