OpenCloudOS-Kernel/arch/powerpc/platforms/8xx/cpm1.c

641 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* General Purpose functions for the global management of the
* Communication Processor Module.
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
*
* In addition to the individual control of the communication
* channels, there are a few functions that globally affect the
* communication processor.
*
* Buffer descriptors must be allocated from the dual ported memory
* space. The allocator for that is here. When the communication
* process is reset, we reclaim the memory available. There is
* currently no deallocator for this memory.
* The amount of space available is platform dependent. On the
* MBX, the EPPC software loads additional microcode into the
* communication processor, and uses some of the DP ram for this
* purpose. Current, the first 512 bytes and the last 256 bytes of
* memory are used. Right now I am conservative and only use the
* memory that can never be used for microcode. If there are
* applications that require more DP ram, we can expand the boundaries
* but then we have to be careful of any downloaded microcode.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/of_irq.h>
#include <asm/page.h>
#include <asm/8xx_immap.h>
#include <asm/cpm1.h>
#include <asm/io.h>
#include <asm/rheap.h>
#include <asm/cpm.h>
#include <asm/fs_pd.h>
#ifdef CONFIG_8xx_GPIO
#include <linux/of_gpio.h>
#endif
#define CPM_MAP_SIZE (0x4000)
cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
immap_t __iomem *mpc8xx_immr = (void __iomem *)VIRT_IMMR_BASE;
void __init cpm_reset(void)
{
sysconf8xx_t __iomem *siu_conf;
cpmp = &mpc8xx_immr->im_cpm;
#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
/* Perform a reset. */
out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
/* Wait for it. */
while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
#endif
#ifdef CONFIG_UCODE_PATCH
cpm_load_patch(cpmp);
#endif
/*
* Set SDMA Bus Request priority 5.
* On 860T, this also enables FEC priority 6. I am not sure
* this is what we really want for some applications, but the
* manual recommends it.
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
*/
siu_conf = immr_map(im_siu_conf);
if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
out_be32(&siu_conf->sc_sdcr, 0x40);
else
out_be32(&siu_conf->sc_sdcr, 1);
immr_unmap(siu_conf);
}
static DEFINE_SPINLOCK(cmd_lock);
#define MAX_CR_CMD_LOOPS 10000
int cpm_command(u32 command, u8 opcode)
{
int i, ret;
unsigned long flags;
if (command & 0xffffff0f)
return -EINVAL;
spin_lock_irqsave(&cmd_lock, flags);
ret = 0;
out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
goto out;
printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
ret = -EIO;
out:
spin_unlock_irqrestore(&cmd_lock, flags);
return ret;
}
EXPORT_SYMBOL(cpm_command);
/*
* Set a baud rate generator. This needs lots of work. There are
* four BRGs, any of which can be wired to any channel.
* The internal baud rate clock is the system clock divided by 16.
* This assumes the baudrate is 16x oversampled by the uart.
*/
#define BRG_INT_CLK (get_brgfreq())
#define BRG_UART_CLK (BRG_INT_CLK/16)
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
void
cpm_setbrg(uint brg, uint rate)
{
u32 __iomem *bp;
/* This is good enough to get SMCs running..... */
bp = &cpmp->cp_brgc1;
bp += brg;
/*
* The BRG has a 12-bit counter. For really slow baud rates (or
* really fast processors), we may have to further divide by 16.
*/
if (((BRG_UART_CLK / rate) - 1) < 4096)
out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
else
out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
CPM_BRG_EN | CPM_BRG_DIV16);
}
EXPORT_SYMBOL(cpm_setbrg);
struct cpm_ioport16 {
__be16 dir, par, odr_sor, dat, intr;
__be16 res[3];
};
struct cpm_ioport32b {
__be32 dir, par, odr, dat;
};
struct cpm_ioport32e {
__be32 dir, par, sor, odr, dat;
};
static void __init cpm1_set_pin32(int port, int pin, int flags)
{
struct cpm_ioport32e __iomem *iop;
pin = 1 << (31 - pin);
if (port == CPM_PORTB)
iop = (struct cpm_ioport32e __iomem *)
&mpc8xx_immr->im_cpm.cp_pbdir;
else
iop = (struct cpm_ioport32e __iomem *)
&mpc8xx_immr->im_cpm.cp_pedir;
if (flags & CPM_PIN_OUTPUT)
setbits32(&iop->dir, pin);
else
clrbits32(&iop->dir, pin);
if (!(flags & CPM_PIN_GPIO))
setbits32(&iop->par, pin);
else
clrbits32(&iop->par, pin);
if (port == CPM_PORTB) {
if (flags & CPM_PIN_OPENDRAIN)
setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
else
clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
}
if (port == CPM_PORTE) {
if (flags & CPM_PIN_SECONDARY)
setbits32(&iop->sor, pin);
else
clrbits32(&iop->sor, pin);
if (flags & CPM_PIN_OPENDRAIN)
setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
else
clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
}
}
static void __init cpm1_set_pin16(int port, int pin, int flags)
{
struct cpm_ioport16 __iomem *iop =
(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
pin = 1 << (15 - pin);
if (port != 0)
iop += port - 1;
if (flags & CPM_PIN_OUTPUT)
setbits16(&iop->dir, pin);
else
clrbits16(&iop->dir, pin);
if (!(flags & CPM_PIN_GPIO))
setbits16(&iop->par, pin);
else
clrbits16(&iop->par, pin);
if (port == CPM_PORTA) {
if (flags & CPM_PIN_OPENDRAIN)
setbits16(&iop->odr_sor, pin);
else
clrbits16(&iop->odr_sor, pin);
}
if (port == CPM_PORTC) {
if (flags & CPM_PIN_SECONDARY)
setbits16(&iop->odr_sor, pin);
else
clrbits16(&iop->odr_sor, pin);
if (flags & CPM_PIN_FALLEDGE)
setbits16(&iop->intr, pin);
else
clrbits16(&iop->intr, pin);
}
}
void __init cpm1_set_pin(enum cpm_port port, int pin, int flags)
{
if (port == CPM_PORTB || port == CPM_PORTE)
cpm1_set_pin32(port, pin, flags);
else
cpm1_set_pin16(port, pin, flags);
}
int __init cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
{
int shift;
int i, bits = 0;
u32 __iomem *reg;
u32 mask = 7;
u8 clk_map[][3] = {
{CPM_CLK_SCC1, CPM_BRG1, 0},
{CPM_CLK_SCC1, CPM_BRG2, 1},
{CPM_CLK_SCC1, CPM_BRG3, 2},
{CPM_CLK_SCC1, CPM_BRG4, 3},
{CPM_CLK_SCC1, CPM_CLK1, 4},
{CPM_CLK_SCC1, CPM_CLK2, 5},
{CPM_CLK_SCC1, CPM_CLK3, 6},
{CPM_CLK_SCC1, CPM_CLK4, 7},
{CPM_CLK_SCC2, CPM_BRG1, 0},
{CPM_CLK_SCC2, CPM_BRG2, 1},
{CPM_CLK_SCC2, CPM_BRG3, 2},
{CPM_CLK_SCC2, CPM_BRG4, 3},
{CPM_CLK_SCC2, CPM_CLK1, 4},
{CPM_CLK_SCC2, CPM_CLK2, 5},
{CPM_CLK_SCC2, CPM_CLK3, 6},
{CPM_CLK_SCC2, CPM_CLK4, 7},
{CPM_CLK_SCC3, CPM_BRG1, 0},
{CPM_CLK_SCC3, CPM_BRG2, 1},
{CPM_CLK_SCC3, CPM_BRG3, 2},
{CPM_CLK_SCC3, CPM_BRG4, 3},
{CPM_CLK_SCC3, CPM_CLK5, 4},
{CPM_CLK_SCC3, CPM_CLK6, 5},
{CPM_CLK_SCC3, CPM_CLK7, 6},
{CPM_CLK_SCC3, CPM_CLK8, 7},
{CPM_CLK_SCC4, CPM_BRG1, 0},
{CPM_CLK_SCC4, CPM_BRG2, 1},
{CPM_CLK_SCC4, CPM_BRG3, 2},
{CPM_CLK_SCC4, CPM_BRG4, 3},
{CPM_CLK_SCC4, CPM_CLK5, 4},
{CPM_CLK_SCC4, CPM_CLK6, 5},
{CPM_CLK_SCC4, CPM_CLK7, 6},
{CPM_CLK_SCC4, CPM_CLK8, 7},
{CPM_CLK_SMC1, CPM_BRG1, 0},
{CPM_CLK_SMC1, CPM_BRG2, 1},
{CPM_CLK_SMC1, CPM_BRG3, 2},
{CPM_CLK_SMC1, CPM_BRG4, 3},
{CPM_CLK_SMC1, CPM_CLK1, 4},
{CPM_CLK_SMC1, CPM_CLK2, 5},
{CPM_CLK_SMC1, CPM_CLK3, 6},
{CPM_CLK_SMC1, CPM_CLK4, 7},
{CPM_CLK_SMC2, CPM_BRG1, 0},
{CPM_CLK_SMC2, CPM_BRG2, 1},
{CPM_CLK_SMC2, CPM_BRG3, 2},
{CPM_CLK_SMC2, CPM_BRG4, 3},
{CPM_CLK_SMC2, CPM_CLK5, 4},
{CPM_CLK_SMC2, CPM_CLK6, 5},
{CPM_CLK_SMC2, CPM_CLK7, 6},
{CPM_CLK_SMC2, CPM_CLK8, 7},
};
switch (target) {
case CPM_CLK_SCC1:
reg = &mpc8xx_immr->im_cpm.cp_sicr;
shift = 0;
break;
case CPM_CLK_SCC2:
reg = &mpc8xx_immr->im_cpm.cp_sicr;
shift = 8;
break;
case CPM_CLK_SCC3:
reg = &mpc8xx_immr->im_cpm.cp_sicr;
shift = 16;
break;
case CPM_CLK_SCC4:
reg = &mpc8xx_immr->im_cpm.cp_sicr;
shift = 24;
break;
case CPM_CLK_SMC1:
reg = &mpc8xx_immr->im_cpm.cp_simode;
shift = 12;
break;
case CPM_CLK_SMC2:
reg = &mpc8xx_immr->im_cpm.cp_simode;
shift = 28;
break;
default:
printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
bits = clk_map[i][2];
break;
}
}
if (i == ARRAY_SIZE(clk_map)) {
printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
return -EINVAL;
}
bits <<= shift;
mask <<= shift;
if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
if (mode == CPM_CLK_RTX) {
bits |= bits << 3;
mask |= mask << 3;
} else if (mode == CPM_CLK_RX) {
bits <<= 3;
mask <<= 3;
}
}
out_be32(reg, (in_be32(reg) & ~mask) | bits);
return 0;
}
/*
* GPIO LIB API implementation
*/
#ifdef CONFIG_8xx_GPIO
struct cpm1_gpio16_chip {
struct of_mm_gpio_chip mm_gc;
spinlock_t lock;
/* shadowed data register to clear/set bits safely */
u16 cpdata;
/* IRQ associated with Pins when relevant */
int irq[16];
};
static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
{
struct cpm1_gpio16_chip *cpm1_gc =
container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
struct cpm_ioport16 __iomem *iop = mm_gc->regs;
cpm1_gc->cpdata = in_be16(&iop->dat);
}
static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm_ioport16 __iomem *iop = mm_gc->regs;
u16 pin_mask;
pin_mask = 1 << (15 - gpio);
return !!(in_be16(&iop->dat) & pin_mask);
}
static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
int value)
{
struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport16 __iomem *iop = mm_gc->regs;
if (value)
cpm1_gc->cpdata |= pin_mask;
else
cpm1_gc->cpdata &= ~pin_mask;
out_be16(&iop->dat, cpm1_gc->cpdata);
}
static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
unsigned long flags;
u16 pin_mask = 1 << (15 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
__cpm1_gpio16_set(mm_gc, pin_mask, value);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
}
static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
return cpm1_gc->irq[gpio] ? : -ENXIO;
}
static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport16 __iomem *iop = mm_gc->regs;
unsigned long flags;
u16 pin_mask = 1 << (15 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
setbits16(&iop->dir, pin_mask);
__cpm1_gpio16_set(mm_gc, pin_mask, val);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
return 0;
}
static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport16 __iomem *iop = mm_gc->regs;
unsigned long flags;
u16 pin_mask = 1 << (15 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
clrbits16(&iop->dir, pin_mask);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
return 0;
}
int cpm1_gpiochip_add16(struct device *dev)
{
struct device_node *np = dev->of_node;
struct cpm1_gpio16_chip *cpm1_gc;
struct of_mm_gpio_chip *mm_gc;
struct gpio_chip *gc;
u16 mask;
cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
if (!cpm1_gc)
return -ENOMEM;
spin_lock_init(&cpm1_gc->lock);
if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
int i, j;
for (i = 0, j = 0; i < 16; i++)
if (mask & (1 << (15 - i)))
cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
}
mm_gc = &cpm1_gc->mm_gc;
gc = &mm_gc->gc;
mm_gc->save_regs = cpm1_gpio16_save_regs;
gc->ngpio = 16;
gc->direction_input = cpm1_gpio16_dir_in;
gc->direction_output = cpm1_gpio16_dir_out;
gc->get = cpm1_gpio16_get;
gc->set = cpm1_gpio16_set;
gc->to_irq = cpm1_gpio16_to_irq;
gc->parent = dev;
gc->owner = THIS_MODULE;
return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
}
struct cpm1_gpio32_chip {
struct of_mm_gpio_chip mm_gc;
spinlock_t lock;
/* shadowed data register to clear/set bits safely */
u32 cpdata;
};
static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
{
struct cpm1_gpio32_chip *cpm1_gc =
container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
struct cpm_ioport32b __iomem *iop = mm_gc->regs;
cpm1_gc->cpdata = in_be32(&iop->dat);
}
static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm_ioport32b __iomem *iop = mm_gc->regs;
u32 pin_mask;
pin_mask = 1 << (31 - gpio);
return !!(in_be32(&iop->dat) & pin_mask);
}
static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
int value)
{
struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport32b __iomem *iop = mm_gc->regs;
if (value)
cpm1_gc->cpdata |= pin_mask;
else
cpm1_gc->cpdata &= ~pin_mask;
out_be32(&iop->dat, cpm1_gc->cpdata);
}
static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
__cpm1_gpio32_set(mm_gc, pin_mask, value);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
}
static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport32b __iomem *iop = mm_gc->regs;
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
setbits32(&iop->dir, pin_mask);
__cpm1_gpio32_set(mm_gc, pin_mask, val);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
return 0;
}
static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
struct cpm_ioport32b __iomem *iop = mm_gc->regs;
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm1_gc->lock, flags);
clrbits32(&iop->dir, pin_mask);
spin_unlock_irqrestore(&cpm1_gc->lock, flags);
return 0;
}
int cpm1_gpiochip_add32(struct device *dev)
{
struct device_node *np = dev->of_node;
struct cpm1_gpio32_chip *cpm1_gc;
struct of_mm_gpio_chip *mm_gc;
struct gpio_chip *gc;
cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
if (!cpm1_gc)
return -ENOMEM;
spin_lock_init(&cpm1_gc->lock);
mm_gc = &cpm1_gc->mm_gc;
gc = &mm_gc->gc;
mm_gc->save_regs = cpm1_gpio32_save_regs;
gc->ngpio = 32;
gc->direction_input = cpm1_gpio32_dir_in;
gc->direction_output = cpm1_gpio32_dir_out;
gc->get = cpm1_gpio32_get;
gc->set = cpm1_gpio32_set;
gc->parent = dev;
gc->owner = THIS_MODULE;
return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
}
#endif /* CONFIG_8xx_GPIO */