OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/cz_dpm.c

2274 lines
58 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <linux/seq_file.h>
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_atombios.h"
#include "vid.h"
#include "vi_dpm.h"
#include "amdgpu_dpm.h"
#include "cz_dpm.h"
#include "cz_ppsmc.h"
#include "atom.h"
#include "smu/smu_8_0_d.h"
#include "smu/smu_8_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "bif/bif_5_1_d.h"
#include "gfx_v8_0.h"
static void cz_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate);
static void cz_dpm_powergate_vce(struct amdgpu_device *adev, bool gate);
static struct cz_ps *cz_get_ps(struct amdgpu_ps *rps)
{
struct cz_ps *ps = rps->ps_priv;
return ps;
}
static struct cz_power_info *cz_get_pi(struct amdgpu_device *adev)
{
struct cz_power_info *pi = adev->pm.dpm.priv;
return pi;
}
static uint16_t cz_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
uint16_t voltage)
{
uint16_t tmp = 6200 - voltage * 25;
return tmp;
}
static void cz_construct_max_power_limits_table(struct amdgpu_device *adev,
struct amdgpu_clock_and_voltage_limits *table)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (dep_table->count > 0) {
table->sclk = dep_table->entries[dep_table->count - 1].clk;
table->vddc = cz_convert_8bit_index_to_voltage(adev,
dep_table->entries[dep_table->count - 1].v);
}
table->mclk = pi->sys_info.nbp_memory_clock[0];
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_9 info_9;
};
static int cz_parse_sys_info_table(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
int i = 0;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
if (crev != 9) {
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
pi->sys_info.bootup_sclk =
le32_to_cpu(igp_info->info_9.ulBootUpEngineClock);
pi->sys_info.bootup_uma_clk =
le32_to_cpu(igp_info->info_9.ulBootUpUMAClock);
pi->sys_info.dentist_vco_freq =
le32_to_cpu(igp_info->info_9.ulDentistVCOFreq);
pi->sys_info.bootup_nb_voltage_index =
le16_to_cpu(igp_info->info_9.usBootUpNBVoltage);
if (igp_info->info_9.ucHtcTmpLmt == 0)
pi->sys_info.htc_tmp_lmt = 203;
else
pi->sys_info.htc_tmp_lmt = igp_info->info_9.ucHtcTmpLmt;
if (igp_info->info_9.ucHtcHystLmt == 0)
pi->sys_info.htc_hyst_lmt = 5;
else
pi->sys_info.htc_hyst_lmt = igp_info->info_9.ucHtcHystLmt;
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
return -EINVAL;
}
if (le32_to_cpu(igp_info->info_9.ulSystemConfig) & (1 << 3) &&
pi->enable_nb_ps_policy)
pi->sys_info.nb_dpm_enable = true;
else
pi->sys_info.nb_dpm_enable = false;
for (i = 0; i < CZ_NUM_NBPSTATES; i++) {
if (i < CZ_NUM_NBPMEMORY_CLOCK)
pi->sys_info.nbp_memory_clock[i] =
le32_to_cpu(igp_info->info_9.ulNbpStateMemclkFreq[i]);
pi->sys_info.nbp_n_clock[i] =
le32_to_cpu(igp_info->info_9.ulNbpStateNClkFreq[i]);
}
for (i = 0; i < CZ_MAX_DISPLAY_CLOCK_LEVEL; i++)
pi->sys_info.display_clock[i] =
le32_to_cpu(igp_info->info_9.sDispClkVoltageMapping[i].ulMaximumSupportedCLK);
for (i = 0; i < CZ_NUM_NBPSTATES; i++)
pi->sys_info.nbp_voltage_index[i] =
le32_to_cpu(igp_info->info_9.usNBPStateVoltage[i]);
if (le32_to_cpu(igp_info->info_9.ulGPUCapInfo) &
SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
pi->caps_enable_dfs_bypass = true;
pi->sys_info.uma_channel_number =
igp_info->info_9.ucUMAChannelNumber;
cz_construct_max_power_limits_table(adev,
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
}
return 0;
}
static void cz_patch_voltage_values(struct amdgpu_device *adev)
{
int i;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *acp_table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (uvd_table->count) {
for (i = 0; i < uvd_table->count; i++)
uvd_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
uvd_table->entries[i].v);
}
if (vce_table->count) {
for (i = 0; i < vce_table->count; i++)
vce_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
vce_table->entries[i].v);
}
if (acp_table->count) {
for (i = 0; i < acp_table->count; i++)
acp_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
acp_table->entries[i].v);
}
}
static void cz_construct_boot_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
pi->boot_pl.ds_divider_index = 0;
pi->boot_pl.ss_divider_index = 0;
pi->boot_pl.allow_gnb_slow = 1;
pi->boot_pl.force_nbp_state = 0;
pi->boot_pl.display_wm = 0;
pi->boot_pl.vce_wm = 0;
}
static void cz_patch_boot_state(struct amdgpu_device *adev,
struct cz_ps *ps)
{
struct cz_power_info *pi = cz_get_pi(adev);
ps->num_levels = 1;
ps->levels[0] = pi->boot_pl;
}
union pplib_clock_info {
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_CZ_CLOCK_INFO carrizo;
};
static void cz_parse_pplib_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
struct cz_pl *pl = &ps->levels[index];
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
pl->sclk = table->entries[clock_info->carrizo.index].clk;
pl->vddc_index = table->entries[clock_info->carrizo.index].v;
ps->num_levels = index + 1;
if (pi->caps_sclk_ds) {
pl->ds_divider_index = 5;
pl->ss_divider_index = 5;
}
}
static void cz_parse_pplib_non_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
struct cz_ps *ps = cz_get_ps(rps);
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
adev->pm.dpm.boot_ps = rps;
cz_patch_boot_state(adev, ps);
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
adev->pm.dpm.uvd_ps = rps;
}
union power_info {
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static int cz_parse_power_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct cz_ps *ps;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!adev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
adev->pm.dpm.platform_caps =
le32_to_cpu(power_info->pplib.ulPlatformCaps);
adev->pm.dpm.backbias_response_time =
le16_to_cpu(power_info->pplib.usBackbiasTime);
adev->pm.dpm.voltage_response_time =
le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < state_array->ucNumEntries; i++) {
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
ps = kzalloc(sizeof(struct cz_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(adev->pm.dpm.ps);
return -ENOMEM;
}
adev->pm.dpm.ps[i].ps_priv = ps;
k = 0;
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = power_state->v2.clockInfoIndex[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= CZ_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index *
clock_info_array->ucEntrySize];
cz_parse_pplib_clock_info(adev, &adev->pm.dpm.ps[i],
k, clock_info);
k++;
}
cz_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
adev->pm.dpm.num_ps = state_array->ucNumEntries;
return 0;
}
static int cz_process_firmware_header(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
u32 tmp;
int ret;
ret = cz_read_smc_sram_dword(adev, SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header,
DpmTable),
&tmp, pi->sram_end);
if (ret == 0)
pi->dpm_table_start = tmp;
return ret;
}
static int cz_dpm_init(struct amdgpu_device *adev)
{
struct cz_power_info *pi;
int ret, i;
pi = kzalloc(sizeof(struct cz_power_info), GFP_KERNEL);
if (NULL == pi)
return -ENOMEM;
adev->pm.dpm.priv = pi;
ret = amdgpu_get_platform_caps(adev);
if (ret)
return ret;
ret = amdgpu_parse_extended_power_table(adev);
if (ret)
return ret;
pi->sram_end = SMC_RAM_END;
/* set up DPM defaults */
for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++)
pi->active_target[i] = CZ_AT_DFLT;
pi->mgcg_cgtt_local0 = 0x0;
pi->mgcg_cgtt_local1 = 0x0;
pi->clock_slow_down_step = 25000;
pi->skip_clock_slow_down = 1;
pi->enable_nb_ps_policy = 0;
pi->caps_power_containment = true;
pi->caps_cac = true;
pi->didt_enabled = false;
if (pi->didt_enabled) {
pi->caps_sq_ramping = true;
pi->caps_db_ramping = true;
pi->caps_td_ramping = true;
pi->caps_tcp_ramping = true;
}
pi->caps_sclk_ds = true;
pi->voting_clients = 0x00c00033;
pi->auto_thermal_throttling_enabled = true;
pi->bapm_enabled = false;
pi->disable_nb_ps3_in_battery = false;
pi->voltage_drop_threshold = 0;
pi->caps_sclk_throttle_low_notification = false;
pi->gfx_pg_threshold = 500;
pi->caps_fps = true;
/* uvd */
pi->caps_uvd_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_UVD) ? true : false;
pi->caps_uvd_dpm = true;
/* vce */
pi->caps_vce_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_VCE) ? true : false;
pi->caps_vce_dpm = true;
/* acp */
pi->caps_acp_pg = (adev->pg_flags & AMDGPU_PG_SUPPORT_ACP) ? true : false;
pi->caps_acp_dpm = true;
pi->caps_stable_power_state = false;
pi->nb_dpm_enabled_by_driver = true;
pi->nb_dpm_enabled = false;
pi->caps_voltage_island = false;
/* flags which indicate need to upload pptable */
pi->need_pptable_upload = true;
ret = cz_parse_sys_info_table(adev);
if (ret)
return ret;
cz_patch_voltage_values(adev);
cz_construct_boot_state(adev);
ret = cz_parse_power_table(adev);
if (ret)
return ret;
ret = cz_process_firmware_header(adev);
if (ret)
return ret;
pi->dpm_enabled = true;
pi->uvd_dynamic_pg = false;
return 0;
}
static void cz_dpm_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->pm.dpm.num_ps; i++)
kfree(adev->pm.dpm.ps[i].ps_priv);
kfree(adev->pm.dpm.ps);
kfree(adev->pm.dpm.priv);
amdgpu_free_extended_power_table(adev);
}
#define ixSMUSVI_NB_CURRENTVID 0xD8230044
#define CURRENT_NB_VID_MASK 0xff000000
#define CURRENT_NB_VID__SHIFT 24
#define ixSMUSVI_GFX_CURRENTVID 0xD8230048
#define CURRENT_GFX_VID_MASK 0xff000000
#define CURRENT_GFX_VID__SHIFT 24
static void
cz_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
struct seq_file *m)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
u32 sclk_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX),
TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX);
u32 uvd_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX);
u32 vce_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX);
u32 sclk, vclk, dclk, ecclk, tmp;
u16 vddnb, vddgfx;
if (sclk_index >= NUM_SCLK_LEVELS) {
seq_printf(m, "invalid sclk dpm profile %d\n", sclk_index);
} else {
sclk = table->entries[sclk_index].clk;
seq_printf(m, "%u sclk: %u\n", sclk_index, sclk);
}
tmp = (RREG32_SMC(ixSMUSVI_NB_CURRENTVID) &
CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT;
vddnb = cz_convert_8bit_index_to_voltage(adev, (u16)tmp);
tmp = (RREG32_SMC(ixSMUSVI_GFX_CURRENTVID) &
CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT;
vddgfx = cz_convert_8bit_index_to_voltage(adev, (u16)tmp);
seq_printf(m, "vddnb: %u vddgfx: %u\n", vddnb, vddgfx);
seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
if (!pi->uvd_power_gated) {
if (uvd_index >= CZ_MAX_HARDWARE_POWERLEVELS) {
seq_printf(m, "invalid uvd dpm level %d\n", uvd_index);
} else {
vclk = uvd_table->entries[uvd_index].vclk;
dclk = uvd_table->entries[uvd_index].dclk;
seq_printf(m, "%u uvd vclk: %u dclk: %u\n", uvd_index, vclk, dclk);
}
}
seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
if (!pi->vce_power_gated) {
if (vce_index >= CZ_MAX_HARDWARE_POWERLEVELS) {
seq_printf(m, "invalid vce dpm level %d\n", vce_index);
} else {
ecclk = vce_table->entries[vce_index].ecclk;
seq_printf(m, "%u vce ecclk: %u\n", vce_index, ecclk);
}
}
}
static void cz_dpm_print_power_state(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
int i;
struct cz_ps *ps = cz_get_ps(rps);
amdgpu_dpm_print_class_info(rps->class, rps->class2);
amdgpu_dpm_print_cap_info(rps->caps);
DRM_INFO("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->num_levels; i++) {
struct cz_pl *pl = &ps->levels[i];
DRM_INFO("\t\tpower level %d sclk: %u vddc: %u\n",
i, pl->sclk,
cz_convert_8bit_index_to_voltage(adev, pl->vddc_index));
}
amdgpu_dpm_print_ps_status(adev, rps);
}
static void cz_dpm_set_funcs(struct amdgpu_device *adev);
static int cz_dpm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cz_dpm_set_funcs(adev);
return 0;
}
static int cz_dpm_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_dpm) {
int ret;
/* init the sysfs and debugfs files late */
ret = amdgpu_pm_sysfs_init(adev);
if (ret)
return ret;
/* powerdown unused blocks for now */
cz_dpm_powergate_uvd(adev, true);
cz_dpm_powergate_vce(adev, true);
}
return 0;
}
static int cz_dpm_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret = 0;
/* fix me to add thermal support TODO */
/* default to balanced state */
adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
adev->pm.default_sclk = adev->clock.default_sclk;
adev->pm.default_mclk = adev->clock.default_mclk;
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (amdgpu_dpm == 0)
return 0;
mutex_lock(&adev->pm.mutex);
ret = cz_dpm_init(adev);
if (ret)
goto dpm_init_failed;
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
if (amdgpu_dpm == 1)
amdgpu_pm_print_power_states(adev);
mutex_unlock(&adev->pm.mutex);
DRM_INFO("amdgpu: dpm initialized\n");
return 0;
dpm_init_failed:
cz_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
DRM_ERROR("amdgpu: dpm initialization failed\n");
return ret;
}
static int cz_dpm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
amdgpu_pm_sysfs_fini(adev);
cz_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
return 0;
}
static void cz_reset_ap_mask(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->active_process_mask = 0;
}
static int cz_dpm_download_pptable_from_smu(struct amdgpu_device *adev,
void **table)
{
int ret = 0;
ret = cz_smu_download_pptable(adev, table);
return ret;
}
static int cz_dpm_upload_pptable_to_smu(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct SMU8_Fusion_ClkTable *clock_table;
struct atom_clock_dividers dividers;
void *table = NULL;
uint8_t i = 0;
int ret = 0;
struct amdgpu_clock_voltage_dependency_table *vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_clock_voltage_dependency_table *vddgfx_table =
&adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *acp_table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (!pi->need_pptable_upload)
return 0;
ret = cz_dpm_download_pptable_from_smu(adev, &table);
if (ret) {
DRM_ERROR("amdgpu: Failed to get power play table from SMU!\n");
return -EINVAL;
}
clock_table = (struct SMU8_Fusion_ClkTable *)table;
/* patch clock table */
if (vddc_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
vddgfx_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
uvd_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
vce_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
acp_table->count > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("amdgpu: Invalid Clock Voltage Dependency Table!\n");
return -EINVAL;
}
for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++) {
/* vddc sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid =
(i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0;
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency =
(i < vddc_table->count) ? vddc_table->entries[i].clk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* vddgfx sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vddgfx_table->count) ? (uint8_t)vddgfx_table->entries[i].v : 0;
/* acp breakdown */
clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid =
(i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0;
clock_table->AclkBreakdownTable.ClkLevel[i].Frequency =
(i < acp_table->count) ? acp_table->entries[i].clk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* uvd breakdown */
clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].vclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].dclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* vce breakdown */
clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0;
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency =
(i < vce_table->count) ? vce_table->entries[i].ecclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
}
/* its time to upload to SMU */
ret = cz_smu_upload_pptable(adev);
if (ret) {
DRM_ERROR("amdgpu: Failed to put power play table to SMU!\n");
return ret;
}
return 0;
}
static void cz_init_sclk_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->sclk_dpm.soft_min_clk = 0;
pi->sclk_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxSclkLevel);
level = cz_get_argument(adev);
if (level < table->count)
clock = table->entries[level].clk;
else {
DRM_ERROR("Invalid SLCK Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].clk;
}
pi->sclk_dpm.soft_max_clk = clock;
pi->sclk_dpm.hard_max_clk = clock;
}
static void cz_init_uvd_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->uvd_dpm.soft_min_clk = 0;
pi->uvd_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxUvdLevel);
level = cz_get_argument(adev);
if (level < table->count)
clock = table->entries[level].vclk;
else {
DRM_ERROR("Invalid UVD Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].vclk;
}
pi->uvd_dpm.soft_max_clk = clock;
pi->uvd_dpm.hard_max_clk = clock;
}
static void cz_init_vce_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->vce_dpm.soft_min_clk = table->entries[0].ecclk;
pi->vce_dpm.hard_min_clk = table->entries[0].ecclk;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxEclkLevel);
level = cz_get_argument(adev);
if (level < table->count)
clock = table->entries[level].ecclk;
else {
/* future BIOS would fix this error */
DRM_ERROR("Invalid VCE Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].ecclk;
}
pi->vce_dpm.soft_max_clk = clock;
pi->vce_dpm.hard_max_clk = clock;
}
static void cz_init_acp_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->acp_dpm.soft_min_clk = 0;
pi->acp_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxAclkLevel);
level = cz_get_argument(adev);
if (level < table->count)
clock = table->entries[level].clk;
else {
DRM_ERROR("Invalid ACP Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].clk;
}
pi->acp_dpm.soft_max_clk = clock;
pi->acp_dpm.hard_max_clk = clock;
}
static void cz_init_pg_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->uvd_power_gated = false;
pi->vce_power_gated = false;
pi->acp_power_gated = false;
}
static void cz_init_sclk_threshold(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->low_sclk_interrupt_threshold = 0;
}
static void cz_dpm_setup_asic(struct amdgpu_device *adev)
{
cz_reset_ap_mask(adev);
cz_dpm_upload_pptable_to_smu(adev);
cz_init_sclk_limit(adev);
cz_init_uvd_limit(adev);
cz_init_vce_limit(adev);
cz_init_acp_limit(adev);
cz_init_pg_state(adev);
cz_init_sclk_threshold(adev);
}
static bool cz_check_smu_feature(struct amdgpu_device *adev,
uint32_t feature)
{
uint32_t smu_feature = 0;
int ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_GetFeatureStatus, 0);
if (ret) {
DRM_ERROR("Failed to get SMU features from SMC.\n");
return false;
} else {
smu_feature = cz_get_argument(adev);
if (feature & smu_feature)
return true;
}
return false;
}
static bool cz_check_for_dpm_enabled(struct amdgpu_device *adev)
{
if (cz_check_smu_feature(adev,
SMU_EnabledFeatureScoreboard_SclkDpmOn))
return true;
return false;
}
static void cz_program_voting_clients(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, PPCZ_VOTINGRIGHTSCLIENTS_DFLT0);
}
static void cz_clear_voting_clients(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
}
static int cz_start_dpm(struct amdgpu_device *adev)
{
int ret = 0;
if (amdgpu_dpm) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, SCLK_DPM_MASK);
if (ret) {
DRM_ERROR("SMU feature: SCLK_DPM enable failed\n");
return -EINVAL;
}
}
return 0;
}
static int cz_stop_dpm(struct amdgpu_device *adev)
{
int ret = 0;
if (amdgpu_dpm && adev->pm.dpm_enabled) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, SCLK_DPM_MASK);
if (ret) {
DRM_ERROR("SMU feature: SCLK_DPM disable failed\n");
return -EINVAL;
}
}
return 0;
}
static uint32_t cz_get_sclk_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
switch (msg) {
case PPSMC_MSG_SetSclkSoftMin:
case PPSMC_MSG_SetSclkHardMin:
for (i = 0; i < table->count; i++)
if (clock <= table->entries[i].clk)
break;
if (i == table->count)
i = table->count - 1;
break;
case PPSMC_MSG_SetSclkSoftMax:
case PPSMC_MSG_SetSclkHardMax:
for (i = table->count - 1; i >= 0; i--)
if (clock >= table->entries[i].clk)
break;
if (i < 0)
i = 0;
break;
default:
break;
}
return i;
}
static uint32_t cz_get_eclk_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
if (table->count == 0)
return 0;
switch (msg) {
case PPSMC_MSG_SetEclkSoftMin:
case PPSMC_MSG_SetEclkHardMin:
for (i = 0; i < table->count-1; i++)
if (clock <= table->entries[i].ecclk)
break;
break;
case PPSMC_MSG_SetEclkSoftMax:
case PPSMC_MSG_SetEclkHardMax:
for (i = table->count - 1; i > 0; i--)
if (clock >= table->entries[i].ecclk)
break;
break;
default:
break;
}
return i;
}
static uint32_t cz_get_uvd_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
switch (msg) {
case PPSMC_MSG_SetUvdSoftMin:
case PPSMC_MSG_SetUvdHardMin:
for (i = 0; i < table->count; i++)
if (clock <= table->entries[i].vclk)
break;
if (i == table->count)
i = table->count - 1;
break;
case PPSMC_MSG_SetUvdSoftMax:
case PPSMC_MSG_SetUvdHardMax:
for (i = table->count - 1; i >= 0; i--)
if (clock >= table->entries[i].vclk)
break;
if (i < 0)
i = 0;
break;
default:
break;
}
return i;
}
static int cz_program_bootup_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
uint32_t soft_min_clk = 0;
uint32_t soft_max_clk = 0;
int ret = 0;
pi->sclk_dpm.soft_min_clk = pi->sys_info.bootup_sclk;
pi->sclk_dpm.soft_max_clk = pi->sys_info.bootup_sclk;
soft_min_clk = cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin);
soft_max_clk = cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax);
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin, soft_min_clk);
if (ret)
return -EINVAL;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax, soft_max_clk);
if (ret)
return -EINVAL;
return 0;
}
/* TODO */
static int cz_disable_cgpg(struct amdgpu_device *adev)
{
return 0;
}
/* TODO */
static int cz_enable_cgpg(struct amdgpu_device *adev)
{
return 0;
}
/* TODO */
static int cz_program_pt_config_registers(struct amdgpu_device *adev)
{
return 0;
}
static void cz_do_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
uint32_t reg = 0;
if (pi->caps_sq_ramping) {
reg = RREG32_DIDT(ixDIDT_SQ_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_SQ_CTRL0, reg);
}
if (pi->caps_db_ramping) {
reg = RREG32_DIDT(ixDIDT_DB_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_DB_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_DB_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_DB_CTRL0, reg);
}
if (pi->caps_td_ramping) {
reg = RREG32_DIDT(ixDIDT_TD_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_TD_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_TD_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_TD_CTRL0, reg);
}
if (pi->caps_tcp_ramping) {
reg = RREG32_DIDT(ixDIDT_TCP_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_TCP_CTRL0, reg);
}
}
static int cz_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret;
if (pi->caps_sq_ramping || pi->caps_db_ramping ||
pi->caps_td_ramping || pi->caps_tcp_ramping) {
if (adev->gfx.gfx_current_status != AMDGPU_GFX_SAFE_MODE) {
ret = cz_disable_cgpg(adev);
if (ret) {
DRM_ERROR("Pre Di/Dt disable cg/pg failed\n");
return -EINVAL;
}
adev->gfx.gfx_current_status = AMDGPU_GFX_SAFE_MODE;
}
ret = cz_program_pt_config_registers(adev);
if (ret) {
DRM_ERROR("Di/Dt config failed\n");
return -EINVAL;
}
cz_do_enable_didt(adev, enable);
if (adev->gfx.gfx_current_status == AMDGPU_GFX_SAFE_MODE) {
ret = cz_enable_cgpg(adev);
if (ret) {
DRM_ERROR("Post Di/Dt enable cg/pg failed\n");
return -EINVAL;
}
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
}
}
return 0;
}
/* TODO */
static void cz_reset_acp_boot_level(struct amdgpu_device *adev)
{
}
static void cz_update_current_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
pi->current_ps = *ps;
pi->current_rps = *rps;
pi->current_rps.ps_priv = ps;
}
static void cz_update_requested_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
pi->requested_ps = *ps;
pi->requested_rps = *rps;
pi->requested_rps.ps_priv = ps;
}
/* PP arbiter support needed TODO */
static void cz_apply_state_adjust_rules(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps,
struct amdgpu_ps *old_rps)
{
struct cz_ps *ps = cz_get_ps(new_rps);
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_and_voltage_limits *limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
/* 10kHz memory clock */
uint32_t mclk = 0;
ps->force_high = false;
ps->need_dfs_bypass = true;
pi->video_start = new_rps->dclk || new_rps->vclk ||
new_rps->evclk || new_rps->ecclk;
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (pi->caps_stable_power_state)
mclk = limits->mclk;
if (mclk > pi->sys_info.nbp_memory_clock[CZ_NUM_NBPMEMORY_CLOCK - 1])
ps->force_high = true;
}
static int cz_dpm_enable(struct amdgpu_device *adev)
{
const char *chip_name;
int ret = 0;
/* renable will hang up SMU, so check first */
if (cz_check_for_dpm_enabled(adev))
return -EINVAL;
cz_program_voting_clients(adev);
switch (adev->asic_type) {
case CHIP_CARRIZO:
chip_name = "carrizo";
break;
case CHIP_STONEY:
chip_name = "stoney";
break;
default:
BUG();
}
ret = cz_start_dpm(adev);
if (ret) {
DRM_ERROR("%s DPM enable failed\n", chip_name);
return -EINVAL;
}
ret = cz_program_bootup_state(adev);
if (ret) {
DRM_ERROR("%s bootup state program failed\n", chip_name);
return -EINVAL;
}
ret = cz_enable_didt(adev, true);
if (ret) {
DRM_ERROR("%s enable di/dt failed\n", chip_name);
return -EINVAL;
}
cz_reset_acp_boot_level(adev);
cz_update_current_ps(adev, adev->pm.dpm.boot_ps);
return 0;
}
static int cz_dpm_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret = 0;
mutex_lock(&adev->pm.mutex);
/* smu init only needs to be called at startup, not resume.
* It should be in sw_init, but requires the fw info gathered
* in sw_init from other IP modules.
*/
ret = cz_smu_init(adev);
if (ret) {
DRM_ERROR("amdgpu: smc initialization failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* do the actual fw loading */
ret = cz_smu_start(adev);
if (ret) {
DRM_ERROR("amdgpu: smc start failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
if (!amdgpu_dpm) {
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* cz dpm setup asic */
cz_dpm_setup_asic(adev);
/* cz dpm enable */
ret = cz_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
return 0;
}
static int cz_dpm_disable(struct amdgpu_device *adev)
{
int ret = 0;
if (!cz_check_for_dpm_enabled(adev))
return -EINVAL;
ret = cz_enable_didt(adev, false);
if (ret) {
DRM_ERROR("disable di/dt failed\n");
return -EINVAL;
}
/* powerup blocks */
cz_dpm_powergate_uvd(adev, false);
cz_dpm_powergate_vce(adev, false);
cz_clear_voting_clients(adev);
cz_stop_dpm(adev);
cz_update_current_ps(adev, adev->pm.dpm.boot_ps);
return 0;
}
static int cz_dpm_hw_fini(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
/* smu fini only needs to be called at teardown, not suspend.
* It should be in sw_fini, but we put it here for symmetry
* with smu init.
*/
cz_smu_fini(adev);
if (adev->pm.dpm_enabled) {
ret = cz_dpm_disable(adev);
adev->pm.dpm.current_ps =
adev->pm.dpm.requested_ps =
adev->pm.dpm.boot_ps;
}
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
static int cz_dpm_suspend(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
ret = cz_dpm_disable(adev);
adev->pm.dpm.current_ps =
adev->pm.dpm.requested_ps =
adev->pm.dpm.boot_ps;
mutex_unlock(&adev->pm.mutex);
}
return ret;
}
static int cz_dpm_resume(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
/* do the actual fw loading */
ret = cz_smu_start(adev);
if (ret) {
DRM_ERROR("amdgpu: smc start failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
if (!amdgpu_dpm) {
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* cz dpm setup asic */
cz_dpm_setup_asic(adev);
/* cz dpm enable */
ret = cz_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
/* upon resume, re-compute the clocks */
if (adev->pm.dpm_enabled)
amdgpu_pm_compute_clocks(adev);
return 0;
}
static int cz_dpm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int cz_dpm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
/* borrowed from KV, need future unify */
static int cz_dpm_get_temperature(struct amdgpu_device *adev)
{
int actual_temp = 0;
uint32_t temp = RREG32_SMC(0xC0300E0C);
if (temp)
actual_temp = 1000 * ((temp / 8) - 49);
return actual_temp;
}
static int cz_dpm_pre_set_power_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
struct amdgpu_ps *new_ps = &requested_ps;
cz_update_requested_ps(adev, new_ps);
cz_apply_state_adjust_rules(adev, &pi->requested_rps,
&pi->current_rps);
return 0;
}
static int cz_dpm_update_sclk_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_and_voltage_limits *limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
uint32_t clock, stable_ps_clock = 0;
clock = pi->sclk_dpm.soft_min_clk;
if (pi->caps_stable_power_state) {
stable_ps_clock = limits->sclk * 75 / 100;
if (clock < stable_ps_clock)
clock = stable_ps_clock;
}
if (clock != pi->sclk_dpm.soft_min_clk) {
pi->sclk_dpm.soft_min_clk = clock;
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev, clock,
PPSMC_MSG_SetSclkSoftMin));
}
if (pi->caps_stable_power_state &&
pi->sclk_dpm.soft_max_clk != clock) {
pi->sclk_dpm.soft_max_clk = clock;
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev, clock,
PPSMC_MSG_SetSclkSoftMax));
} else {
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
}
return 0;
}
static int cz_dpm_set_deep_sleep_sclk_threshold(struct amdgpu_device *adev)
{
int ret = 0;
struct cz_power_info *pi = cz_get_pi(adev);
if (pi->caps_sclk_ds) {
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetMinDeepSleepSclk,
CZ_MIN_DEEP_SLEEP_SCLK);
}
return ret;
}
/* ?? without dal support, is this still needed in setpowerstate list*/
static int cz_dpm_set_watermark_threshold(struct amdgpu_device *adev)
{
int ret = 0;
struct cz_power_info *pi = cz_get_pi(adev);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetWatermarkFrequency,
pi->sclk_dpm.soft_max_clk);
return ret;
}
static int cz_dpm_enable_nbdpm(struct amdgpu_device *adev)
{
int ret = 0;
struct cz_power_info *pi = cz_get_pi(adev);
/* also depend on dal NBPStateDisableRequired */
if (pi->nb_dpm_enabled_by_driver && !pi->nb_dpm_enabled) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures,
NB_DPM_MASK);
if (ret) {
DRM_ERROR("amdgpu: nb dpm enable failed\n");
return ret;
}
pi->nb_dpm_enabled = true;
}
return ret;
}
static void cz_dpm_nbdpm_lm_pstate_enable(struct amdgpu_device *adev,
bool enable)
{
if (enable)
cz_send_msg_to_smc(adev, PPSMC_MSG_EnableLowMemoryPstate);
else
cz_send_msg_to_smc(adev, PPSMC_MSG_DisableLowMemoryPstate);
}
static int cz_dpm_update_low_memory_pstate(struct amdgpu_device *adev)
{
int ret = 0;
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = &pi->requested_ps;
if (pi->sys_info.nb_dpm_enable) {
if (ps->force_high)
cz_dpm_nbdpm_lm_pstate_enable(adev, false);
else
cz_dpm_nbdpm_lm_pstate_enable(adev, true);
}
return ret;
}
/* with dpm enabled */
static int cz_dpm_set_power_state(struct amdgpu_device *adev)
{
int ret = 0;
cz_dpm_update_sclk_limit(adev);
cz_dpm_set_deep_sleep_sclk_threshold(adev);
cz_dpm_set_watermark_threshold(adev);
cz_dpm_enable_nbdpm(adev);
cz_dpm_update_low_memory_pstate(adev);
return ret;
}
static void cz_dpm_post_set_power_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_ps *ps = &pi->requested_rps;
cz_update_current_ps(adev, ps);
}
static int cz_dpm_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->sclk_dpm.soft_min_clk != pi->sclk_dpm.soft_max_clk) {
pi->sclk_dpm.soft_min_clk =
pi->sclk_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->sclk_dpm.soft_max_clk != pi->sclk_dpm.soft_min_clk) {
pi->sclk_dpm.soft_max_clk = pi->sclk_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_sclk_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_sclk_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxSclkLevel);
pi->max_sclk_level = cz_get_argument(adev) + 1;
}
if (pi->max_sclk_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max sclk level!\n");
return -EINVAL;
}
return pi->max_sclk_level;
}
static int cz_dpm_unforce_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
uint32_t level = 0;
int ret = 0;
pi->sclk_dpm.soft_min_clk = dep_table->entries[0].clk;
level = cz_dpm_get_max_sclk_level(adev) - 1;
if (level < dep_table->count)
pi->sclk_dpm.soft_max_clk = dep_table->entries[level].clk;
else
pi->sclk_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].clk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM unforce state min=%d, max=%d.\n",
pi->sclk_dpm.soft_min_clk,
pi->sclk_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_uvd_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->uvd_dpm.soft_min_clk != pi->uvd_dpm.soft_max_clk) {
pi->uvd_dpm.soft_min_clk =
pi->uvd_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMin,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_min_clk,
PPSMC_MSG_SetUvdSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_uvd_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->uvd_dpm.soft_max_clk != pi->uvd_dpm.soft_min_clk) {
pi->uvd_dpm.soft_max_clk = pi->uvd_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMax,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_max_clk,
PPSMC_MSG_SetUvdSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_uvd_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_uvd_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxUvdLevel);
pi->max_uvd_level = cz_get_argument(adev) + 1;
}
if (pi->max_uvd_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max uvd level!\n");
return -EINVAL;
}
return pi->max_uvd_level;
}
static int cz_dpm_unforce_uvd_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
uint32_t level = 0;
int ret = 0;
pi->uvd_dpm.soft_min_clk = dep_table->entries[0].vclk;
level = cz_dpm_get_max_uvd_level(adev) - 1;
if (level < dep_table->count)
pi->uvd_dpm.soft_max_clk = dep_table->entries[level].vclk;
else
pi->uvd_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].vclk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMin,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_min_clk,
PPSMC_MSG_SetUvdSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMax,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_max_clk,
PPSMC_MSG_SetUvdSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM uvd unforce state min=%d, max=%d.\n",
pi->uvd_dpm.soft_min_clk,
pi->uvd_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_vce_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->vce_dpm.soft_min_clk != pi->vce_dpm.soft_max_clk) {
pi->vce_dpm.soft_min_clk =
pi->vce_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMin,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_min_clk,
PPSMC_MSG_SetEclkSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_vce_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->vce_dpm.soft_max_clk != pi->vce_dpm.soft_min_clk) {
pi->vce_dpm.soft_max_clk = pi->vce_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMax,
cz_get_uvd_level(adev,
pi->vce_dpm.soft_max_clk,
PPSMC_MSG_SetEclkSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_vce_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_vce_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxEclkLevel);
pi->max_vce_level = cz_get_argument(adev) + 1;
}
if (pi->max_vce_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max vce level!\n");
return -EINVAL;
}
return pi->max_vce_level;
}
static int cz_dpm_unforce_vce_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
uint32_t level = 0;
int ret = 0;
pi->vce_dpm.soft_min_clk = dep_table->entries[0].ecclk;
level = cz_dpm_get_max_vce_level(adev) - 1;
if (level < dep_table->count)
pi->vce_dpm.soft_max_clk = dep_table->entries[level].ecclk;
else
pi->vce_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].ecclk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMin,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_min_clk,
PPSMC_MSG_SetEclkSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMax,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_max_clk,
PPSMC_MSG_SetEclkSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM vce unforce state min=%d, max=%d.\n",
pi->vce_dpm.soft_min_clk,
pi->vce_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_force_dpm_level(struct amdgpu_device *adev,
enum amdgpu_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMDGPU_DPM_FORCED_LEVEL_HIGH:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_force_highest(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_uvd_force_highest(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_vce_force_highest(adev);
if (ret)
return ret;
break;
case AMDGPU_DPM_FORCED_LEVEL_LOW:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_force_lowest(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_uvd_force_lowest(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_vce_force_lowest(adev);
if (ret)
return ret;
break;
case AMDGPU_DPM_FORCED_LEVEL_AUTO:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
break;
default:
break;
}
adev->pm.dpm.forced_level = level;
return ret;
}
/* fix me, display configuration change lists here
* mostly dal related*/
static void cz_dpm_display_configuration_changed(struct amdgpu_device *adev)
{
}
static uint32_t cz_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *requested_state = cz_get_ps(&pi->requested_rps);
if (low)
return requested_state->levels[0].sclk;
else
return requested_state->levels[requested_state->num_levels - 1].sclk;
}
static uint32_t cz_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
struct cz_power_info *pi = cz_get_pi(adev);
return pi->sys_info.bootup_uma_clk;
}
static int cz_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (enable && pi->caps_uvd_dpm ) {
pi->dpm_flags |= DPMFlags_UVD_Enabled;
DRM_DEBUG("UVD DPM Enabled.\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, UVD_DPM_MASK);
} else {
pi->dpm_flags &= ~DPMFlags_UVD_Enabled;
DRM_DEBUG("UVD DPM Stopped\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, UVD_DPM_MASK);
}
return ret;
}
static int cz_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
{
return cz_enable_uvd_dpm(adev, !gate);
}
static void cz_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret;
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
if (gate) {
if (pi->caps_uvd_pg) {
/* disable clockgating so we can properly shut down the block */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_UNGATE);
/* shutdown the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_GATE);
/* XXX: check for errors */
}
cz_update_uvd_dpm(adev, gate);
if (pi->caps_uvd_pg)
/* power off the UVD block */
cz_send_msg_to_smc(adev, PPSMC_MSG_UVDPowerOFF);
} else {
if (pi->caps_uvd_pg) {
/* power on the UVD block */
if (pi->uvd_dynamic_pg)
cz_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_UVDPowerON, 1);
else
cz_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_UVDPowerON, 0);
/* re-init the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_UNGATE);
/* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_GATE);
/* XXX: check for errors */
}
cz_update_uvd_dpm(adev, gate);
}
}
static int cz_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (enable && pi->caps_vce_dpm) {
pi->dpm_flags |= DPMFlags_VCE_Enabled;
DRM_DEBUG("VCE DPM Enabled.\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, VCE_DPM_MASK);
} else {
pi->dpm_flags &= ~DPMFlags_VCE_Enabled;
DRM_DEBUG("VCE DPM Stopped\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, VCE_DPM_MASK);
}
return ret;
}
static int cz_update_vce_dpm(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
/* Stable Pstate is enabled and we need to set the VCE DPM to highest level */
if (pi->caps_stable_power_state) {
pi->vce_dpm.hard_min_clk = table->entries[table->count-1].ecclk;
} else { /* non-stable p-state cases. without vce.Arbiter.EcclkHardMin */
/* leave it as set by user */
/*pi->vce_dpm.hard_min_clk = table->entries[0].ecclk;*/
}
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkHardMin,
cz_get_eclk_level(adev,
pi->vce_dpm.hard_min_clk,
PPSMC_MSG_SetEclkHardMin));
return 0;
}
static void cz_dpm_powergate_vce(struct amdgpu_device *adev, bool gate)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (pi->caps_vce_pg) {
if (pi->vce_power_gated != gate) {
if (gate) {
/* disable clockgating so we can properly shut down the block */
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
/* shutdown the VCE block */
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
cz_enable_vce_dpm(adev, false);
/* TODO: to figure out why vce can't be poweroff. */
/* cz_send_msg_to_smc(adev, PPSMC_MSG_VCEPowerOFF); */
pi->vce_power_gated = true;
} else {
cz_send_msg_to_smc(adev, PPSMC_MSG_VCEPowerON);
pi->vce_power_gated = false;
/* re-init the VCE block */
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
/* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
cz_update_vce_dpm(adev);
cz_enable_vce_dpm(adev, true);
}
} else {
if (! pi->vce_power_gated) {
cz_update_vce_dpm(adev);
}
}
} else { /*pi->caps_vce_pg*/
cz_update_vce_dpm(adev);
cz_enable_vce_dpm(adev, true);
}
return;
}
const struct amd_ip_funcs cz_dpm_ip_funcs = {
.early_init = cz_dpm_early_init,
.late_init = cz_dpm_late_init,
.sw_init = cz_dpm_sw_init,
.sw_fini = cz_dpm_sw_fini,
.hw_init = cz_dpm_hw_init,
.hw_fini = cz_dpm_hw_fini,
.suspend = cz_dpm_suspend,
.resume = cz_dpm_resume,
.is_idle = NULL,
.wait_for_idle = NULL,
.soft_reset = NULL,
.print_status = NULL,
.set_clockgating_state = cz_dpm_set_clockgating_state,
.set_powergating_state = cz_dpm_set_powergating_state,
};
static const struct amdgpu_dpm_funcs cz_dpm_funcs = {
.get_temperature = cz_dpm_get_temperature,
.pre_set_power_state = cz_dpm_pre_set_power_state,
.set_power_state = cz_dpm_set_power_state,
.post_set_power_state = cz_dpm_post_set_power_state,
.display_configuration_changed = cz_dpm_display_configuration_changed,
.get_sclk = cz_dpm_get_sclk,
.get_mclk = cz_dpm_get_mclk,
.print_power_state = cz_dpm_print_power_state,
.debugfs_print_current_performance_level =
cz_dpm_debugfs_print_current_performance_level,
.force_performance_level = cz_dpm_force_dpm_level,
.vblank_too_short = NULL,
.powergate_uvd = cz_dpm_powergate_uvd,
.powergate_vce = cz_dpm_powergate_vce,
};
static void cz_dpm_set_funcs(struct amdgpu_device *adev)
{
if (NULL == adev->pm.funcs)
adev->pm.funcs = &cz_dpm_funcs;
}