OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_lrc.c

1949 lines
57 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define CTX_LRI_HEADER_0 0x01
#define CTX_CONTEXT_CONTROL 0x02
#define CTX_RING_HEAD 0x04
#define CTX_RING_TAIL 0x06
#define CTX_RING_BUFFER_START 0x08
#define CTX_RING_BUFFER_CONTROL 0x0a
#define CTX_BB_HEAD_U 0x0c
#define CTX_BB_HEAD_L 0x0e
#define CTX_BB_STATE 0x10
#define CTX_SECOND_BB_HEAD_U 0x12
#define CTX_SECOND_BB_HEAD_L 0x14
#define CTX_SECOND_BB_STATE 0x16
#define CTX_BB_PER_CTX_PTR 0x18
#define CTX_RCS_INDIRECT_CTX 0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
#define CTX_LRI_HEADER_1 0x21
#define CTX_CTX_TIMESTAMP 0x22
#define CTX_PDP3_UDW 0x24
#define CTX_PDP3_LDW 0x26
#define CTX_PDP2_UDW 0x28
#define CTX_PDP2_LDW 0x2a
#define CTX_PDP1_UDW 0x2c
#define CTX_PDP1_LDW 0x2e
#define CTX_PDP0_UDW 0x30
#define CTX_PDP0_LDW 0x32
#define CTX_LRI_HEADER_2 0x41
#define CTX_R_PWR_CLK_STATE 0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
enum {
ADVANCED_CONTEXT = 0,
LEGACY_CONTEXT,
ADVANCED_AD_CONTEXT,
LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
FAULT_AND_HANG = 0,
FAULT_AND_HALT, /* Debug only */
FAULT_AND_STREAM,
FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
static int intel_lr_context_pin(struct intel_engine_cs *ring,
struct intel_context *ctx);
/**
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
* @dev: DRM device.
* @enable_execlists: value of i915.enable_execlists module parameter.
*
* Only certain platforms support Execlists (the prerequisites being
* support for Logical Ring Contexts and Aliasing PPGTT or better).
*
* Return: 1 if Execlists is supported and has to be enabled.
*/
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
WARN_ON(i915.enable_ppgtt == -1);
if (INTEL_INFO(dev)->gen >= 9)
return 1;
if (enable_execlists == 0)
return 0;
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
i915.use_mmio_flip >= 0)
return 1;
return 0;
}
/**
* intel_execlists_ctx_id() - get the Execlists Context ID
* @ctx_obj: Logical Ring Context backing object.
*
* Do not confuse with ctx->id! Unfortunately we have a name overload
* here: the old context ID we pass to userspace as a handler so that
* they can refer to a context, and the new context ID we pass to the
* ELSP so that the GPU can inform us of the context status via
* interrupts.
*
* Return: 20-bits globally unique context ID.
*/
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
/* LRCA is required to be 4K aligned so the more significant 20 bits
* are globally unique */
return lrca >> 12;
}
static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
{
uint64_t desc;
uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
desc = GEN8_CTX_VALID;
desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
desc |= GEN8_CTX_L3LLC_COHERENT;
desc |= GEN8_CTX_PRIVILEGE;
desc |= lrca;
desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
/* TODO: WaDisableLiteRestore when we start using semaphore
* signalling between Command Streamers */
/* desc |= GEN8_CTX_FORCE_RESTORE; */
return desc;
}
static void execlists_elsp_write(struct intel_engine_cs *ring,
struct drm_i915_gem_object *ctx_obj0,
struct drm_i915_gem_object *ctx_obj1)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint64_t temp = 0;
uint32_t desc[4];
unsigned long flags;
/* XXX: You must always write both descriptors in the order below. */
if (ctx_obj1)
temp = execlists_ctx_descriptor(ctx_obj1);
else
temp = 0;
desc[1] = (u32)(temp >> 32);
desc[0] = (u32)temp;
temp = execlists_ctx_descriptor(ctx_obj0);
desc[3] = (u32)(temp >> 32);
desc[2] = (u32)temp;
/* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
* are in progress.
*
* The other problem is that we can't just call gen6_gt_force_wake_get()
* because that function calls intel_runtime_pm_get(), which might sleep.
* Instead, we do the runtime_pm_get/put when creating/destroying requests.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, flags);
if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
if (dev_priv->uncore.fw_rendercount++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv,
FORCEWAKE_RENDER);
if (dev_priv->uncore.fw_mediacount++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv,
FORCEWAKE_MEDIA);
if (INTEL_INFO(dev)->gen >= 9) {
if (dev_priv->uncore.fw_blittercount++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv,
FORCEWAKE_BLITTER);
}
} else {
if (dev_priv->uncore.forcewake_count++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv,
FORCEWAKE_ALL);
}
spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
I915_WRITE(RING_ELSP(ring), desc[1]);
I915_WRITE(RING_ELSP(ring), desc[0]);
I915_WRITE(RING_ELSP(ring), desc[3]);
/* The context is automatically loaded after the following */
I915_WRITE(RING_ELSP(ring), desc[2]);
/* ELSP is a wo register, so use another nearby reg for posting instead */
POSTING_READ(RING_EXECLIST_STATUS(ring));
/* Release Force Wakeup (see the big comment above). */
spin_lock_irqsave(&dev_priv->uncore.lock, flags);
if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
if (--dev_priv->uncore.fw_rendercount == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv,
FORCEWAKE_RENDER);
if (--dev_priv->uncore.fw_mediacount == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv,
FORCEWAKE_MEDIA);
if (INTEL_INFO(dev)->gen >= 9) {
if (--dev_priv->uncore.fw_blittercount == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv,
FORCEWAKE_BLITTER);
}
} else {
if (--dev_priv->uncore.forcewake_count == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv,
FORCEWAKE_ALL);
}
spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
}
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
struct drm_i915_gem_object *ring_obj,
u32 tail)
{
struct page *page;
uint32_t *reg_state;
page = i915_gem_object_get_page(ctx_obj, 1);
reg_state = kmap_atomic(page);
reg_state[CTX_RING_TAIL+1] = tail;
reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
kunmap_atomic(reg_state);
return 0;
}
static void execlists_submit_contexts(struct intel_engine_cs *ring,
struct intel_context *to0, u32 tail0,
struct intel_context *to1, u32 tail1)
{
struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
struct drm_i915_gem_object *ctx_obj1 = NULL;
struct intel_ringbuffer *ringbuf1 = NULL;
BUG_ON(!ctx_obj0);
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
if (to1) {
ringbuf1 = to1->engine[ring->id].ringbuf;
ctx_obj1 = to1->engine[ring->id].state;
BUG_ON(!ctx_obj1);
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
}
execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
assert_spin_locked(&ring->execlist_lock);
if (list_empty(&ring->execlist_queue))
return;
/* Try to read in pairs */
list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
execlist_link) {
if (!req0) {
req0 = cursor;
} else if (req0->ctx == cursor->ctx) {
/* Same ctx: ignore first request, as second request
* will update tail past first request's workload */
cursor->elsp_submitted = req0->elsp_submitted;
list_del(&req0->execlist_link);
list_add_tail(&req0->execlist_link,
&ring->execlist_retired_req_list);
req0 = cursor;
} else {
req1 = cursor;
break;
}
}
WARN_ON(req1 && req1->elsp_submitted);
execlists_submit_contexts(ring, req0->ctx, req0->tail,
req1 ? req1->ctx : NULL,
req1 ? req1->tail : 0);
req0->elsp_submitted++;
if (req1)
req1->elsp_submitted++;
}
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
u32 request_id)
{
struct intel_ctx_submit_request *head_req;
assert_spin_locked(&ring->execlist_lock);
head_req = list_first_entry_or_null(&ring->execlist_queue,
struct intel_ctx_submit_request,
execlist_link);
if (head_req != NULL) {
struct drm_i915_gem_object *ctx_obj =
head_req->ctx->engine[ring->id].state;
if (intel_execlists_ctx_id(ctx_obj) == request_id) {
WARN(head_req->elsp_submitted == 0,
"Never submitted head request\n");
if (--head_req->elsp_submitted <= 0) {
list_del(&head_req->execlist_link);
list_add_tail(&head_req->execlist_link,
&ring->execlist_retired_req_list);
return true;
}
}
}
return false;
}
/**
* intel_lrc_irq_handler() - handle Context Switch interrupts
* @ring: Engine Command Streamer to handle.
*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
u32 status_pointer;
u8 read_pointer;
u8 write_pointer;
u32 status;
u32 status_id;
u32 submit_contexts = 0;
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
read_pointer = ring->next_context_status_buffer;
write_pointer = status_pointer & 0x07;
if (read_pointer > write_pointer)
write_pointer += 6;
spin_lock(&ring->execlist_lock);
while (read_pointer < write_pointer) {
read_pointer++;
status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
(read_pointer % 6) * 8);
status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
(read_pointer % 6) * 8 + 4);
if (status & GEN8_CTX_STATUS_PREEMPTED) {
if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
if (execlists_check_remove_request(ring, status_id))
WARN(1, "Lite Restored request removed from queue\n");
} else
WARN(1, "Preemption without Lite Restore\n");
}
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
if (execlists_check_remove_request(ring, status_id))
submit_contexts++;
}
}
if (submit_contexts != 0)
execlists_context_unqueue(ring);
spin_unlock(&ring->execlist_lock);
WARN(submit_contexts > 2, "More than two context complete events?\n");
ring->next_context_status_buffer = write_pointer % 6;
I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
((u32)ring->next_context_status_buffer & 0x07) << 8);
}
static int execlists_context_queue(struct intel_engine_cs *ring,
struct intel_context *to,
u32 tail)
{
struct intel_ctx_submit_request *req = NULL, *cursor;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
unsigned long flags;
int num_elements = 0;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (req == NULL)
return -ENOMEM;
req->ctx = to;
i915_gem_context_reference(req->ctx);
if (to != ring->default_context)
intel_lr_context_pin(ring, to);
req->ring = ring;
req->tail = tail;
intel_runtime_pm_get(dev_priv);
spin_lock_irqsave(&ring->execlist_lock, flags);
list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
if (++num_elements > 2)
break;
if (num_elements > 2) {
struct intel_ctx_submit_request *tail_req;
tail_req = list_last_entry(&ring->execlist_queue,
struct intel_ctx_submit_request,
execlist_link);
if (to == tail_req->ctx) {
WARN(tail_req->elsp_submitted != 0,
"More than 2 already-submitted reqs queued\n");
list_del(&tail_req->execlist_link);
list_add_tail(&tail_req->execlist_link,
&ring->execlist_retired_req_list);
}
}
list_add_tail(&req->execlist_link, &ring->execlist_queue);
if (num_elements == 0)
execlists_context_unqueue(ring);
spin_unlock_irqrestore(&ring->execlist_lock, flags);
return 0;
}
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
{
struct intel_engine_cs *ring = ringbuf->ring;
uint32_t flush_domains;
int ret;
flush_domains = 0;
if (ring->gpu_caches_dirty)
flush_domains = I915_GEM_GPU_DOMAINS;
ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
if (ret)
return ret;
ring->gpu_caches_dirty = false;
return 0;
}
static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
struct list_head *vmas)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
ret = i915_gem_object_sync(obj, ring);
if (ret)
return ret;
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
flush_chipset |= i915_gem_clflush_object(obj, false);
flush_domains |= obj->base.write_domain;
}
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
/* Unconditionally invalidate gpu caches and ensure that we do flush
* any residual writes from the previous batch.
*/
return logical_ring_invalidate_all_caches(ringbuf);
}
/**
* execlists_submission() - submit a batchbuffer for execution, Execlists style
* @dev: DRM device.
* @file: DRM file.
* @ring: Engine Command Streamer to submit to.
* @ctx: Context to employ for this submission.
* @args: execbuffer call arguments.
* @vmas: list of vmas.
* @batch_obj: the batchbuffer to submit.
* @exec_start: batchbuffer start virtual address pointer.
* @flags: translated execbuffer call flags.
*
* This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
* away the submission details of the execbuffer ioctl call.
*
* Return: non-zero if the submission fails.
*/
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *ring,
struct intel_context *ctx,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas,
struct drm_i915_gem_object *batch_obj,
u64 exec_start, u32 flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
int instp_mode;
u32 instp_mask;
int ret;
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
instp_mask = I915_EXEC_CONSTANTS_MASK;
switch (instp_mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
if (instp_mode != dev_priv->relative_constants_mode) {
if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
return -EINVAL;
}
/* The HW changed the meaning on this bit on gen6 */
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
}
break;
default:
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
return -EINVAL;
}
if (args->num_cliprects != 0) {
DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
return -EINVAL;
} else {
if (args->DR4 == 0xffffffff) {
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
args->DR4 = 0;
}
if (args->DR1 || args->DR4 || args->cliprects_ptr) {
DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
return -EINVAL;
}
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
DRM_DEBUG("sol reset is gen7 only\n");
return -EINVAL;
}
ret = execlists_move_to_gpu(ringbuf, vmas);
if (ret)
return ret;
if (ring == &dev_priv->ring[RCS] &&
instp_mode != dev_priv->relative_constants_mode) {
ret = intel_logical_ring_begin(ringbuf, 4);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
intel_logical_ring_emit(ringbuf, INSTPM);
intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
intel_logical_ring_advance(ringbuf);
dev_priv->relative_constants_mode = instp_mode;
}
ret = ring->emit_bb_start(ringbuf, exec_start, flags);
if (ret)
return ret;
i915_gem_execbuffer_move_to_active(vmas, ring);
i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
return 0;
}
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
struct intel_ctx_submit_request *req, *tmp;
struct drm_i915_private *dev_priv = ring->dev->dev_private;
unsigned long flags;
struct list_head retired_list;
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
if (list_empty(&ring->execlist_retired_req_list))
return;
INIT_LIST_HEAD(&retired_list);
spin_lock_irqsave(&ring->execlist_lock, flags);
list_replace_init(&ring->execlist_retired_req_list, &retired_list);
spin_unlock_irqrestore(&ring->execlist_lock, flags);
list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
struct intel_context *ctx = req->ctx;
struct drm_i915_gem_object *ctx_obj =
ctx->engine[ring->id].state;
if (ctx_obj && (ctx != ring->default_context))
intel_lr_context_unpin(ring, ctx);
intel_runtime_pm_put(dev_priv);
i915_gem_context_unreference(req->ctx);
list_del(&req->execlist_link);
kfree(req);
}
}
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
int ret;
if (!intel_ring_initialized(ring))
return;
ret = intel_ring_idle(ring);
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
ring->name, ret);
/* TODO: Is this correct with Execlists enabled? */
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
return;
}
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
}
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
{
struct intel_engine_cs *ring = ringbuf->ring;
int ret;
if (!ring->gpu_caches_dirty)
return 0;
ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
ring->gpu_caches_dirty = false;
return 0;
}
/**
* intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
* @ringbuf: Logical Ringbuffer to advance.
*
* The tail is updated in our logical ringbuffer struct, not in the actual context. What
* really happens during submission is that the context and current tail will be placed
* on a queue waiting for the ELSP to be ready to accept a new context submission. At that
* point, the tail *inside* the context is updated and the ELSP written to.
*/
void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
intel_logical_ring_advance(ringbuf);
if (intel_ring_stopped(ring))
return;
execlists_context_queue(ring, ctx, ringbuf->tail);
}
static int intel_lr_context_pin(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
int ret = 0;
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
if (ctx->engine[ring->id].unpin_count++ == 0) {
ret = i915_gem_obj_ggtt_pin(ctx_obj,
GEN8_LR_CONTEXT_ALIGN, 0);
if (ret)
goto reset_unpin_count;
ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
if (ret)
goto unpin_ctx_obj;
}
return ret;
unpin_ctx_obj:
i915_gem_object_ggtt_unpin(ctx_obj);
reset_unpin_count:
ctx->engine[ring->id].unpin_count = 0;
return ret;
}
void intel_lr_context_unpin(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
if (ctx_obj) {
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
if (--ctx->engine[ring->id].unpin_count == 0) {
intel_unpin_ringbuffer_obj(ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
}
}
}
static int logical_ring_alloc_request(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
struct drm_i915_gem_request *request;
struct drm_i915_private *dev_private = ring->dev->dev_private;
int ret;
if (ring->outstanding_lazy_request)
return 0;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL)
return -ENOMEM;
if (ctx != ring->default_context) {
ret = intel_lr_context_pin(ring, ctx);
if (ret) {
kfree(request);
return ret;
}
}
kref_init(&request->ref);
request->ring = ring;
request->uniq = dev_private->request_uniq++;
ret = i915_gem_get_seqno(ring->dev, &request->seqno);
if (ret) {
intel_lr_context_unpin(ring, ctx);
kfree(request);
return ret;
}
/* Hold a reference to the context this request belongs to
* (we will need it when the time comes to emit/retire the
* request).
*/
request->ctx = ctx;
i915_gem_context_reference(request->ctx);
ring->outstanding_lazy_request = request;
return 0;
}
static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
int bytes)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct drm_i915_gem_request *request;
int ret;
if (intel_ring_space(ringbuf) >= bytes)
return 0;
list_for_each_entry(request, &ring->request_list, list) {
/*
* The request queue is per-engine, so can contain requests
* from multiple ringbuffers. Here, we must ignore any that
* aren't from the ringbuffer we're considering.
*/
struct intel_context *ctx = request->ctx;
if (ctx->engine[ring->id].ringbuf != ringbuf)
continue;
/* Would completion of this request free enough space? */
if (__intel_ring_space(request->tail, ringbuf->tail,
ringbuf->size) >= bytes) {
break;
}
}
if (&request->list == &ring->request_list)
return -ENOSPC;
ret = i915_wait_request(request);
if (ret)
return ret;
i915_gem_retire_requests_ring(ring);
return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
}
static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
int bytes)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long end;
int ret;
ret = logical_ring_wait_request(ringbuf, bytes);
if (ret != -ENOSPC)
return ret;
/* Force the context submission in case we have been skipping it */
intel_logical_ring_advance_and_submit(ringbuf);
/* With GEM the hangcheck timer should kick us out of the loop,
* leaving it early runs the risk of corrupting GEM state (due
* to running on almost untested codepaths). But on resume
* timers don't work yet, so prevent a complete hang in that
* case by choosing an insanely large timeout. */
end = jiffies + 60 * HZ;
ret = 0;
do {
if (intel_ring_space(ringbuf) >= bytes)
break;
msleep(1);
if (dev_priv->mm.interruptible && signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
dev_priv->mm.interruptible);
if (ret)
break;
if (time_after(jiffies, end)) {
ret = -EBUSY;
break;
}
} while (1);
return ret;
}
static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
{
uint32_t __iomem *virt;
int rem = ringbuf->size - ringbuf->tail;
if (ringbuf->space < rem) {
int ret = logical_ring_wait_for_space(ringbuf, rem);
if (ret)
return ret;
}
virt = ringbuf->virtual_start + ringbuf->tail;
rem /= 4;
while (rem--)
iowrite32(MI_NOOP, virt++);
ringbuf->tail = 0;
intel_ring_update_space(ringbuf);
return 0;
}
static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
{
int ret;
if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
ret = logical_ring_wrap_buffer(ringbuf);
if (unlikely(ret))
return ret;
}
if (unlikely(ringbuf->space < bytes)) {
ret = logical_ring_wait_for_space(ringbuf, bytes);
if (unlikely(ret))
return ret;
}
return 0;
}
/**
* intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
*
* @ringbuf: Logical ringbuffer.
* @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
*
* The ringbuffer might not be ready to accept the commands right away (maybe it needs to
* be wrapped, or wait a bit for the tail to be updated). This function takes care of that
* and also preallocates a request (every workload submission is still mediated through
* requests, same as it did with legacy ringbuffer submission).
*
* Return: non-zero if the ringbuffer is not ready to be written to.
*/
int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
dev_priv->mm.interruptible);
if (ret)
return ret;
ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
if (ret)
return ret;
/* Preallocate the olr before touching the ring */
ret = logical_ring_alloc_request(ring, ringbuf->FIXME_lrc_ctx);
if (ret)
return ret;
ringbuf->space -= num_dwords * sizeof(uint32_t);
return 0;
}
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
int ret, i;
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_workarounds *w = &dev_priv->workarounds;
if (WARN_ON_ONCE(w->count == 0))
return 0;
ring->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(ringbuf);
if (ret)
return ret;
ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
for (i = 0; i < w->count; i++) {
intel_logical_ring_emit(ringbuf, w->reg[i].addr);
intel_logical_ring_emit(ringbuf, w->reg[i].value);
}
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
ring->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(ringbuf);
if (ret)
return ret;
return 0;
}
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
POSTING_READ(RING_MODE_GEN7(ring));
ring->next_context_status_buffer = 0;
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
return 0;
}
static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = gen8_init_common_ring(ring);
if (ret)
return ret;
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
*/
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
return init_workarounds_ring(ring);
}
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
u64 offset, unsigned flags)
{
bool ppgtt = !(flags & I915_DISPATCH_SECURE);
int ret;
ret = intel_logical_ring_begin(ringbuf, 4);
if (ret)
return ret;
/* FIXME(BDW): Address space and security selectors. */
intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
return 0;
}
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (ring->irq_refcount++ == 0) {
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--ring->irq_refcount == 0) {
I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
POSTING_READ(RING_IMR(ring->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
u32 invalidate_domains,
u32 unused)
{
struct intel_engine_cs *ring = ringbuf->ring;
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t cmd;
int ret;
ret = intel_logical_ring_begin(ringbuf, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW + 1;
if (ring == &dev_priv->ring[VCS]) {
if (invalidate_domains & I915_GEM_GPU_DOMAINS)
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
MI_FLUSH_DW_STORE_INDEX |
MI_FLUSH_DW_OP_STOREDW;
} else {
if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
MI_FLUSH_DW_OP_STOREDW;
}
intel_logical_ring_emit(ringbuf, cmd);
intel_logical_ring_emit(ringbuf,
I915_GEM_HWS_SCRATCH_ADDR |
MI_FLUSH_DW_USE_GTT);
intel_logical_ring_emit(ringbuf, 0); /* upper addr */
intel_logical_ring_emit(ringbuf, 0); /* value */
intel_logical_ring_advance(ringbuf);
return 0;
}
static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_engine_cs *ring = ringbuf->ring;
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
u32 flags = 0;
int ret;
flags |= PIPE_CONTROL_CS_STALL;
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
}
ret = intel_logical_ring_begin(ringbuf, 6);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf, flags);
intel_logical_ring_emit(ringbuf, scratch_addr);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_advance(ringbuf);
return 0;
}
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}
static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}
static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
{
struct intel_engine_cs *ring = ringbuf->ring;
u32 cmd;
int ret;
ret = intel_logical_ring_begin(ringbuf, 6);
if (ret)
return ret;
cmd = MI_STORE_DWORD_IMM_GEN4;
cmd |= MI_GLOBAL_GTT;
intel_logical_ring_emit(ringbuf, cmd);
intel_logical_ring_emit(ringbuf,
(ring->status_page.gfx_addr +
(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf,
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance_and_submit(ringbuf);
return 0;
}
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
int ret;
ret = intel_logical_ring_workarounds_emit(ring, ctx);
if (ret)
return ret;
return intel_lr_context_render_state_init(ring, ctx);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
*
* @ring: Engine Command Streamer.
*
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
struct drm_i915_private *dev_priv;
if (!intel_ring_initialized(ring))
return;
dev_priv = ring->dev->dev_private;
intel_logical_ring_stop(ring);
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
if (ring->cleanup)
ring->cleanup(ring);
i915_cmd_parser_fini_ring(ring);
if (ring->status_page.obj) {
kunmap(sg_page(ring->status_page.obj->pages->sgl));
ring->status_page.obj = NULL;
}
}
static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
int ret;
/* Intentionally left blank. */
ring->buffer = NULL;
ring->dev = dev;
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
init_waitqueue_head(&ring->irq_queue);
INIT_LIST_HEAD(&ring->execlist_queue);
INIT_LIST_HEAD(&ring->execlist_retired_req_list);
spin_lock_init(&ring->execlist_lock);
ret = i915_cmd_parser_init_ring(ring);
if (ret)
return ret;
ret = intel_lr_context_deferred_create(ring->default_context, ring);
return ret;
}
static int logical_render_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
int ret;
ring->name = "render ring";
ring->id = RCS;
ring->mmio_base = RENDER_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
ring->irq_keep_mask =
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
if (HAS_L3_DPF(dev))
ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
ring->init_hw = gen8_init_render_ring;
ring->init_context = gen8_init_rcs_context;
ring->cleanup = intel_fini_pipe_control;
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush_render;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
ring->dev = dev;
ret = logical_ring_init(dev, ring);
if (ret)
return ret;
return intel_init_pipe_control(ring);
}
static int logical_bsd_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
ring->name = "bsd ring";
ring->id = VCS;
ring->mmio_base = GEN6_BSD_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
ring->irq_keep_mask =
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
ring->init_hw = gen8_init_common_ring;
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
return logical_ring_init(dev, ring);
}
static int logical_bsd2_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
ring->name = "bds2 ring";
ring->id = VCS2;
ring->mmio_base = GEN8_BSD2_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
ring->irq_keep_mask =
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
ring->init_hw = gen8_init_common_ring;
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
return logical_ring_init(dev, ring);
}
static int logical_blt_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
ring->name = "blitter ring";
ring->id = BCS;
ring->mmio_base = BLT_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
ring->irq_keep_mask =
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
ring->init_hw = gen8_init_common_ring;
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
return logical_ring_init(dev, ring);
}
static int logical_vebox_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
ring->name = "video enhancement ring";
ring->id = VECS;
ring->mmio_base = VEBOX_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
ring->irq_keep_mask =
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
ring->init_hw = gen8_init_common_ring;
ring->get_seqno = gen8_get_seqno;
ring->set_seqno = gen8_set_seqno;
ring->emit_request = gen8_emit_request;
ring->emit_flush = gen8_emit_flush;
ring->irq_get = gen8_logical_ring_get_irq;
ring->irq_put = gen8_logical_ring_put_irq;
ring->emit_bb_start = gen8_emit_bb_start;
return logical_ring_init(dev, ring);
}
/**
* intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
* @dev: DRM device.
*
* This function inits the engines for an Execlists submission style (the equivalent in the
* legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
* those engines that are present in the hardware.
*
* Return: non-zero if the initialization failed.
*/
int intel_logical_rings_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = logical_render_ring_init(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = logical_bsd_ring_init(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = logical_blt_ring_init(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = logical_vebox_ring_init(dev);
if (ret)
goto cleanup_blt_ring;
}
if (HAS_BSD2(dev)) {
ret = logical_bsd2_ring_init(dev);
if (ret)
goto cleanup_vebox_ring;
}
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
if (ret)
goto cleanup_bsd2_ring;
return 0;
cleanup_bsd2_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
return ret;
}
int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
struct intel_context *ctx)
{
struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
struct render_state so;
struct drm_i915_file_private *file_priv = ctx->file_priv;
struct drm_file *file = file_priv ? file_priv->file : NULL;
int ret;
ret = i915_gem_render_state_prepare(ring, &so);
if (ret)
return ret;
if (so.rodata == NULL)
return 0;
ret = ring->emit_bb_start(ringbuf,
so.ggtt_offset,
I915_DISPATCH_SECURE);
if (ret)
goto out;
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
ret = __i915_add_request(ring, file, so.obj);
/* intel_logical_ring_add_request moves object to inactive if it
* fails */
out:
i915_gem_render_state_fini(&so);
return ret;
}
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
struct page *page;
uint32_t *reg_state;
int ret;
if (!ppgtt)
ppgtt = dev_priv->mm.aliasing_ppgtt;
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
if (ret) {
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
return ret;
}
ret = i915_gem_object_get_pages(ctx_obj);
if (ret) {
DRM_DEBUG_DRIVER("Could not get object pages\n");
return ret;
}
i915_gem_object_pin_pages(ctx_obj);
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
page = i915_gem_object_get_page(ctx_obj, 1);
reg_state = kmap_atomic(page);
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
* commands followed by (reg, value) pairs. The values we are setting here are
* only for the first context restore: on a subsequent save, the GPU will
* recreate this batchbuffer with new values (including all the missing
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
if (ring->id == RCS)
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
else
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
reg_state[CTX_CONTEXT_CONTROL+1] =
_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
reg_state[CTX_RING_HEAD+1] = 0;
reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
reg_state[CTX_RING_TAIL+1] = 0;
reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
/* Ring buffer start address is not known until the buffer is pinned.
* It is written to the context image in execlists_update_context()
*/
reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
reg_state[CTX_RING_BUFFER_CONTROL+1] =
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
reg_state[CTX_BB_HEAD_U+1] = 0;
reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
reg_state[CTX_BB_HEAD_L+1] = 0;
reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
reg_state[CTX_BB_STATE+1] = (1<<5);
reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
reg_state[CTX_SECOND_BB_STATE+1] = 0;
if (ring->id == RCS) {
/* TODO: according to BSpec, the register state context
* for CHV does not have these. OTOH, these registers do
* exist in CHV. I'm waiting for a clarification */
reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
}
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
reg_state[CTX_CTX_TIMESTAMP+1] = 0;
reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
if (ring->id == RCS) {
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
}
kunmap_atomic(reg_state);
ctx_obj->dirty = 1;
set_page_dirty(page);
i915_gem_object_unpin_pages(ctx_obj);
return 0;
}
/**
* intel_lr_context_free() - free the LRC specific bits of a context
* @ctx: the LR context to free.
*
* The real context freeing is done in i915_gem_context_free: this only
* takes care of the bits that are LRC related: the per-engine backing
* objects and the logical ringbuffer.
*/
void intel_lr_context_free(struct intel_context *ctx)
{
int i;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
if (ctx_obj) {
struct intel_ringbuffer *ringbuf =
ctx->engine[i].ringbuf;
struct intel_engine_cs *ring = ringbuf->ring;
if (ctx == ring->default_context) {
intel_unpin_ringbuffer_obj(ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
}
intel_destroy_ringbuffer_obj(ringbuf);
kfree(ringbuf);
drm_gem_object_unreference(&ctx_obj->base);
}
}
}
static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
int ret = 0;
WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
switch (ring->id) {
case RCS:
if (INTEL_INFO(ring->dev)->gen >= 9)
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
else
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
break;
case VCS:
case BCS:
case VECS:
case VCS2:
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
break;
}
return ret;
}
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
struct drm_i915_gem_object *default_ctx_obj)
{
struct drm_i915_private *dev_priv = ring->dev->dev_private;
/* The status page is offset 0 from the default context object
* in LRC mode. */
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
ring->status_page.page_addr =
kmap(sg_page(default_ctx_obj->pages->sgl));
ring->status_page.obj = default_ctx_obj;
I915_WRITE(RING_HWS_PGA(ring->mmio_base),
(u32)ring->status_page.gfx_addr);
POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}
/**
* intel_lr_context_deferred_create() - create the LRC specific bits of a context
* @ctx: LR context to create.
* @ring: engine to be used with the context.
*
* This function can be called more than once, with different engines, if we plan
* to use the context with them. The context backing objects and the ringbuffers
* (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
* the creation is a deferred call: it's better to make sure first that we need to use
* a given ring with the context.
*
* Return: non-zero on error.
*/
int intel_lr_context_deferred_create(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
const bool is_global_default_ctx = (ctx == ring->default_context);
struct drm_device *dev = ring->dev;
struct drm_i915_gem_object *ctx_obj;
uint32_t context_size;
struct intel_ringbuffer *ringbuf;
int ret;
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
WARN_ON(ctx->engine[ring->id].state);
context_size = round_up(get_lr_context_size(ring), 4096);
ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
if (IS_ERR(ctx_obj)) {
ret = PTR_ERR(ctx_obj);
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
return ret;
}
if (is_global_default_ctx) {
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
if (ret) {
DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
ret);
drm_gem_object_unreference(&ctx_obj->base);
return ret;
}
}
ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
if (!ringbuf) {
DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
ring->name);
ret = -ENOMEM;
goto error_unpin_ctx;
}
ringbuf->ring = ring;
ringbuf->FIXME_lrc_ctx = ctx;
ringbuf->size = 32 * PAGE_SIZE;
ringbuf->effective_size = ringbuf->size;
ringbuf->head = 0;
ringbuf->tail = 0;
ringbuf->last_retired_head = -1;
intel_ring_update_space(ringbuf);
if (ringbuf->obj == NULL) {
ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
if (ret) {
DRM_DEBUG_DRIVER(
"Failed to allocate ringbuffer obj %s: %d\n",
ring->name, ret);
goto error_free_rbuf;
}
if (is_global_default_ctx) {
ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
if (ret) {
DRM_ERROR(
"Failed to pin and map ringbuffer %s: %d\n",
ring->name, ret);
goto error_destroy_rbuf;
}
}
}
ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error;
}
ctx->engine[ring->id].ringbuf = ringbuf;
ctx->engine[ring->id].state = ctx_obj;
if (ctx == ring->default_context)
lrc_setup_hardware_status_page(ring, ctx_obj);
else if (ring->id == RCS && !ctx->rcs_initialized) {
if (ring->init_context) {
ret = ring->init_context(ring, ctx);
if (ret) {
DRM_ERROR("ring init context: %d\n", ret);
ctx->engine[ring->id].ringbuf = NULL;
ctx->engine[ring->id].state = NULL;
goto error;
}
}
ctx->rcs_initialized = true;
}
return 0;
error:
if (is_global_default_ctx)
intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
kfree(ringbuf);
error_unpin_ctx:
if (is_global_default_ctx)
i915_gem_object_ggtt_unpin(ctx_obj);
drm_gem_object_unreference(&ctx_obj->base);
return ret;
}