OpenCloudOS-Kernel/drivers/thermal/armada_thermal.c

992 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Marvell EBU Armada SoCs thermal sensor driver
*
* Copyright (C) 2013 Marvell
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/thermal.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
/* Thermal Manager Control and Status Register */
#define PMU_TDC0_SW_RST_MASK (0x1 << 1)
#define PMU_TM_DISABLE_OFFS 0
#define PMU_TM_DISABLE_MASK (0x1 << PMU_TM_DISABLE_OFFS)
#define PMU_TDC0_REF_CAL_CNT_OFFS 11
#define PMU_TDC0_REF_CAL_CNT_MASK (0x1ff << PMU_TDC0_REF_CAL_CNT_OFFS)
#define PMU_TDC0_OTF_CAL_MASK (0x1 << 30)
#define PMU_TDC0_START_CAL_MASK (0x1 << 25)
#define A375_UNIT_CONTROL_SHIFT 27
#define A375_UNIT_CONTROL_MASK 0x7
#define A375_READOUT_INVERT BIT(15)
#define A375_HW_RESETn BIT(8)
/* Errata fields */
#define CONTROL0_TSEN_TC_TRIM_MASK 0x7
#define CONTROL0_TSEN_TC_TRIM_VAL 0x3
#define CONTROL0_TSEN_START BIT(0)
#define CONTROL0_TSEN_RESET BIT(1)
#define CONTROL0_TSEN_ENABLE BIT(2)
#define CONTROL0_TSEN_AVG_BYPASS BIT(6)
#define CONTROL0_TSEN_CHAN_SHIFT 13
#define CONTROL0_TSEN_CHAN_MASK 0xF
#define CONTROL0_TSEN_OSR_SHIFT 24
#define CONTROL0_TSEN_OSR_MAX 0x3
#define CONTROL0_TSEN_MODE_SHIFT 30
#define CONTROL0_TSEN_MODE_EXTERNAL 0x2
#define CONTROL0_TSEN_MODE_MASK 0x3
#define CONTROL1_TSEN_AVG_MASK 0x7
#define CONTROL1_EXT_TSEN_SW_RESET BIT(7)
#define CONTROL1_EXT_TSEN_HW_RESETn BIT(8)
#define CONTROL1_TSEN_INT_EN BIT(25)
#define CONTROL1_TSEN_SELECT_OFF 21
#define CONTROL1_TSEN_SELECT_MASK 0x3
#define STATUS_POLL_PERIOD_US 1000
#define STATUS_POLL_TIMEOUT_US 100000
#define OVERHEAT_INT_POLL_DELAY_MS 1000
struct armada_thermal_data;
/* Marvell EBU Thermal Sensor Dev Structure */
struct armada_thermal_priv {
struct device *dev;
struct regmap *syscon;
char zone_name[THERMAL_NAME_LENGTH];
/* serialize temperature reads/updates */
struct mutex update_lock;
struct armada_thermal_data *data;
struct thermal_zone_device *overheat_sensor;
int interrupt_source;
int current_channel;
long current_threshold;
long current_hysteresis;
};
struct armada_thermal_data {
/* Initialize the thermal IC */
void (*init)(struct platform_device *pdev,
struct armada_thermal_priv *priv);
/* Formula coeficients: temp = (b - m * reg) / div */
s64 coef_b;
s64 coef_m;
u32 coef_div;
bool inverted;
bool signed_sample;
/* Register shift and mask to access the sensor temperature */
unsigned int temp_shift;
unsigned int temp_mask;
unsigned int thresh_shift;
unsigned int hyst_shift;
unsigned int hyst_mask;
u32 is_valid_bit;
/* Syscon access */
unsigned int syscon_control0_off;
unsigned int syscon_control1_off;
unsigned int syscon_status_off;
unsigned int dfx_irq_cause_off;
unsigned int dfx_irq_mask_off;
unsigned int dfx_overheat_irq;
unsigned int dfx_server_irq_mask_off;
unsigned int dfx_server_irq_en;
/* One sensor is in the thermal IC, the others are in the CPUs if any */
unsigned int cpu_nr;
};
struct armada_drvdata {
enum drvtype {
LEGACY,
SYSCON
} type;
union {
struct armada_thermal_priv *priv;
struct thermal_zone_device *tz;
} data;
};
/*
* struct armada_thermal_sensor - hold the information of one thermal sensor
* @thermal: pointer to the local private structure
* @tzd: pointer to the thermal zone device
* @id: identifier of the thermal sensor
*/
struct armada_thermal_sensor {
struct armada_thermal_priv *priv;
int id;
};
static void armadaxp_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= PMU_TDC0_OTF_CAL_MASK;
/* Reference calibration value */
reg &= ~PMU_TDC0_REF_CAL_CNT_MASK;
reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS);
/* Reset the sensor */
reg |= PMU_TDC0_SW_RST_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
reg &= ~PMU_TDC0_SW_RST_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
/* Enable the sensor */
regmap_read(priv->syscon, data->syscon_status_off, &reg);
reg &= ~PMU_TM_DISABLE_MASK;
regmap_write(priv->syscon, data->syscon_status_off, reg);
}
static void armada370_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= PMU_TDC0_OTF_CAL_MASK;
/* Reference calibration value */
reg &= ~PMU_TDC0_REF_CAL_CNT_MASK;
reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS);
/* Reset the sensor */
reg &= ~PMU_TDC0_START_CAL_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(10);
}
static void armada375_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~(A375_UNIT_CONTROL_MASK << A375_UNIT_CONTROL_SHIFT);
reg &= ~A375_READOUT_INVERT;
reg &= ~A375_HW_RESETn;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(20);
reg |= A375_HW_RESETn;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(50);
}
static int armada_wait_sensor_validity(struct armada_thermal_priv *priv)
{
u32 reg;
return regmap_read_poll_timeout(priv->syscon,
priv->data->syscon_status_off, reg,
reg & priv->data->is_valid_bit,
STATUS_POLL_PERIOD_US,
STATUS_POLL_TIMEOUT_US);
}
static void armada380_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
/* Disable the HW/SW reset */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= CONTROL1_EXT_TSEN_HW_RESETn;
reg &= ~CONTROL1_EXT_TSEN_SW_RESET;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
/* Set Tsen Tc Trim to correct default value (errata #132698) */
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg &= ~CONTROL0_TSEN_TC_TRIM_MASK;
reg |= CONTROL0_TSEN_TC_TRIM_VAL;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
}
static void armada_ap80x_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg &= ~CONTROL0_TSEN_RESET;
reg |= CONTROL0_TSEN_START | CONTROL0_TSEN_ENABLE;
/* Sample every ~2ms */
reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT;
/* Enable average (2 samples by default) */
reg &= ~CONTROL0_TSEN_AVG_BYPASS;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
}
static void armada_cp110_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
armada380_init(pdev, priv);
/* Sample every ~2ms */
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
/* Average the output value over 2^1 = 2 samples */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~CONTROL1_TSEN_AVG_MASK;
reg |= 1;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
static bool armada_is_valid(struct armada_thermal_priv *priv)
{
u32 reg;
if (!priv->data->is_valid_bit)
return true;
regmap_read(priv->syscon, priv->data->syscon_status_off, &reg);
return reg & priv->data->is_valid_bit;
}
static void armada_enable_overheat_interrupt(struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
/* Clear DFX temperature IRQ cause */
regmap_read(priv->syscon, data->dfx_irq_cause_off, &reg);
/* Enable DFX Temperature IRQ */
regmap_read(priv->syscon, data->dfx_irq_mask_off, &reg);
reg |= data->dfx_overheat_irq;
regmap_write(priv->syscon, data->dfx_irq_mask_off, reg);
/* Enable DFX server IRQ */
regmap_read(priv->syscon, data->dfx_server_irq_mask_off, &reg);
reg |= data->dfx_server_irq_en;
regmap_write(priv->syscon, data->dfx_server_irq_mask_off, reg);
/* Enable overheat interrupt */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= CONTROL1_TSEN_INT_EN;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
static void __maybe_unused
armada_disable_overheat_interrupt(struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~CONTROL1_TSEN_INT_EN;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
/* There is currently no board with more than one sensor per channel */
static int armada_select_channel(struct armada_thermal_priv *priv, int channel)
{
struct armada_thermal_data *data = priv->data;
u32 ctrl0;
if (channel < 0 || channel > priv->data->cpu_nr)
return -EINVAL;
if (priv->current_channel == channel)
return 0;
/* Stop the measurements */
regmap_read(priv->syscon, data->syscon_control0_off, &ctrl0);
ctrl0 &= ~CONTROL0_TSEN_START;
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
/* Reset the mode, internal sensor will be automatically selected */
ctrl0 &= ~(CONTROL0_TSEN_MODE_MASK << CONTROL0_TSEN_MODE_SHIFT);
/* Other channels are external and should be selected accordingly */
if (channel) {
/* Change the mode to external */
ctrl0 |= CONTROL0_TSEN_MODE_EXTERNAL <<
CONTROL0_TSEN_MODE_SHIFT;
/* Select the sensor */
ctrl0 &= ~(CONTROL0_TSEN_CHAN_MASK << CONTROL0_TSEN_CHAN_SHIFT);
ctrl0 |= (channel - 1) << CONTROL0_TSEN_CHAN_SHIFT;
}
/* Actually set the mode/channel */
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
priv->current_channel = channel;
/* Re-start the measurements */
ctrl0 |= CONTROL0_TSEN_START;
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
/*
* The IP has a latency of ~15ms, so after updating the selected source,
* we must absolutely wait for the sensor validity bit to ensure we read
* actual data.
*/
if (armada_wait_sensor_validity(priv))
return -EIO;
return 0;
}
static int armada_read_sensor(struct armada_thermal_priv *priv, int *temp)
{
u32 reg, div;
s64 sample, b, m;
regmap_read(priv->syscon, priv->data->syscon_status_off, &reg);
reg = (reg >> priv->data->temp_shift) & priv->data->temp_mask;
if (priv->data->signed_sample)
/* The most significant bit is the sign bit */
sample = sign_extend32(reg, fls(priv->data->temp_mask) - 1);
else
sample = reg;
/* Get formula coeficients */
b = priv->data->coef_b;
m = priv->data->coef_m;
div = priv->data->coef_div;
if (priv->data->inverted)
*temp = div_s64((m * sample) - b, div);
else
*temp = div_s64(b - (m * sample), div);
return 0;
}
static int armada_get_temp_legacy(struct thermal_zone_device *thermal,
int *temp)
{
struct armada_thermal_priv *priv = thermal_zone_device_priv(thermal);
int ret;
/* Valid check */
if (!armada_is_valid(priv))
return -EIO;
/* Do the actual reading */
ret = armada_read_sensor(priv, temp);
return ret;
}
static struct thermal_zone_device_ops legacy_ops = {
.get_temp = armada_get_temp_legacy,
};
static int armada_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct armada_thermal_sensor *sensor = thermal_zone_device_priv(tz);
struct armada_thermal_priv *priv = sensor->priv;
int ret;
mutex_lock(&priv->update_lock);
/* Select the desired channel */
ret = armada_select_channel(priv, sensor->id);
if (ret)
goto unlock_mutex;
/* Do the actual reading */
ret = armada_read_sensor(priv, temp);
if (ret)
goto unlock_mutex;
/*
* Select back the interrupt source channel from which a potential
* critical trip point has been set.
*/
ret = armada_select_channel(priv, priv->interrupt_source);
unlock_mutex:
mutex_unlock(&priv->update_lock);
return ret;
}
static const struct thermal_zone_device_ops of_ops = {
.get_temp = armada_get_temp,
};
static unsigned int armada_mc_to_reg_temp(struct armada_thermal_data *data,
unsigned int temp_mc)
{
s64 b = data->coef_b;
s64 m = data->coef_m;
s64 div = data->coef_div;
unsigned int sample;
if (data->inverted)
sample = div_s64(((temp_mc * div) + b), m);
else
sample = div_s64((b - (temp_mc * div)), m);
return sample & data->temp_mask;
}
/*
* The documentation states:
* high/low watermark = threshold +/- 0.4761 * 2^(hysteresis + 2)
* which is the mathematical derivation for:
* 0x0 <=> 1.9°C, 0x1 <=> 3.8°C, 0x2 <=> 7.6°C, 0x3 <=> 15.2°C
*/
static unsigned int hyst_levels_mc[] = {1900, 3800, 7600, 15200};
static unsigned int armada_mc_to_reg_hyst(struct armada_thermal_data *data,
unsigned int hyst_mc)
{
int i;
/*
* We will always take the smallest possible hysteresis to avoid risking
* the hardware integrity by enlarging the threshold by +8°C in the
* worst case.
*/
for (i = ARRAY_SIZE(hyst_levels_mc) - 1; i > 0; i--)
if (hyst_mc >= hyst_levels_mc[i])
break;
return i & data->hyst_mask;
}
static void armada_set_overheat_thresholds(struct armada_thermal_priv *priv,
int thresh_mc, int hyst_mc)
{
struct armada_thermal_data *data = priv->data;
unsigned int threshold = armada_mc_to_reg_temp(data, thresh_mc);
unsigned int hysteresis = armada_mc_to_reg_hyst(data, hyst_mc);
u32 ctrl1;
regmap_read(priv->syscon, data->syscon_control1_off, &ctrl1);
/* Set Threshold */
if (thresh_mc >= 0) {
ctrl1 &= ~(data->temp_mask << data->thresh_shift);
ctrl1 |= threshold << data->thresh_shift;
priv->current_threshold = thresh_mc;
}
/* Set Hysteresis */
if (hyst_mc >= 0) {
ctrl1 &= ~(data->hyst_mask << data->hyst_shift);
ctrl1 |= hysteresis << data->hyst_shift;
priv->current_hysteresis = hyst_mc;
}
regmap_write(priv->syscon, data->syscon_control1_off, ctrl1);
}
static irqreturn_t armada_overheat_isr(int irq, void *blob)
{
/*
* Disable the IRQ and continue in thread context (thermal core
* notification and temperature monitoring).
*/
disable_irq_nosync(irq);
return IRQ_WAKE_THREAD;
}
static irqreturn_t armada_overheat_isr_thread(int irq, void *blob)
{
struct armada_thermal_priv *priv = blob;
int low_threshold = priv->current_threshold - priv->current_hysteresis;
int temperature;
u32 dummy;
int ret;
/* Notify the core in thread context */
thermal_zone_device_update(priv->overheat_sensor,
THERMAL_EVENT_UNSPECIFIED);
/*
* The overheat interrupt must be cleared by reading the DFX interrupt
* cause _after_ the temperature has fallen down to the low threshold.
* Otherwise future interrupts might not be served.
*/
do {
msleep(OVERHEAT_INT_POLL_DELAY_MS);
mutex_lock(&priv->update_lock);
ret = armada_read_sensor(priv, &temperature);
mutex_unlock(&priv->update_lock);
if (ret)
goto enable_irq;
} while (temperature >= low_threshold);
regmap_read(priv->syscon, priv->data->dfx_irq_cause_off, &dummy);
/* Notify the thermal core that the temperature is acceptable again */
thermal_zone_device_update(priv->overheat_sensor,
THERMAL_EVENT_UNSPECIFIED);
enable_irq:
enable_irq(irq);
return IRQ_HANDLED;
}
static const struct armada_thermal_data armadaxp_data = {
.init = armadaxp_init,
.temp_shift = 10,
.temp_mask = 0x1ff,
.coef_b = 3153000000ULL,
.coef_m = 10000000ULL,
.coef_div = 13825,
.syscon_status_off = 0xb0,
.syscon_control1_off = 0x2d0,
};
static const struct armada_thermal_data armada370_data = {
.init = armada370_init,
.is_valid_bit = BIT(9),
.temp_shift = 10,
.temp_mask = 0x1ff,
.coef_b = 3153000000ULL,
.coef_m = 10000000ULL,
.coef_div = 13825,
.syscon_status_off = 0x0,
.syscon_control1_off = 0x4,
};
static const struct armada_thermal_data armada375_data = {
.init = armada375_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x1ff,
.coef_b = 3171900000ULL,
.coef_m = 10000000ULL,
.coef_div = 13616,
.syscon_status_off = 0x78,
.syscon_control0_off = 0x7c,
.syscon_control1_off = 0x80,
};
static const struct armada_thermal_data armada380_data = {
.init = armada380_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x3ff,
.coef_b = 1172499100ULL,
.coef_m = 2000096ULL,
.coef_div = 4201,
.inverted = true,
.syscon_control0_off = 0x70,
.syscon_control1_off = 0x74,
.syscon_status_off = 0x78,
};
static const struct armada_thermal_data armada_ap806_data = {
.init = armada_ap80x_init,
.is_valid_bit = BIT(16),
.temp_shift = 0,
.temp_mask = 0x3ff,
.thresh_shift = 3,
.hyst_shift = 19,
.hyst_mask = 0x3,
.coef_b = -150000LL,
.coef_m = 423ULL,
.coef_div = 1,
.inverted = true,
.signed_sample = true,
.syscon_control0_off = 0x84,
.syscon_control1_off = 0x88,
.syscon_status_off = 0x8C,
.dfx_irq_cause_off = 0x108,
.dfx_irq_mask_off = 0x10C,
.dfx_overheat_irq = BIT(22),
.dfx_server_irq_mask_off = 0x104,
.dfx_server_irq_en = BIT(1),
.cpu_nr = 4,
};
static const struct armada_thermal_data armada_ap807_data = {
.init = armada_ap80x_init,
.is_valid_bit = BIT(16),
.temp_shift = 0,
.temp_mask = 0x3ff,
.thresh_shift = 3,
.hyst_shift = 19,
.hyst_mask = 0x3,
.coef_b = -128900LL,
.coef_m = 394ULL,
.coef_div = 1,
.inverted = true,
.signed_sample = true,
.syscon_control0_off = 0x84,
.syscon_control1_off = 0x88,
.syscon_status_off = 0x8C,
.dfx_irq_cause_off = 0x108,
.dfx_irq_mask_off = 0x10C,
.dfx_overheat_irq = BIT(22),
.dfx_server_irq_mask_off = 0x104,
.dfx_server_irq_en = BIT(1),
.cpu_nr = 4,
};
static const struct armada_thermal_data armada_cp110_data = {
.init = armada_cp110_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x3ff,
.thresh_shift = 16,
.hyst_shift = 26,
.hyst_mask = 0x3,
.coef_b = 1172499100ULL,
.coef_m = 2000096ULL,
.coef_div = 4201,
.inverted = true,
.syscon_control0_off = 0x70,
.syscon_control1_off = 0x74,
.syscon_status_off = 0x78,
.dfx_irq_cause_off = 0x108,
.dfx_irq_mask_off = 0x10C,
.dfx_overheat_irq = BIT(20),
.dfx_server_irq_mask_off = 0x104,
.dfx_server_irq_en = BIT(1),
};
static const struct of_device_id armada_thermal_id_table[] = {
{
.compatible = "marvell,armadaxp-thermal",
.data = &armadaxp_data,
},
{
.compatible = "marvell,armada370-thermal",
.data = &armada370_data,
},
{
.compatible = "marvell,armada375-thermal",
.data = &armada375_data,
},
{
.compatible = "marvell,armada380-thermal",
.data = &armada380_data,
},
{
.compatible = "marvell,armada-ap806-thermal",
.data = &armada_ap806_data,
},
{
.compatible = "marvell,armada-ap807-thermal",
.data = &armada_ap807_data,
},
{
.compatible = "marvell,armada-cp110-thermal",
.data = &armada_cp110_data,
},
{
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, armada_thermal_id_table);
static const struct regmap_config armada_thermal_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
};
static int armada_thermal_probe_legacy(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
void __iomem *base;
/* First memory region points towards the status register */
base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(base))
return PTR_ERR(base);
/*
* Fix up from the old individual DT register specification to
* cover all the registers. We do this by adjusting the ioremap()
* result, which should be fine as ioremap() deals with pages.
* However, validate that we do not cross a page boundary while
* making this adjustment.
*/
if (((unsigned long)base & ~PAGE_MASK) < data->syscon_status_off)
return -EINVAL;
base -= data->syscon_status_off;
priv->syscon = devm_regmap_init_mmio(&pdev->dev, base,
&armada_thermal_regmap_config);
return PTR_ERR_OR_ZERO(priv->syscon);
}
static int armada_thermal_probe_syscon(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
priv->syscon = syscon_node_to_regmap(pdev->dev.parent->of_node);
return PTR_ERR_OR_ZERO(priv->syscon);
}
static void armada_set_sane_name(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
const char *name = dev_name(&pdev->dev);
char *insane_char;
if (strlen(name) > THERMAL_NAME_LENGTH) {
/*
* When inside a system controller, the device name has the
* form: f06f8000.system-controller:ap-thermal so stripping
* after the ':' should give us a shorter but meaningful name.
*/
name = strrchr(name, ':');
if (!name)
name = "armada_thermal";
else
name++;
}
/* Save the name locally */
strscpy(priv->zone_name, name, THERMAL_NAME_LENGTH);
/* Then check there are no '-' or hwmon core will complain */
do {
insane_char = strpbrk(priv->zone_name, "-");
if (insane_char)
*insane_char = '_';
} while (insane_char);
}
/*
* The IP can manage to trigger interrupts on overheat situation from all the
* sensors. However, the interrupt source changes along with the last selected
* source (ie. the last read sensor), which is an inconsistent behavior. Avoid
* possible glitches by always selecting back only one channel (arbitrarily: the
* first in the DT which has a critical trip point). We also disable sensor
* switch during overheat situations.
*/
static int armada_configure_overheat_int(struct armada_thermal_priv *priv,
struct thermal_zone_device *tz,
int sensor_id)
{
/* Retrieve the critical trip point to enable the overheat interrupt */
int temperature;
int ret;
ret = thermal_zone_get_crit_temp(tz, &temperature);
if (ret)
return ret;
ret = armada_select_channel(priv, sensor_id);
if (ret)
return ret;
/*
* A critical temperature does not have a hysteresis
*/
armada_set_overheat_thresholds(priv, temperature, 0);
priv->overheat_sensor = tz;
priv->interrupt_source = sensor_id;
armada_enable_overheat_interrupt(priv);
return 0;
}
static int armada_thermal_probe(struct platform_device *pdev)
{
struct thermal_zone_device *tz;
struct armada_thermal_sensor *sensor;
struct armada_drvdata *drvdata;
const struct of_device_id *match;
struct armada_thermal_priv *priv;
int sensor_id, irq;
int ret;
match = of_match_device(armada_thermal_id_table, &pdev->dev);
if (!match)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->data = (struct armada_thermal_data *)match->data;
mutex_init(&priv->update_lock);
/*
* Legacy DT bindings only described "control1" register (also referred
* as "control MSB" on old documentation). Then, bindings moved to cover
* "control0/control LSB" and "control1/control MSB" registers within
* the same resource, which was then of size 8 instead of 4.
*
* The logic of defining sporadic registers is broken. For instance, it
* blocked the addition of the overheat interrupt feature that needed
* another resource somewhere else in the same memory area. One solution
* is to define an overall system controller and put the thermal node
* into it, which requires the use of regmaps across all the driver.
*/
if (IS_ERR(syscon_node_to_regmap(pdev->dev.parent->of_node))) {
/* Ensure device name is correct for the thermal core */
armada_set_sane_name(pdev, priv);
ret = armada_thermal_probe_legacy(pdev, priv);
if (ret)
return ret;
priv->data->init(pdev, priv);
/* Wait the sensors to be valid */
armada_wait_sensor_validity(priv);
tz = thermal_tripless_zone_device_register(priv->zone_name,
priv, &legacy_ops,
NULL);
if (IS_ERR(tz)) {
dev_err(&pdev->dev,
"Failed to register thermal zone device\n");
return PTR_ERR(tz);
}
ret = thermal_zone_device_enable(tz);
if (ret) {
thermal_zone_device_unregister(tz);
return ret;
}
drvdata->type = LEGACY;
drvdata->data.tz = tz;
platform_set_drvdata(pdev, drvdata);
return 0;
}
ret = armada_thermal_probe_syscon(pdev, priv);
if (ret)
return ret;
priv->current_channel = -1;
priv->data->init(pdev, priv);
drvdata->type = SYSCON;
drvdata->data.priv = priv;
platform_set_drvdata(pdev, drvdata);
irq = platform_get_irq(pdev, 0);
if (irq == -EPROBE_DEFER)
return irq;
/* The overheat interrupt feature is not mandatory */
if (irq > 0) {
ret = devm_request_threaded_irq(&pdev->dev, irq,
armada_overheat_isr,
armada_overheat_isr_thread,
0, NULL, priv);
if (ret) {
dev_err(&pdev->dev, "Cannot request threaded IRQ %d\n",
irq);
return ret;
}
}
/*
* There is one channel for the IC and one per CPU (if any), each
* channel has one sensor.
*/
for (sensor_id = 0; sensor_id <= priv->data->cpu_nr; sensor_id++) {
sensor = devm_kzalloc(&pdev->dev,
sizeof(struct armada_thermal_sensor),
GFP_KERNEL);
if (!sensor)
return -ENOMEM;
/* Register the sensor */
sensor->priv = priv;
sensor->id = sensor_id;
tz = devm_thermal_of_zone_register(&pdev->dev,
sensor->id, sensor,
&of_ops);
if (IS_ERR(tz)) {
dev_info(&pdev->dev, "Thermal sensor %d unavailable\n",
sensor_id);
devm_kfree(&pdev->dev, sensor);
continue;
}
/*
* The first channel that has a critical trip point registered
* in the DT will serve as interrupt source. Others possible
* critical trip points will simply be ignored by the driver.
*/
if (irq > 0 && !priv->overheat_sensor)
armada_configure_overheat_int(priv, tz, sensor->id);
}
/* Just complain if no overheat interrupt was set up */
if (!priv->overheat_sensor)
dev_warn(&pdev->dev, "Overheat interrupt not available\n");
return 0;
}
static int armada_thermal_exit(struct platform_device *pdev)
{
struct armada_drvdata *drvdata = platform_get_drvdata(pdev);
if (drvdata->type == LEGACY)
thermal_zone_device_unregister(drvdata->data.tz);
return 0;
}
static struct platform_driver armada_thermal_driver = {
.probe = armada_thermal_probe,
.remove = armada_thermal_exit,
.driver = {
.name = "armada_thermal",
.of_match_table = armada_thermal_id_table,
},
};
module_platform_driver(armada_thermal_driver);
MODULE_AUTHOR("Ezequiel Garcia <ezequiel.garcia@free-electrons.com>");
MODULE_DESCRIPTION("Marvell EBU Armada SoCs thermal driver");
MODULE_LICENSE("GPL v2");