OpenCloudOS-Kernel/drivers/gpu/drm/gma500/gtt.c

552 lines
15 KiB
C

/*
* Copyright (c) 2007, Intel Corporation.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com>
* Alan Cox <alan@linux.intel.com>
*/
#include <drm/drmP.h>
#include <linux/shmem_fs.h>
#include "psb_drv.h"
/*
* GTT resource allocator - manage page mappings in GTT space
*/
/**
* psb_gtt_mask_pte - generate GTT pte entry
* @pfn: page number to encode
* @type: type of memory in the GTT
*
* Set the GTT entry for the appropriate memory type.
*/
static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type)
{
uint32_t mask = PSB_PTE_VALID;
if (type & PSB_MMU_CACHED_MEMORY)
mask |= PSB_PTE_CACHED;
if (type & PSB_MMU_RO_MEMORY)
mask |= PSB_PTE_RO;
if (type & PSB_MMU_WO_MEMORY)
mask |= PSB_PTE_WO;
return (pfn << PAGE_SHIFT) | mask;
}
/**
* psb_gtt_entry - find the GTT entries for a gtt_range
* @dev: our DRM device
* @r: our GTT range
*
* Given a gtt_range object return the GTT offset of the page table
* entries for this gtt_range
*/
static u32 *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r)
{
struct drm_psb_private *dev_priv = dev->dev_private;
unsigned long offset;
offset = r->resource.start - dev_priv->gtt_mem->start;
return dev_priv->gtt_map + (offset >> PAGE_SHIFT);
}
/**
* psb_gtt_insert - put an object into the GTT
* @dev: our DRM device
* @r: our GTT range
*
* Take our preallocated GTT range and insert the GEM object into
* the GTT. This is protected via the gtt mutex which the caller
* must hold.
*/
static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r)
{
u32 *gtt_slot, pte;
struct page **pages;
int i;
if (r->pages == NULL) {
WARN_ON(1);
return -EINVAL;
}
WARN_ON(r->stolen); /* refcount these maybe ? */
gtt_slot = psb_gtt_entry(dev, r);
pages = r->pages;
/* Make sure changes are visible to the GPU */
set_pages_array_wc(pages, r->npage);
/* Write our page entries into the GTT itself */
for (i = r->roll; i < r->npage; i++) {
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
iowrite32(pte, gtt_slot++);
}
for (i = 0; i < r->roll; i++) {
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
iowrite32(pte, gtt_slot++);
}
/* Make sure all the entries are set before we return */
ioread32(gtt_slot - 1);
return 0;
}
/**
* psb_gtt_remove - remove an object from the GTT
* @dev: our DRM device
* @r: our GTT range
*
* Remove a preallocated GTT range from the GTT. Overwrite all the
* page table entries with the dummy page. This is protected via the gtt
* mutex which the caller must hold.
*/
static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r)
{
struct drm_psb_private *dev_priv = dev->dev_private;
u32 *gtt_slot, pte;
int i;
WARN_ON(r->stolen);
gtt_slot = psb_gtt_entry(dev, r);
pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0);
for (i = 0; i < r->npage; i++)
iowrite32(pte, gtt_slot++);
ioread32(gtt_slot - 1);
set_pages_array_wb(r->pages, r->npage);
}
/**
* psb_gtt_roll - set scrolling position
* @dev: our DRM device
* @r: the gtt mapping we are using
* @roll: roll offset
*
* Roll an existing pinned mapping by moving the pages through the GTT.
* This allows us to implement hardware scrolling on the consoles without
* a 2D engine
*/
void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll)
{
u32 *gtt_slot, pte;
int i;
if (roll >= r->npage) {
WARN_ON(1);
return;
}
r->roll = roll;
/* Not currently in the GTT - no worry we will write the mapping at
the right position when it gets pinned */
if (!r->stolen && !r->in_gart)
return;
gtt_slot = psb_gtt_entry(dev, r);
for (i = r->roll; i < r->npage; i++) {
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
iowrite32(pte, gtt_slot++);
}
for (i = 0; i < r->roll; i++) {
pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
iowrite32(pte, gtt_slot++);
}
ioread32(gtt_slot - 1);
}
/**
* psb_gtt_attach_pages - attach and pin GEM pages
* @gt: the gtt range
*
* Pin and build an in kernel list of the pages that back our GEM object.
* While we hold this the pages cannot be swapped out. This is protected
* via the gtt mutex which the caller must hold.
*/
static int psb_gtt_attach_pages(struct gtt_range *gt)
{
struct inode *inode;
struct address_space *mapping;
int i;
struct page *p;
int pages = gt->gem.size / PAGE_SIZE;
WARN_ON(gt->pages);
/* This is the shared memory object that backs the GEM resource */
inode = gt->gem.filp->f_path.dentry->d_inode;
mapping = inode->i_mapping;
gt->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL);
if (gt->pages == NULL)
return -ENOMEM;
gt->npage = pages;
for (i = 0; i < pages; i++) {
p = shmem_read_mapping_page(mapping, i);
if (IS_ERR(p))
goto err;
gt->pages[i] = p;
}
return 0;
err:
while (i--)
page_cache_release(gt->pages[i]);
kfree(gt->pages);
gt->pages = NULL;
return PTR_ERR(p);
}
/**
* psb_gtt_detach_pages - attach and pin GEM pages
* @gt: the gtt range
*
* Undo the effect of psb_gtt_attach_pages. At this point the pages
* must have been removed from the GTT as they could now be paged out
* and move bus address. This is protected via the gtt mutex which the
* caller must hold.
*/
static void psb_gtt_detach_pages(struct gtt_range *gt)
{
int i;
for (i = 0; i < gt->npage; i++) {
/* FIXME: do we need to force dirty */
set_page_dirty(gt->pages[i]);
page_cache_release(gt->pages[i]);
}
kfree(gt->pages);
gt->pages = NULL;
}
/**
* psb_gtt_pin - pin pages into the GTT
* @gt: range to pin
*
* Pin a set of pages into the GTT. The pins are refcounted so that
* multiple pins need multiple unpins to undo.
*
* Non GEM backed objects treat this as a no-op as they are always GTT
* backed objects.
*/
int psb_gtt_pin(struct gtt_range *gt)
{
int ret = 0;
struct drm_device *dev = gt->gem.dev;
struct drm_psb_private *dev_priv = dev->dev_private;
mutex_lock(&dev_priv->gtt_mutex);
if (gt->in_gart == 0 && gt->stolen == 0) {
ret = psb_gtt_attach_pages(gt);
if (ret < 0)
goto out;
ret = psb_gtt_insert(dev, gt);
if (ret < 0) {
psb_gtt_detach_pages(gt);
goto out;
}
}
gt->in_gart++;
out:
mutex_unlock(&dev_priv->gtt_mutex);
return ret;
}
/**
* psb_gtt_unpin - Drop a GTT pin requirement
* @gt: range to pin
*
* Undoes the effect of psb_gtt_pin. On the last drop the GEM object
* will be removed from the GTT which will also drop the page references
* and allow the VM to clean up or page stuff.
*
* Non GEM backed objects treat this as a no-op as they are always GTT
* backed objects.
*/
void psb_gtt_unpin(struct gtt_range *gt)
{
struct drm_device *dev = gt->gem.dev;
struct drm_psb_private *dev_priv = dev->dev_private;
mutex_lock(&dev_priv->gtt_mutex);
WARN_ON(!gt->in_gart);
gt->in_gart--;
if (gt->in_gart == 0 && gt->stolen == 0) {
psb_gtt_remove(dev, gt);
psb_gtt_detach_pages(gt);
}
mutex_unlock(&dev_priv->gtt_mutex);
}
/*
* GTT resource allocator - allocate and manage GTT address space
*/
/**
* psb_gtt_alloc_range - allocate GTT address space
* @dev: Our DRM device
* @len: length (bytes) of address space required
* @name: resource name
* @backed: resource should be backed by stolen pages
*
* Ask the kernel core to find us a suitable range of addresses
* to use for a GTT mapping.
*
* Returns a gtt_range structure describing the object, or NULL on
* error. On successful return the resource is both allocated and marked
* as in use.
*/
struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len,
const char *name, int backed)
{
struct drm_psb_private *dev_priv = dev->dev_private;
struct gtt_range *gt;
struct resource *r = dev_priv->gtt_mem;
int ret;
unsigned long start, end;
if (backed) {
/* The start of the GTT is the stolen pages */
start = r->start;
end = r->start + dev_priv->gtt.stolen_size - 1;
} else {
/* The rest we will use for GEM backed objects */
start = r->start + dev_priv->gtt.stolen_size;
end = r->end;
}
gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL);
if (gt == NULL)
return NULL;
gt->resource.name = name;
gt->stolen = backed;
gt->in_gart = backed;
gt->roll = 0;
/* Ensure this is set for non GEM objects */
gt->gem.dev = dev;
ret = allocate_resource(dev_priv->gtt_mem, &gt->resource,
len, start, end, PAGE_SIZE, NULL, NULL);
if (ret == 0) {
gt->offset = gt->resource.start - r->start;
return gt;
}
kfree(gt);
return NULL;
}
/**
* psb_gtt_free_range - release GTT address space
* @dev: our DRM device
* @gt: a mapping created with psb_gtt_alloc_range
*
* Release a resource that was allocated with psb_gtt_alloc_range. If the
* object has been pinned by mmap users we clean this up here currently.
*/
void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt)
{
/* Undo the mmap pin if we are destroying the object */
if (gt->mmapping) {
psb_gtt_unpin(gt);
gt->mmapping = 0;
}
WARN_ON(gt->in_gart && !gt->stolen);
release_resource(&gt->resource);
kfree(gt);
}
static void psb_gtt_alloc(struct drm_device *dev)
{
struct drm_psb_private *dev_priv = dev->dev_private;
init_rwsem(&dev_priv->gtt.sem);
}
void psb_gtt_takedown(struct drm_device *dev)
{
struct drm_psb_private *dev_priv = dev->dev_private;
if (dev_priv->gtt_map) {
iounmap(dev_priv->gtt_map);
dev_priv->gtt_map = NULL;
}
if (dev_priv->gtt_initialized) {
pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
dev_priv->gmch_ctrl);
PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL);
(void) PSB_RVDC32(PSB_PGETBL_CTL);
}
if (dev_priv->vram_addr)
iounmap(dev_priv->gtt_map);
}
int psb_gtt_init(struct drm_device *dev, int resume)
{
struct drm_psb_private *dev_priv = dev->dev_private;
unsigned gtt_pages;
unsigned long stolen_size, vram_stolen_size;
unsigned i, num_pages;
unsigned pfn_base;
uint32_t vram_pages;
uint32_t dvmt_mode = 0;
struct psb_gtt *pg;
int ret = 0;
uint32_t pte;
mutex_init(&dev_priv->gtt_mutex);
psb_gtt_alloc(dev);
pg = &dev_priv->gtt;
/* Enable the GTT */
pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl);
pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED);
dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL);
PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL);
(void) PSB_RVDC32(PSB_PGETBL_CTL);
/* The root resource we allocate address space from */
dev_priv->gtt_initialized = 1;
pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK;
/*
* The video mmu has a hw bug when accessing 0x0D0000000.
* Make gatt start at 0x0e000,0000. This doesn't actually
* matter for us but may do if the video acceleration ever
* gets opened up.
*/
pg->mmu_gatt_start = 0xE0000000;
pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE);
gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE)
>> PAGE_SHIFT;
/* CDV doesn't report this. In which case the system has 64 gtt pages */
if (pg->gtt_start == 0 || gtt_pages == 0) {
dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n");
gtt_pages = 64;
pg->gtt_start = dev_priv->pge_ctl;
}
pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE);
pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE)
>> PAGE_SHIFT;
dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE];
if (pg->gatt_pages == 0 || pg->gatt_start == 0) {
static struct resource fudge; /* Preferably peppermint */
/* This can occur on CDV systems. Fudge it in this case.
We really don't care what imaginary space is being allocated
at this point */
dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n");
pg->gatt_start = 0x40000000;
pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT;
/* This is a little confusing but in fact the GTT is providing
a view from the GPU into memory and not vice versa. As such
this is really allocating space that is not the same as the
CPU address space on CDV */
fudge.start = 0x40000000;
fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1;
fudge.name = "fudge";
fudge.flags = IORESOURCE_MEM;
dev_priv->gtt_mem = &fudge;
}
pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base);
vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base
- PAGE_SIZE;
stolen_size = vram_stolen_size;
printk(KERN_INFO "Stolen memory information\n");
printk(KERN_INFO " base in RAM: 0x%x\n", dev_priv->stolen_base);
printk(KERN_INFO " size: %luK, calculated by (GTT RAM base) - (Stolen base), seems wrong\n",
vram_stolen_size/1024);
dvmt_mode = (dev_priv->gmch_ctrl >> 4) & 0x7;
printk(KERN_INFO " the correct size should be: %dM(dvmt mode=%d)\n",
(dvmt_mode == 1) ? 1 : (2 << (dvmt_mode - 1)), dvmt_mode);
if (resume && (gtt_pages != pg->gtt_pages) &&
(stolen_size != pg->stolen_size)) {
dev_err(dev->dev, "GTT resume error.\n");
ret = -EINVAL;
goto out_err;
}
pg->gtt_pages = gtt_pages;
pg->stolen_size = stolen_size;
dev_priv->vram_stolen_size = vram_stolen_size;
/*
* Map the GTT and the stolen memory area
*/
dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start,
gtt_pages << PAGE_SHIFT);
if (!dev_priv->gtt_map) {
dev_err(dev->dev, "Failure to map gtt.\n");
ret = -ENOMEM;
goto out_err;
}
dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, stolen_size);
if (!dev_priv->vram_addr) {
dev_err(dev->dev, "Failure to map stolen base.\n");
ret = -ENOMEM;
goto out_err;
}
/*
* Insert vram stolen pages into the GTT
*/
pfn_base = dev_priv->stolen_base >> PAGE_SHIFT;
vram_pages = num_pages = vram_stolen_size >> PAGE_SHIFT;
printk(KERN_INFO"Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n",
num_pages, pfn_base << PAGE_SHIFT, 0);
for (i = 0; i < num_pages; ++i) {
pte = psb_gtt_mask_pte(pfn_base + i, 0);
iowrite32(pte, dev_priv->gtt_map + i);
}
/*
* Init rest of GTT to the scratch page to avoid accidents or scribbles
*/
pfn_base = page_to_pfn(dev_priv->scratch_page);
pte = psb_gtt_mask_pte(pfn_base, 0);
for (; i < gtt_pages; ++i)
iowrite32(pte, dev_priv->gtt_map + i);
(void) ioread32(dev_priv->gtt_map + i - 1);
return 0;
out_err:
psb_gtt_takedown(dev);
return ret;
}