OpenCloudOS-Kernel/drivers/clocksource/timer-sun5i.c

331 lines
8.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Allwinner SoCs hstimer driver.
*
* Copyright (C) 2013 Maxime Ripard
*
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqreturn.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#define TIMER_IRQ_EN_REG 0x00
#define TIMER_IRQ_EN(val) BIT(val)
#define TIMER_IRQ_ST_REG 0x04
#define TIMER_CTL_REG(val) (0x20 * (val) + 0x10)
#define TIMER_CTL_ENABLE BIT(0)
#define TIMER_CTL_RELOAD BIT(1)
#define TIMER_CTL_CLK_PRES(val) (((val) & 0x7) << 4)
#define TIMER_CTL_ONESHOT BIT(7)
#define TIMER_INTVAL_LO_REG(val) (0x20 * (val) + 0x14)
#define TIMER_INTVAL_HI_REG(val) (0x20 * (val) + 0x18)
#define TIMER_CNTVAL_LO_REG(val) (0x20 * (val) + 0x1c)
#define TIMER_CNTVAL_HI_REG(val) (0x20 * (val) + 0x20)
#define TIMER_SYNC_TICKS 3
struct sun5i_timer {
void __iomem *base;
struct clk *clk;
struct notifier_block clk_rate_cb;
u32 ticks_per_jiffy;
struct clocksource clksrc;
struct clock_event_device clkevt;
};
#define nb_to_sun5i_timer(x) \
container_of(x, struct sun5i_timer, clk_rate_cb)
#define clksrc_to_sun5i_timer(x) \
container_of(x, struct sun5i_timer, clksrc)
#define clkevt_to_sun5i_timer(x) \
container_of(x, struct sun5i_timer, clkevt)
/*
* When we disable a timer, we need to wait at least for 2 cycles of
* the timer source clock. We will use for that the clocksource timer
* that is already setup and runs at the same frequency than the other
* timers, and we never will be disabled.
*/
static void sun5i_clkevt_sync(struct sun5i_timer *ce)
{
u32 old = readl(ce->base + TIMER_CNTVAL_LO_REG(1));
while ((old - readl(ce->base + TIMER_CNTVAL_LO_REG(1))) < TIMER_SYNC_TICKS)
cpu_relax();
}
static void sun5i_clkevt_time_stop(struct sun5i_timer *ce, u8 timer)
{
u32 val = readl(ce->base + TIMER_CTL_REG(timer));
writel(val & ~TIMER_CTL_ENABLE, ce->base + TIMER_CTL_REG(timer));
sun5i_clkevt_sync(ce);
}
static void sun5i_clkevt_time_setup(struct sun5i_timer *ce, u8 timer, u32 delay)
{
writel(delay, ce->base + TIMER_INTVAL_LO_REG(timer));
}
static void sun5i_clkevt_time_start(struct sun5i_timer *ce, u8 timer, bool periodic)
{
u32 val = readl(ce->base + TIMER_CTL_REG(timer));
if (periodic)
val &= ~TIMER_CTL_ONESHOT;
else
val |= TIMER_CTL_ONESHOT;
writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD,
ce->base + TIMER_CTL_REG(timer));
}
static int sun5i_clkevt_shutdown(struct clock_event_device *clkevt)
{
struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt);
sun5i_clkevt_time_stop(ce, 0);
return 0;
}
static int sun5i_clkevt_set_oneshot(struct clock_event_device *clkevt)
{
struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt);
sun5i_clkevt_time_stop(ce, 0);
sun5i_clkevt_time_start(ce, 0, false);
return 0;
}
static int sun5i_clkevt_set_periodic(struct clock_event_device *clkevt)
{
struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt);
sun5i_clkevt_time_stop(ce, 0);
sun5i_clkevt_time_setup(ce, 0, ce->ticks_per_jiffy);
sun5i_clkevt_time_start(ce, 0, true);
return 0;
}
static int sun5i_clkevt_next_event(unsigned long evt,
struct clock_event_device *clkevt)
{
struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt);
sun5i_clkevt_time_stop(ce, 0);
sun5i_clkevt_time_setup(ce, 0, evt - TIMER_SYNC_TICKS);
sun5i_clkevt_time_start(ce, 0, false);
return 0;
}
static irqreturn_t sun5i_timer_interrupt(int irq, void *dev_id)
{
struct sun5i_timer *ce = dev_id;
writel(0x1, ce->base + TIMER_IRQ_ST_REG);
ce->clkevt.event_handler(&ce->clkevt);
return IRQ_HANDLED;
}
static u64 sun5i_clksrc_read(struct clocksource *clksrc)
{
struct sun5i_timer *cs = clksrc_to_sun5i_timer(clksrc);
return ~readl(cs->base + TIMER_CNTVAL_LO_REG(1));
}
static int sun5i_rate_cb(struct notifier_block *nb,
unsigned long event, void *data)
{
struct clk_notifier_data *ndata = data;
struct sun5i_timer *cs = nb_to_sun5i_timer(nb);
switch (event) {
case PRE_RATE_CHANGE:
clocksource_unregister(&cs->clksrc);
break;
case POST_RATE_CHANGE:
clocksource_register_hz(&cs->clksrc, ndata->new_rate);
clockevents_update_freq(&cs->clkevt, ndata->new_rate);
cs->ticks_per_jiffy = DIV_ROUND_UP(ndata->new_rate, HZ);
break;
default:
break;
}
return NOTIFY_DONE;
}
static int sun5i_setup_clocksource(struct platform_device *pdev,
unsigned long rate)
{
struct sun5i_timer *cs = platform_get_drvdata(pdev);
void __iomem *base = cs->base;
int ret;
writel(~0, base + TIMER_INTVAL_LO_REG(1));
writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD,
base + TIMER_CTL_REG(1));
cs->clksrc.name = pdev->dev.of_node->name;
cs->clksrc.rating = 340;
cs->clksrc.read = sun5i_clksrc_read;
cs->clksrc.mask = CLOCKSOURCE_MASK(32);
cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
ret = clocksource_register_hz(&cs->clksrc, rate);
if (ret) {
dev_err(&pdev->dev, "Couldn't register clock source.\n");
return ret;
}
return 0;
}
static int sun5i_setup_clockevent(struct platform_device *pdev,
unsigned long rate, int irq)
{
struct device *dev = &pdev->dev;
struct sun5i_timer *ce = platform_get_drvdata(pdev);
void __iomem *base = ce->base;
int ret;
u32 val;
ce->clkevt.name = dev->of_node->name;
ce->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
ce->clkevt.set_next_event = sun5i_clkevt_next_event;
ce->clkevt.set_state_shutdown = sun5i_clkevt_shutdown;
ce->clkevt.set_state_periodic = sun5i_clkevt_set_periodic;
ce->clkevt.set_state_oneshot = sun5i_clkevt_set_oneshot;
ce->clkevt.tick_resume = sun5i_clkevt_shutdown;
ce->clkevt.rating = 340;
ce->clkevt.irq = irq;
ce->clkevt.cpumask = cpu_possible_mask;
/* Enable timer0 interrupt */
val = readl(base + TIMER_IRQ_EN_REG);
writel(val | TIMER_IRQ_EN(0), base + TIMER_IRQ_EN_REG);
clockevents_config_and_register(&ce->clkevt, rate,
TIMER_SYNC_TICKS, 0xffffffff);
ret = devm_request_irq(dev, irq, sun5i_timer_interrupt,
IRQF_TIMER | IRQF_IRQPOLL,
"sun5i_timer0", ce);
if (ret) {
dev_err(dev, "Unable to register interrupt\n");
return ret;
}
return 0;
}
static int sun5i_timer_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sun5i_timer *st;
struct reset_control *rstc;
void __iomem *timer_base;
struct clk *clk;
unsigned long rate;
int irq, ret;
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
platform_set_drvdata(pdev, st);
timer_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(timer_base)) {
dev_err(dev, "Can't map registers\n");
return PTR_ERR(timer_base);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "Can't get IRQ\n");
return irq;
}
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk)) {
dev_err(dev, "Can't get timer clock\n");
return PTR_ERR(clk);
}
rate = clk_get_rate(clk);
if (!rate) {
dev_err(dev, "Couldn't get parent clock rate\n");
return -EINVAL;
}
st->base = timer_base;
st->ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
st->clk = clk;
st->clk_rate_cb.notifier_call = sun5i_rate_cb;
st->clk_rate_cb.next = NULL;
ret = devm_clk_notifier_register(dev, clk, &st->clk_rate_cb);
if (ret) {
dev_err(dev, "Unable to register clock notifier.\n");
return ret;
}
rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
if (rstc)
reset_control_deassert(rstc);
ret = sun5i_setup_clocksource(pdev, rate);
if (ret)
return ret;
ret = sun5i_setup_clockevent(pdev, rate, irq);
if (ret)
goto err_unreg_clocksource;
return 0;
err_unreg_clocksource:
clocksource_unregister(&st->clksrc);
return ret;
}
static void sun5i_timer_remove(struct platform_device *pdev)
{
struct sun5i_timer *st = platform_get_drvdata(pdev);
clocksource_unregister(&st->clksrc);
}
static const struct of_device_id sun5i_timer_of_match[] = {
{ .compatible = "allwinner,sun5i-a13-hstimer" },
{ .compatible = "allwinner,sun7i-a20-hstimer" },
{},
};
MODULE_DEVICE_TABLE(of, sun5i_timer_of_match);
static struct platform_driver sun5i_timer_driver = {
.probe = sun5i_timer_probe,
.remove_new = sun5i_timer_remove,
.driver = {
.name = "sun5i-timer",
.of_match_table = sun5i_timer_of_match,
.suppress_bind_attrs = true,
},
};
module_platform_driver(sun5i_timer_driver);