1575 lines
50 KiB
C
1575 lines
50 KiB
C
/*
|
|
* Copyright (c) 2004 Video54 Technologies, Inc.
|
|
* Copyright (c) 2004-2009 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include "ath9k.h"
|
|
|
|
static const struct ath_rate_table ar5416_11na_ratetable = {
|
|
68,
|
|
8, /* MCS start */
|
|
{
|
|
[0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
|
|
5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
|
|
[1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
|
|
7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
|
|
[2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
|
|
10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
|
|
[3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
|
|
13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
|
|
[4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
|
|
17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
|
|
[5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
|
|
23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
|
|
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
|
|
27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
|
|
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
|
|
29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
|
|
[8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
|
|
6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
|
|
[9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
|
|
12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
|
|
[10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
|
|
18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
|
|
[11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
|
|
25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
|
|
[12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
|
|
36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
|
|
[13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
|
|
48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
|
|
[14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
|
|
53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
|
|
[15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
|
|
59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
|
|
[16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
|
|
65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
|
|
[17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
|
|
12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
|
|
[18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
|
|
24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
|
|
[19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
|
|
36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
|
|
[20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
|
|
48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
|
|
[21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
|
|
69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
|
|
[22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
|
|
89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
|
|
[23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
|
|
98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
|
|
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
|
|
108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
|
|
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
|
|
120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
|
|
[26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
|
|
17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
|
|
[27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
|
|
35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
|
|
[28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
|
|
52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
|
|
[29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
|
|
70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
|
|
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
|
|
104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
|
|
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
|
|
115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
|
|
[32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
|
|
137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
|
|
[33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
|
|
151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
|
|
[34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
|
|
152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
|
|
[35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
|
|
168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
|
|
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
|
|
168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
|
|
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
|
|
185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
|
|
[38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
|
|
13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
|
|
[39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
|
|
25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
|
|
[40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
|
|
38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
|
|
[41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
|
|
49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
|
|
[42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
|
|
72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
|
|
[43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
|
|
92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
|
|
[44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
|
|
102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
|
|
[45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
|
|
112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
|
|
[46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
|
|
122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
|
|
[47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
|
|
25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
|
|
[48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
|
|
49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
|
|
[49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
|
|
71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
|
|
[50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
|
|
92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
|
|
[51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
|
|
130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
|
|
[52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
|
|
162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
|
|
[53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
|
|
178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
|
|
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
|
|
192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
|
|
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
|
|
207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
|
|
[56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
|
|
36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
|
|
[57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
|
|
72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
|
|
[58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
|
|
108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
|
|
[59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
|
|
142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
|
|
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
|
|
205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
|
|
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
|
|
224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
|
|
[62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
|
|
263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
|
|
[63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
|
|
288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
|
|
[64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
|
|
290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
|
|
[65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
|
|
317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
|
|
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
|
|
317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
|
|
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
|
|
346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
|
|
},
|
|
50, /* probe interval */
|
|
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
|
|
};
|
|
|
|
/* 4ms frame limit not used for NG mode. The values filled
|
|
* for HT are the 64K max aggregate limit */
|
|
|
|
static const struct ath_rate_table ar5416_11ng_ratetable = {
|
|
72,
|
|
12, /* MCS start */
|
|
{
|
|
[0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
|
|
900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
|
|
[1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
|
|
1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
|
|
[2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
|
|
4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
|
|
[3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
|
|
8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
|
|
[4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
|
|
5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
|
|
[5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
|
|
7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
|
|
[6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
|
|
10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
|
|
[7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
|
|
14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
|
|
[8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
|
|
17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
|
|
[9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
|
|
23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
|
|
[10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
|
|
27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
|
|
[11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
|
|
30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
|
|
[12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
|
|
6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
|
|
[13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
|
|
12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
|
|
[14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
|
|
18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
|
|
[15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
|
|
25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
|
|
[16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
|
|
36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
|
|
[17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
|
|
48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
|
|
[18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
|
|
53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
|
|
[19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
|
|
59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
|
|
[20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
|
|
65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
|
|
[21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
|
|
12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
|
|
[22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
|
|
24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
|
|
[23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
|
|
36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
|
|
[24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
|
|
48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
|
|
[25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
|
|
69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
|
|
[26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
|
|
89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
|
|
[27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
|
|
98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
|
|
[28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
|
|
108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
|
|
[29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
|
|
120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
|
|
[30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
|
|
17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
|
|
[31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
|
|
35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
|
|
[32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
|
|
52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
|
|
[33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
|
|
70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
|
|
[34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
|
|
104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
|
|
[35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
|
|
115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
|
|
[36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
|
|
137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
|
|
[37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
|
|
151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
|
|
[38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
|
|
152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
|
|
[39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
|
|
168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
|
|
[40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
|
|
168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
|
|
[41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
|
|
185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
|
|
[42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
|
|
13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
|
|
[43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
|
|
25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
|
|
[44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
|
|
38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
|
|
[45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
|
|
49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
|
|
[46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
|
|
72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
|
|
[47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
|
|
92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
|
|
[48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
|
|
102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
|
|
[49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
|
|
112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
|
|
[50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
|
|
122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
|
|
[51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
|
|
25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
|
|
[52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
|
|
49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
|
|
[53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
|
|
71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
|
|
[54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
|
|
92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
|
|
[55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
|
|
130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
|
|
[56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
|
|
162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
|
|
[57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
|
|
178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
|
|
[58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
|
|
192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
|
|
[59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
|
|
207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
|
|
[60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
|
|
36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
|
|
[61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
|
|
72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
|
|
[62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
|
|
108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
|
|
[63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
|
|
142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
|
|
[64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
|
|
205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
|
|
[65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
|
|
224700, 20, 20, 8, 64, 65, 65 }, /* 170 Mb */
|
|
[66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
|
|
263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
|
|
[67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
|
|
288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
|
|
[68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
|
|
290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
|
|
[69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
|
|
317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
|
|
[70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
|
|
317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
|
|
[71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
|
|
346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
|
|
},
|
|
50, /* probe interval */
|
|
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static const struct ath_rate_table ar5416_11a_ratetable = {
|
|
8,
|
|
0,
|
|
{
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 0, 12, 0},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 1, 18, 0},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10000, 2, 24, 2},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
13900, 3, 36, 2},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17300, 4, 48, 4},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23000, 5, 72, 4},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 6, 96, 4},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
29300, 7, 108, 4},
|
|
},
|
|
50, /* probe interval */
|
|
0, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static const struct ath_rate_table ar5416_11g_ratetable = {
|
|
12,
|
|
0,
|
|
{
|
|
{ RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
|
|
900, 0, 2, 0},
|
|
{ RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
|
|
1900, 1, 4, 1},
|
|
{ RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
|
|
4900, 2, 11, 2},
|
|
{ RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
|
|
8100, 3, 22, 3},
|
|
{ RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
|
|
5400, 4, 12, 4},
|
|
{ RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
|
|
7800, 5, 18, 4},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
|
|
10000, 6, 24, 6},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
|
|
13900, 7, 36, 6},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
|
|
17300, 8, 48, 8},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
|
|
23000, 9, 72, 8},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
|
|
27400, 10, 96, 8},
|
|
{ RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
|
|
29300, 11, 108, 8},
|
|
},
|
|
50, /* probe interval */
|
|
0, /* Phy rates allowed initially */
|
|
};
|
|
|
|
static const struct ath_rate_table *hw_rate_table[ATH9K_MODE_MAX] = {
|
|
[ATH9K_MODE_11A] = &ar5416_11a_ratetable,
|
|
[ATH9K_MODE_11G] = &ar5416_11g_ratetable,
|
|
[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable,
|
|
[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable,
|
|
[ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable,
|
|
[ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable,
|
|
[ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable,
|
|
[ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable,
|
|
};
|
|
|
|
static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_rate *rate);
|
|
|
|
static inline int8_t median(int8_t a, int8_t b, int8_t c)
|
|
{
|
|
if (a >= b) {
|
|
if (b >= c)
|
|
return b;
|
|
else if (a > c)
|
|
return c;
|
|
else
|
|
return a;
|
|
} else {
|
|
if (a >= c)
|
|
return a;
|
|
else if (b >= c)
|
|
return c;
|
|
else
|
|
return b;
|
|
}
|
|
}
|
|
|
|
static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv)
|
|
{
|
|
u8 i, j, idx, idx_next;
|
|
|
|
for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
|
|
for (j = 0; j <= i-1; j++) {
|
|
idx = ath_rc_priv->valid_rate_index[j];
|
|
idx_next = ath_rc_priv->valid_rate_index[j+1];
|
|
|
|
if (rate_table->info[idx].ratekbps >
|
|
rate_table->info[idx_next].ratekbps) {
|
|
ath_rc_priv->valid_rate_index[j] = idx_next;
|
|
ath_rc_priv->valid_rate_index[j+1] = idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ath_rc_priv->rate_table_size; i++)
|
|
ath_rc_priv->valid_rate_index[i] = 0;
|
|
}
|
|
|
|
static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
|
|
u8 index, int valid_tx_rate)
|
|
{
|
|
BUG_ON(index > ath_rc_priv->rate_table_size);
|
|
ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
|
|
}
|
|
|
|
static inline
|
|
int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
u8 cur_valid_txrate,
|
|
u8 *next_idx)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
|
|
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
|
|
*next_idx = ath_rc_priv->valid_rate_index[i+1];
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* No more valid rates */
|
|
*next_idx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return true only for single stream */
|
|
|
|
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
|
|
{
|
|
if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
|
|
return 0;
|
|
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
|
|
return 0;
|
|
if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
|
|
return 0;
|
|
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
|
|
return 0;
|
|
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
|
|
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
u8 cur_valid_txrate, u8 *next_idx)
|
|
{
|
|
int8_t i;
|
|
|
|
for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
|
|
if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
|
|
*next_idx = ath_rc_priv->valid_rate_index[i-1];
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
|
|
const struct ath_rate_table *rate_table,
|
|
u32 capflag)
|
|
{
|
|
u8 i, hi = 0;
|
|
|
|
for (i = 0; i < rate_table->rate_cnt; i++) {
|
|
if (rate_table->info[i].rate_flags & RC_LEGACY) {
|
|
u32 phy = rate_table->info[i].phy;
|
|
u8 valid_rate_count = 0;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
|
|
hi = i;
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
|
|
const struct ath_rate_table *rate_table,
|
|
struct ath_rateset *rateset,
|
|
u32 capflag)
|
|
{
|
|
u8 i, j, hi = 0;
|
|
|
|
/* Use intersection of working rates and valid rates */
|
|
for (i = 0; i < rateset->rs_nrates; i++) {
|
|
for (j = 0; j < rate_table->rate_cnt; j++) {
|
|
u32 phy = rate_table->info[j].phy;
|
|
u16 rate_flags = rate_table->info[i].rate_flags;
|
|
u8 rate = rateset->rs_rates[i];
|
|
u8 dot11rate = rate_table->info[j].dot11rate;
|
|
|
|
/* We allow a rate only if its valid and the
|
|
* capflag matches one of the validity
|
|
* (VALID/VALID_20/VALID_40) flags */
|
|
|
|
if ((rate == dot11rate) &&
|
|
(rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
|
|
WLAN_RC_CAP_MODE(capflag) &&
|
|
(rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
|
|
!WLAN_RC_PHY_HT(phy)) {
|
|
u8 valid_rate_count = 0;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
valid_rate_count =
|
|
ath_rc_priv->valid_phy_ratecnt[phy];
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy]
|
|
[valid_rate_count] = j;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
|
|
hi = A_MAX(hi, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
|
|
const struct ath_rate_table *rate_table,
|
|
u8 *mcs_set, u32 capflag)
|
|
{
|
|
struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
|
|
|
|
u8 i, j, hi = 0;
|
|
|
|
/* Use intersection of working rates and valid rates */
|
|
for (i = 0; i < rateset->rs_nrates; i++) {
|
|
for (j = 0; j < rate_table->rate_cnt; j++) {
|
|
u32 phy = rate_table->info[j].phy;
|
|
u16 rate_flags = rate_table->info[j].rate_flags;
|
|
u8 rate = rateset->rs_rates[i];
|
|
u8 dot11rate = rate_table->info[j].dot11rate;
|
|
|
|
if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
|
|
!(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
|
|
!WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
|
|
continue;
|
|
|
|
if (!ath_rc_valid_phyrate(phy, capflag, 0))
|
|
continue;
|
|
|
|
ath_rc_priv->valid_phy_rateidx[phy]
|
|
[ath_rc_priv->valid_phy_ratecnt[phy]] = j;
|
|
ath_rc_priv->valid_phy_ratecnt[phy] += 1;
|
|
ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
|
|
hi = A_MAX(hi, j);
|
|
}
|
|
}
|
|
|
|
return hi;
|
|
}
|
|
|
|
/* Finds the highest rate index we can use */
|
|
static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
const struct ath_rate_table *rate_table,
|
|
int *is_probing)
|
|
{
|
|
u32 best_thruput, this_thruput, now_msec;
|
|
u8 rate, next_rate, best_rate, maxindex, minindex;
|
|
int8_t index = 0;
|
|
|
|
now_msec = jiffies_to_msecs(jiffies);
|
|
*is_probing = 0;
|
|
best_thruput = 0;
|
|
maxindex = ath_rc_priv->max_valid_rate-1;
|
|
minindex = 0;
|
|
best_rate = minindex;
|
|
|
|
/*
|
|
* Try the higher rate first. It will reduce memory moving time
|
|
* if we have very good channel characteristics.
|
|
*/
|
|
for (index = maxindex; index >= minindex ; index--) {
|
|
u8 per_thres;
|
|
|
|
rate = ath_rc_priv->valid_rate_index[index];
|
|
if (rate > ath_rc_priv->rate_max_phy)
|
|
continue;
|
|
|
|
/*
|
|
* For TCP the average collision rate is around 11%,
|
|
* so we ignore PERs less than this. This is to
|
|
* prevent the rate we are currently using (whose
|
|
* PER might be in the 10-15 range because of TCP
|
|
* collisions) looking worse than the next lower
|
|
* rate whose PER has decayed close to 0. If we
|
|
* used to next lower rate, its PER would grow to
|
|
* 10-15 and we would be worse off then staying
|
|
* at the current rate.
|
|
*/
|
|
per_thres = ath_rc_priv->per[rate];
|
|
if (per_thres < 12)
|
|
per_thres = 12;
|
|
|
|
this_thruput = rate_table->info[rate].user_ratekbps *
|
|
(100 - per_thres);
|
|
|
|
if (best_thruput <= this_thruput) {
|
|
best_thruput = this_thruput;
|
|
best_rate = rate;
|
|
}
|
|
}
|
|
|
|
rate = best_rate;
|
|
|
|
/*
|
|
* Must check the actual rate (ratekbps) to account for
|
|
* non-monoticity of 11g's rate table
|
|
*/
|
|
|
|
if (rate >= ath_rc_priv->rate_max_phy) {
|
|
rate = ath_rc_priv->rate_max_phy;
|
|
|
|
/* Probe the next allowed phy state */
|
|
if (ath_rc_get_nextvalid_txrate(rate_table,
|
|
ath_rc_priv, rate, &next_rate) &&
|
|
(now_msec - ath_rc_priv->probe_time >
|
|
rate_table->probe_interval) &&
|
|
(ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
|
|
rate = next_rate;
|
|
ath_rc_priv->probe_rate = rate;
|
|
ath_rc_priv->probe_time = now_msec;
|
|
ath_rc_priv->hw_maxretry_pktcnt = 0;
|
|
*is_probing = 1;
|
|
}
|
|
}
|
|
|
|
if (rate > (ath_rc_priv->rate_table_size - 1))
|
|
rate = ath_rc_priv->rate_table_size - 1;
|
|
|
|
if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
|
|
(ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
|
|
return rate;
|
|
|
|
if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
|
|
(ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
|
|
return rate;
|
|
|
|
if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
|
|
return rate;
|
|
|
|
/* This should not happen */
|
|
WARN_ON(1);
|
|
|
|
rate = ath_rc_priv->valid_rate_index[0];
|
|
|
|
return rate;
|
|
}
|
|
|
|
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_rate *rate,
|
|
struct ieee80211_tx_rate_control *txrc,
|
|
u8 tries, u8 rix, int rtsctsenable)
|
|
{
|
|
rate->count = tries;
|
|
rate->idx = rate_table->info[rix].ratecode;
|
|
|
|
if (txrc->short_preamble)
|
|
rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
|
|
if (txrc->rts || rtsctsenable)
|
|
rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
|
|
|
|
if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
|
|
rate->flags |= IEEE80211_TX_RC_MCS;
|
|
if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
|
|
rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
|
|
if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
|
|
rate->flags |= IEEE80211_TX_RC_SHORT_GI;
|
|
}
|
|
}
|
|
|
|
static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
|
|
const struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_info *tx_info)
|
|
{
|
|
struct ieee80211_tx_rate *rates = tx_info->control.rates;
|
|
int i = 0, rix = 0, cix, enable_g_protection = 0;
|
|
|
|
/* get the cix for the lowest valid rix */
|
|
for (i = 3; i >= 0; i--) {
|
|
if (rates[i].count && (rates[i].idx >= 0)) {
|
|
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
|
|
break;
|
|
}
|
|
}
|
|
cix = rate_table->info[rix].ctrl_rate;
|
|
|
|
/* All protection frames are transmited at 2Mb/s for 802.11g,
|
|
* otherwise we transmit them at 1Mb/s */
|
|
if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
|
|
!conf_is_ht(&sc->hw->conf))
|
|
enable_g_protection = 1;
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether to use RTS/CTS or
|
|
* just CTS. Note that this is only done for OFDM/HT unicast frames.
|
|
*/
|
|
if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
|
|
(rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
|
|
WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
|
|
rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
|
|
cix = rate_table->info[enable_g_protection].ctrl_rate;
|
|
}
|
|
|
|
tx_info->control.rts_cts_rate_idx = cix;
|
|
}
|
|
|
|
static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
|
|
struct ieee80211_tx_rate_control *txrc)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
const struct ath_rate_table *rate_table;
|
|
struct sk_buff *skb = txrc->skb;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_tx_rate *rates = tx_info->control.rates;
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
__le16 fc = hdr->frame_control;
|
|
u8 try_per_rate, i = 0, rix;
|
|
int is_probe = 0;
|
|
|
|
if (rate_control_send_low(sta, priv_sta, txrc))
|
|
return;
|
|
|
|
/*
|
|
* For Multi Rate Retry we use a different number of
|
|
* retry attempt counts. This ends up looking like this:
|
|
*
|
|
* MRR[0] = 4
|
|
* MRR[1] = 4
|
|
* MRR[2] = 4
|
|
* MRR[3] = 8
|
|
*
|
|
*/
|
|
try_per_rate = 4;
|
|
|
|
rate_table = sc->cur_rate_table;
|
|
rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
|
|
|
|
/*
|
|
* If we're in HT mode and both us and our peer supports LDPC.
|
|
* We don't need to check our own device's capabilities as our own
|
|
* ht capabilities would have already been intersected with our peer's.
|
|
*/
|
|
if (conf_is_ht(&sc->hw->conf) &&
|
|
(sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
|
|
tx_info->flags |= IEEE80211_TX_CTL_LDPC;
|
|
|
|
if (conf_is_ht(&sc->hw->conf) &&
|
|
(sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
|
|
tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
|
|
|
|
if (is_probe) {
|
|
/* set one try for probe rates. For the
|
|
* probes don't enable rts */
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
1, rix, 0);
|
|
|
|
/* Get the next tried/allowed rate. No RTS for the next series
|
|
* after the probe rate
|
|
*/
|
|
ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
try_per_rate, rix, 0);
|
|
|
|
tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
|
|
} else {
|
|
/* Set the choosen rate. No RTS for first series entry. */
|
|
ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
|
|
try_per_rate, rix, 0);
|
|
}
|
|
|
|
/* Fill in the other rates for multirate retry */
|
|
for ( ; i < 4; i++) {
|
|
/* Use twice the number of tries for the last MRR segment. */
|
|
if (i + 1 == 4)
|
|
try_per_rate = 8;
|
|
|
|
ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
|
|
/* All other rates in the series have RTS enabled */
|
|
ath_rc_rate_set_series(rate_table, &rates[i], txrc,
|
|
try_per_rate, rix, 1);
|
|
}
|
|
|
|
/*
|
|
* NB:Change rate series to enable aggregation when operating
|
|
* at lower MCS rates. When first rate in series is MCS2
|
|
* in HT40 @ 2.4GHz, series should look like:
|
|
*
|
|
* {MCS2, MCS1, MCS0, MCS0}.
|
|
*
|
|
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
|
|
* look like:
|
|
*
|
|
* {MCS3, MCS2, MCS1, MCS1}
|
|
*
|
|
* So, set fourth rate in series to be same as third one for
|
|
* above conditions.
|
|
*/
|
|
if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
|
|
(conf_is_ht(&sc->hw->conf))) {
|
|
u8 dot11rate = rate_table->info[rix].dot11rate;
|
|
u8 phy = rate_table->info[rix].phy;
|
|
if (i == 4 &&
|
|
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
|
|
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
|
|
rates[3].idx = rates[2].idx;
|
|
rates[3].flags = rates[2].flags;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force hardware to use computed duration for next
|
|
* fragment by disabling multi-rate retry, which
|
|
* updates duration based on the multi-rate duration table.
|
|
*
|
|
* FIXME: Fix duration
|
|
*/
|
|
if (ieee80211_has_morefrags(fc) ||
|
|
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
|
|
rates[1].count = rates[2].count = rates[3].count = 0;
|
|
rates[1].idx = rates[2].idx = rates[3].idx = 0;
|
|
rates[0].count = ATH_TXMAXTRY;
|
|
}
|
|
|
|
/* Setup RTS/CTS */
|
|
ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
|
|
}
|
|
|
|
static bool ath_rc_update_per(struct ath_softc *sc,
|
|
const struct ath_rate_table *rate_table,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_tx_info *tx_info,
|
|
int tx_rate, int xretries, int retries,
|
|
u32 now_msec)
|
|
{
|
|
bool state_change = false;
|
|
int count, n_bad_frames;
|
|
u8 last_per;
|
|
static u32 nretry_to_per_lookup[10] = {
|
|
100 * 0 / 1,
|
|
100 * 1 / 4,
|
|
100 * 1 / 2,
|
|
100 * 3 / 4,
|
|
100 * 4 / 5,
|
|
100 * 5 / 6,
|
|
100 * 6 / 7,
|
|
100 * 7 / 8,
|
|
100 * 8 / 9,
|
|
100 * 9 / 10
|
|
};
|
|
|
|
last_per = ath_rc_priv->per[tx_rate];
|
|
n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
|
|
|
|
if (xretries) {
|
|
if (xretries == 1) {
|
|
ath_rc_priv->per[tx_rate] += 30;
|
|
if (ath_rc_priv->per[tx_rate] > 100)
|
|
ath_rc_priv->per[tx_rate] = 100;
|
|
} else {
|
|
/* xretries == 2 */
|
|
count = ARRAY_SIZE(nretry_to_per_lookup);
|
|
if (retries >= count)
|
|
retries = count - 1;
|
|
|
|
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
|
|
ath_rc_priv->per[tx_rate] =
|
|
(u8)(last_per - (last_per >> 3) + (100 >> 3));
|
|
}
|
|
|
|
/* xretries == 1 or 2 */
|
|
|
|
if (ath_rc_priv->probe_rate == tx_rate)
|
|
ath_rc_priv->probe_rate = 0;
|
|
|
|
} else { /* xretries == 0 */
|
|
count = ARRAY_SIZE(nretry_to_per_lookup);
|
|
if (retries >= count)
|
|
retries = count - 1;
|
|
|
|
if (n_bad_frames) {
|
|
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
|
|
* Assuming that n_frames is not 0. The current PER
|
|
* from the retries is 100 * retries / (retries+1),
|
|
* since the first retries attempts failed, and the
|
|
* next one worked. For the one that worked,
|
|
* n_bad_frames subframes out of n_frames wored,
|
|
* so the PER for that part is
|
|
* 100 * n_bad_frames / n_frames, and it contributes
|
|
* 100 * n_bad_frames / (n_frames * (retries+1)) to
|
|
* the above PER. The expression below is a
|
|
* simplified version of the sum of these two terms.
|
|
*/
|
|
if (tx_info->status.ampdu_len > 0) {
|
|
int n_frames, n_bad_tries;
|
|
u8 cur_per, new_per;
|
|
|
|
n_bad_tries = retries * tx_info->status.ampdu_len +
|
|
n_bad_frames;
|
|
n_frames = tx_info->status.ampdu_len * (retries + 1);
|
|
cur_per = (100 * n_bad_tries / n_frames) >> 3;
|
|
new_per = (u8)(last_per - (last_per >> 3) + cur_per);
|
|
ath_rc_priv->per[tx_rate] = new_per;
|
|
}
|
|
} else {
|
|
ath_rc_priv->per[tx_rate] =
|
|
(u8)(last_per - (last_per >> 3) +
|
|
(nretry_to_per_lookup[retries] >> 3));
|
|
}
|
|
|
|
|
|
/*
|
|
* If we got at most one retry then increase the max rate if
|
|
* this was a probe. Otherwise, ignore the probe.
|
|
*/
|
|
if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
|
|
if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
|
|
/*
|
|
* Since we probed with just a single attempt,
|
|
* any retries means the probe failed. Also,
|
|
* if the attempt worked, but more than half
|
|
* the subframes were bad then also consider
|
|
* the probe a failure.
|
|
*/
|
|
ath_rc_priv->probe_rate = 0;
|
|
} else {
|
|
u8 probe_rate = 0;
|
|
|
|
ath_rc_priv->rate_max_phy =
|
|
ath_rc_priv->probe_rate;
|
|
probe_rate = ath_rc_priv->probe_rate;
|
|
|
|
if (ath_rc_priv->per[probe_rate] > 30)
|
|
ath_rc_priv->per[probe_rate] = 20;
|
|
|
|
ath_rc_priv->probe_rate = 0;
|
|
|
|
/*
|
|
* Since this probe succeeded, we allow the next
|
|
* probe twice as soon. This allows the maxRate
|
|
* to move up faster if the probes are
|
|
* successful.
|
|
*/
|
|
ath_rc_priv->probe_time =
|
|
now_msec - rate_table->probe_interval / 2;
|
|
}
|
|
}
|
|
|
|
if (retries > 0) {
|
|
/*
|
|
* Don't update anything. We don't know if
|
|
* this was because of collisions or poor signal.
|
|
*/
|
|
ath_rc_priv->hw_maxretry_pktcnt = 0;
|
|
} else {
|
|
/*
|
|
* It worked with no retries. First ignore bogus (small)
|
|
* rssi_ack values.
|
|
*/
|
|
if (tx_rate == ath_rc_priv->rate_max_phy &&
|
|
ath_rc_priv->hw_maxretry_pktcnt < 255) {
|
|
ath_rc_priv->hw_maxretry_pktcnt++;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return state_change;
|
|
}
|
|
|
|
/* Update PER, RSSI and whatever else that the code thinks it is doing.
|
|
If you can make sense of all this, you really need to go out more. */
|
|
|
|
static void ath_rc_update_ht(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_tx_info *tx_info,
|
|
int tx_rate, int xretries, int retries)
|
|
{
|
|
u32 now_msec = jiffies_to_msecs(jiffies);
|
|
int rate;
|
|
u8 last_per;
|
|
bool state_change = false;
|
|
const struct ath_rate_table *rate_table = sc->cur_rate_table;
|
|
int size = ath_rc_priv->rate_table_size;
|
|
|
|
if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
|
|
return;
|
|
|
|
last_per = ath_rc_priv->per[tx_rate];
|
|
|
|
/* Update PER first */
|
|
state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
|
|
tx_info, tx_rate, xretries,
|
|
retries, now_msec);
|
|
|
|
/*
|
|
* If this rate looks bad (high PER) then stop using it for
|
|
* a while (except if we are probing).
|
|
*/
|
|
if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
|
|
rate_table->info[tx_rate].ratekbps <=
|
|
rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
|
|
ath_rc_get_lower_rix(rate_table, ath_rc_priv,
|
|
(u8)tx_rate, &ath_rc_priv->rate_max_phy);
|
|
|
|
/* Don't probe for a little while. */
|
|
ath_rc_priv->probe_time = now_msec;
|
|
}
|
|
|
|
/* Make sure the rates below this have lower PER */
|
|
/* Monotonicity is kept only for rates below the current rate. */
|
|
if (ath_rc_priv->per[tx_rate] < last_per) {
|
|
for (rate = tx_rate - 1; rate >= 0; rate--) {
|
|
|
|
if (ath_rc_priv->per[rate] >
|
|
ath_rc_priv->per[rate+1]) {
|
|
ath_rc_priv->per[rate] =
|
|
ath_rc_priv->per[rate+1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Maintain monotonicity for rates above the current rate */
|
|
for (rate = tx_rate; rate < size - 1; rate++) {
|
|
if (ath_rc_priv->per[rate+1] <
|
|
ath_rc_priv->per[rate])
|
|
ath_rc_priv->per[rate+1] =
|
|
ath_rc_priv->per[rate];
|
|
}
|
|
|
|
/* Every so often, we reduce the thresholds
|
|
* and PER (different for CCK and OFDM). */
|
|
if (now_msec - ath_rc_priv->per_down_time >=
|
|
rate_table->probe_interval) {
|
|
for (rate = 0; rate < size; rate++) {
|
|
ath_rc_priv->per[rate] =
|
|
7 * ath_rc_priv->per[rate] / 8;
|
|
}
|
|
|
|
ath_rc_priv->per_down_time = now_msec;
|
|
}
|
|
|
|
ath_debug_stat_retries(sc, tx_rate, xretries, retries,
|
|
ath_rc_priv->per[tx_rate]);
|
|
|
|
}
|
|
|
|
static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
|
|
struct ieee80211_tx_rate *rate)
|
|
{
|
|
int rix = 0, i = 0;
|
|
int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
|
|
|
|
if (!(rate->flags & IEEE80211_TX_RC_MCS))
|
|
return rate->idx;
|
|
|
|
while (rate->idx > mcs_rix_off[i] &&
|
|
i < sizeof(mcs_rix_off)/sizeof(int)) {
|
|
rix++; i++;
|
|
}
|
|
|
|
rix += rate->idx + rate_table->mcs_start;
|
|
|
|
if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
(rate->flags & IEEE80211_TX_RC_SHORT_GI))
|
|
rix = rate_table->info[rix].ht_index;
|
|
else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
|
|
rix = rate_table->info[rix].sgi_index;
|
|
else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
|
|
rix = rate_table->info[rix].cw40index;
|
|
|
|
return rix;
|
|
}
|
|
|
|
static void ath_rc_tx_status(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_tx_info *tx_info,
|
|
int final_ts_idx, int xretries, int long_retry)
|
|
{
|
|
const struct ath_rate_table *rate_table;
|
|
struct ieee80211_tx_rate *rates = tx_info->status.rates;
|
|
u8 flags;
|
|
u32 i = 0, rix;
|
|
|
|
rate_table = sc->cur_rate_table;
|
|
|
|
/*
|
|
* If the first rate is not the final index, there
|
|
* are intermediate rate failures to be processed.
|
|
*/
|
|
if (final_ts_idx != 0) {
|
|
/* Process intermediate rates that failed.*/
|
|
for (i = 0; i < final_ts_idx ; i++) {
|
|
if (rates[i].count != 0 && (rates[i].idx >= 0)) {
|
|
flags = rates[i].flags;
|
|
|
|
/* If HT40 and we have switched mode from
|
|
* 40 to 20 => don't update */
|
|
|
|
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
|
|
return;
|
|
|
|
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
|
|
ath_rc_update_ht(sc, ath_rc_priv, tx_info,
|
|
rix, xretries ? 1 : 2,
|
|
rates[i].count);
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Handle the special case of MIMO PS burst, where the second
|
|
* aggregate is sent out with only one rate and one try.
|
|
* Treating it as an excessive retry penalizes the rate
|
|
* inordinately.
|
|
*/
|
|
if (rates[0].count == 1 && xretries == 1)
|
|
xretries = 2;
|
|
}
|
|
|
|
flags = rates[i].flags;
|
|
|
|
/* If HT40 and we have switched mode from 40 to 20 => don't update */
|
|
if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
|
|
!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
|
|
return;
|
|
|
|
rix = ath_rc_get_rateindex(rate_table, &rates[i]);
|
|
ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
|
|
}
|
|
|
|
static const
|
|
struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
|
|
enum ieee80211_band band,
|
|
bool is_ht,
|
|
bool is_cw_40)
|
|
{
|
|
int mode = 0;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
|
|
switch(band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
mode = ATH9K_MODE_11G;
|
|
if (is_ht)
|
|
mode = ATH9K_MODE_11NG_HT20;
|
|
if (is_cw_40)
|
|
mode = ATH9K_MODE_11NG_HT40PLUS;
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
mode = ATH9K_MODE_11A;
|
|
if (is_ht)
|
|
mode = ATH9K_MODE_11NA_HT20;
|
|
if (is_cw_40)
|
|
mode = ATH9K_MODE_11NA_HT40PLUS;
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_CONFIG, "Invalid band\n");
|
|
return NULL;
|
|
}
|
|
|
|
BUG_ON(mode >= ATH9K_MODE_MAX);
|
|
|
|
ath_print(common, ATH_DBG_CONFIG,
|
|
"Choosing rate table for mode: %d\n", mode);
|
|
|
|
sc->cur_rate_mode = mode;
|
|
return hw_rate_table[mode];
|
|
}
|
|
|
|
static void ath_rc_init(struct ath_softc *sc,
|
|
struct ath_rate_priv *ath_rc_priv,
|
|
struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta,
|
|
const struct ath_rate_table *rate_table)
|
|
{
|
|
struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
|
|
u8 i, j, k, hi = 0, hthi = 0;
|
|
|
|
/* Initial rate table size. Will change depending
|
|
* on the working rate set */
|
|
ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
|
|
|
|
/* Initialize thresholds according to the global rate table */
|
|
for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
|
|
ath_rc_priv->per[i] = 0;
|
|
}
|
|
|
|
/* Determine the valid rates */
|
|
ath_rc_init_valid_txmask(ath_rc_priv);
|
|
|
|
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
|
|
for (j = 0; j < MAX_TX_RATE_PHY; j++)
|
|
ath_rc_priv->valid_phy_rateidx[i][j] = 0;
|
|
ath_rc_priv->valid_phy_ratecnt[i] = 0;
|
|
}
|
|
|
|
if (!rateset->rs_nrates) {
|
|
/* No working rate, just initialize valid rates */
|
|
hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
|
|
ath_rc_priv->ht_cap);
|
|
} else {
|
|
/* Use intersection of working rates and valid rates */
|
|
hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
|
|
rateset, ath_rc_priv->ht_cap);
|
|
if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
|
|
hthi = ath_rc_setvalid_htrates(ath_rc_priv,
|
|
rate_table,
|
|
ht_mcs,
|
|
ath_rc_priv->ht_cap);
|
|
}
|
|
hi = A_MAX(hi, hthi);
|
|
}
|
|
|
|
ath_rc_priv->rate_table_size = hi + 1;
|
|
ath_rc_priv->rate_max_phy = 0;
|
|
BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
|
|
|
|
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
|
|
for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
|
|
ath_rc_priv->valid_rate_index[k++] =
|
|
ath_rc_priv->valid_phy_rateidx[i][j];
|
|
}
|
|
|
|
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
|
|
|| !ath_rc_priv->valid_phy_ratecnt[i])
|
|
continue;
|
|
|
|
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
|
|
}
|
|
BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
|
|
BUG_ON(k > RATE_TABLE_SIZE);
|
|
|
|
ath_rc_priv->max_valid_rate = k;
|
|
ath_rc_sort_validrates(rate_table, ath_rc_priv);
|
|
ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
|
|
sc->cur_rate_table = rate_table;
|
|
|
|
ath_print(common, ATH_DBG_CONFIG,
|
|
"RC Initialized with capabilities: 0x%x\n",
|
|
ath_rc_priv->ht_cap);
|
|
}
|
|
|
|
static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
|
|
bool is_cw40, bool is_sgi)
|
|
{
|
|
u8 caps = 0;
|
|
|
|
if (sta->ht_cap.ht_supported) {
|
|
caps = WLAN_RC_HT_FLAG;
|
|
if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
|
|
caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
|
|
else if (sta->ht_cap.mcs.rx_mask[1])
|
|
caps |= WLAN_RC_DS_FLAG;
|
|
if (is_cw40)
|
|
caps |= WLAN_RC_40_FLAG;
|
|
if (is_sgi)
|
|
caps |= WLAN_RC_SGI_FLAG;
|
|
}
|
|
|
|
return caps;
|
|
}
|
|
|
|
static bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an,
|
|
u8 tidno)
|
|
{
|
|
struct ath_atx_tid *txtid;
|
|
|
|
if (!(sc->sc_flags & SC_OP_TXAGGR))
|
|
return false;
|
|
|
|
txtid = ATH_AN_2_TID(an, tidno);
|
|
|
|
if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/***********************************/
|
|
/* mac80211 Rate Control callbacks */
|
|
/***********************************/
|
|
|
|
static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
|
|
struct ieee80211_hdr *hdr;
|
|
int final_ts_idx = 0, tx_status = 0, is_underrun = 0;
|
|
int long_retry = 0;
|
|
__le16 fc;
|
|
int i;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
fc = hdr->frame_control;
|
|
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
|
|
struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
|
|
if (!rate->count)
|
|
break;
|
|
|
|
final_ts_idx = i;
|
|
long_retry = rate->count - 1;
|
|
}
|
|
|
|
if (!priv_sta || !ieee80211_is_data(fc))
|
|
return;
|
|
|
|
/* This packet was aggregated but doesn't carry status info */
|
|
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
|
|
!(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
|
|
return;
|
|
|
|
if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
|
|
return;
|
|
|
|
/*
|
|
* If an underrun error is seen assume it as an excessive retry only
|
|
* if max frame trigger level has been reached (2 KB for singel stream,
|
|
* and 4 KB for dual stream). Adjust the long retry as if the frame was
|
|
* tried hw->max_rate_tries times to affect how ratectrl updates PER for
|
|
* the failed rate. In case of congestion on the bus penalizing these
|
|
* type of underruns should help hardware actually transmit new frames
|
|
* successfully by eventually preferring slower rates. This itself
|
|
* should also alleviate congestion on the bus.
|
|
*/
|
|
if ((tx_info->pad[0] & ATH_TX_INFO_UNDERRUN) &&
|
|
(sc->sc_ah->tx_trig_level >= ath_rc_priv->tx_triglevel_max)) {
|
|
tx_status = 1;
|
|
is_underrun = 1;
|
|
}
|
|
|
|
if (tx_info->pad[0] & ATH_TX_INFO_XRETRY)
|
|
tx_status = 1;
|
|
|
|
ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
|
|
(is_underrun) ? sc->hw->max_rate_tries : long_retry);
|
|
|
|
/* Check if aggregation has to be enabled for this tid */
|
|
if (conf_is_ht(&sc->hw->conf) &&
|
|
!(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
|
|
if (ieee80211_is_data_qos(fc)) {
|
|
u8 *qc, tid;
|
|
struct ath_node *an;
|
|
|
|
qc = ieee80211_get_qos_ctl(hdr);
|
|
tid = qc[0] & 0xf;
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if(ath_tx_aggr_check(sc, an, tid))
|
|
ieee80211_start_tx_ba_session(sta, tid);
|
|
}
|
|
}
|
|
|
|
ath_debug_stat_rc(sc, ath_rc_get_rateindex(sc->cur_rate_table,
|
|
&tx_info->status.rates[final_ts_idx]));
|
|
}
|
|
|
|
static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
const struct ath_rate_table *rate_table;
|
|
bool is_cw40, is_sgi = false;
|
|
int i, j = 0;
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
if (sta->supp_rates[sband->band] & BIT(i)) {
|
|
ath_rc_priv->neg_rates.rs_rates[j]
|
|
= (sband->bitrates[i].bitrate * 2) / 10;
|
|
j++;
|
|
}
|
|
}
|
|
ath_rc_priv->neg_rates.rs_nrates = j;
|
|
|
|
if (sta->ht_cap.ht_supported) {
|
|
for (i = 0, j = 0; i < 77; i++) {
|
|
if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
|
|
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
|
|
if (j == ATH_RATE_MAX)
|
|
break;
|
|
}
|
|
ath_rc_priv->neg_ht_rates.rs_nrates = j;
|
|
}
|
|
|
|
is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
|
|
|
|
if (is_cw40)
|
|
is_sgi = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
|
|
else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
|
|
is_sgi = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
|
|
|
|
/* Choose rate table first */
|
|
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
|
|
rate_table = ath_choose_rate_table(sc, sband->band,
|
|
sta->ht_cap.ht_supported, is_cw40);
|
|
} else {
|
|
rate_table = hw_rate_table[sc->cur_rate_mode];
|
|
}
|
|
|
|
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
|
|
ath_rc_init(sc, priv_sta, sband, sta, rate_table);
|
|
}
|
|
|
|
static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
|
|
struct ieee80211_sta *sta, void *priv_sta,
|
|
u32 changed, enum nl80211_channel_type oper_chan_type)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *ath_rc_priv = priv_sta;
|
|
const struct ath_rate_table *rate_table = NULL;
|
|
bool oper_cw40 = false, oper_sgi;
|
|
bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
|
|
true : false;
|
|
bool local_sgi = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
|
|
true : false;
|
|
|
|
/* FIXME: Handle AP mode later when we support CWM */
|
|
|
|
if (changed & IEEE80211_RC_HT_CHANGED) {
|
|
if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
|
|
return;
|
|
|
|
if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
|
|
oper_chan_type == NL80211_CHAN_HT40PLUS)
|
|
oper_cw40 = true;
|
|
|
|
if (oper_cw40)
|
|
oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
true : false;
|
|
else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
|
|
oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
|
|
true : false;
|
|
else
|
|
oper_sgi = false;
|
|
|
|
if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
|
|
rate_table = ath_choose_rate_table(sc, sband->band,
|
|
sta->ht_cap.ht_supported,
|
|
oper_cw40);
|
|
ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
|
|
oper_cw40, oper_sgi);
|
|
ath_rc_init(sc, priv_sta, sband, sta, rate_table);
|
|
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
|
|
"Operating HT Bandwidth changed to: %d\n",
|
|
sc->hw->conf.channel_type);
|
|
sc->cur_rate_table = hw_rate_table[sc->cur_rate_mode];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
|
|
{
|
|
struct ath_wiphy *aphy = hw->priv;
|
|
return aphy->sc;
|
|
}
|
|
|
|
static void ath_rate_free(void *priv)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
|
|
{
|
|
struct ath_softc *sc = priv;
|
|
struct ath_rate_priv *rate_priv;
|
|
|
|
rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
|
|
if (!rate_priv) {
|
|
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
|
|
"Unable to allocate private rc structure\n");
|
|
return NULL;
|
|
}
|
|
|
|
rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
|
|
|
|
return rate_priv;
|
|
}
|
|
|
|
static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
|
|
void *priv_sta)
|
|
{
|
|
struct ath_rate_priv *rate_priv = priv_sta;
|
|
kfree(rate_priv);
|
|
}
|
|
|
|
static struct rate_control_ops ath_rate_ops = {
|
|
.module = NULL,
|
|
.name = "ath9k_rate_control",
|
|
.tx_status = ath_tx_status,
|
|
.get_rate = ath_get_rate,
|
|
.rate_init = ath_rate_init,
|
|
.rate_update = ath_rate_update,
|
|
.alloc = ath_rate_alloc,
|
|
.free = ath_rate_free,
|
|
.alloc_sta = ath_rate_alloc_sta,
|
|
.free_sta = ath_rate_free_sta,
|
|
};
|
|
|
|
int ath_rate_control_register(void)
|
|
{
|
|
return ieee80211_rate_control_register(&ath_rate_ops);
|
|
}
|
|
|
|
void ath_rate_control_unregister(void)
|
|
{
|
|
ieee80211_rate_control_unregister(&ath_rate_ops);
|
|
}
|